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Abstract—Nowadays, radio or Internet-based communication
is gaining popularity in various fields, e.g., in signal processing.
Due to the not reliable real-time communication, some of the
data are lost during the transmission. There are several stochastic
models allowing the analysis of this phenomenon. The spectral
properties of these models result in specific distortion in the
signals’ spectra. As the spectrum of the signal can easily be
calculated via the fast Fourier transform (FFT), FFT-based
identification methods of the data loss can be developed. In this
paper a new identification method is proposed for the simpler
cases of the Gilbert-Elliott model class. The paper summarizes the
mathematical description of data loss, and introduces the Gilbert-
Elliott model family. The novelty of the paper is the identification
method that is based on the autocorrelation function of the
Gilbert-Elliott model. The proposed method is compared to
classical procedures based on the Baum-Welch algorithm and to
novel ones based on global optimization. The theoretical results
are supported by extensive simulations.

Index Terms—autocorrelation, Baum-Welch algorithm, data
loss, FFT, Gilbert-Elliott model, global optimization, hidden
Markov model, identification

I. INTRODUCTION

In traditional measurement and communication systems
reliable, high-precision and fast data transmission is used.
Recently, due to the technological development and quickening
of the networking process (e.g., sensor networks, Internet of
Things [1]), cheaper devices and less reliable data transmission
protocols are spreading. This can result in the partial damaging
of the message during the transmission, which is commonly
called as data loss [2], [3].

Data loss can be viewed as a measurement or communica-
tion error caused by the not reliable procedures and equipment.
It is a many-faced phenomenon: e.g. packets can be lost over
computer networks, radio communication can be impaired by
interference, or the success of the measurements can depend
on external circumstances. These can lead to invalid or missing
samples. Additionally, in a distributed system with multiple
clock domains, synchronization issues can lead to artificially
repeated or skipped samples.

When some data are lost, it is an obvious idea to retry
the measurement or transmission, but there are cases when it
is impossible. If a signal is measured in real-time, the lost
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samples cannot be replaced. To achieve reliable transmission,
one needs to implement a complex state machine, which
may not be economical. Furthermore, reliable transmission
is impossible within a finite time interval, thus in real-time
systems data loss must be specially handled.

Spectral estimation is a common measurement task, which
is usually accomplished via FFT. As exactly calculating the
FFT requires a total block of available samples, the adequate
handling of data loss is crucial. One could e.g. pre-process
the blocks and use the original FFT algorithm [4], estimate the
missing samples then use traditional spectral analysis methods
[5], or use algorithms developed for irregular sampling [6].

Since data loss is an error phenomenon, usually stochastic
models are used for its description. Some examples are the
Gilbert-Elliott model [7], the hierarchical hidden Markov
model [8] or a two-level model created for UDP channels
[9]. It turned out that each data loss model causes a specific
distortion of the spectral estimate [4]. Based on this obser-
vation, a frequency domain identification method has been
presented previously for the two-state Markov and the random
independent models [10]. In [11] we described the properties
of the Gilbert-Elliott model family and a simple identification
method has been introduced.

In this paper, we derive the autocorrelation function of
the Gilbert-Elliott model. Using this result, we present an
improved identification method for the simpler models of the
Gilbert-Elliott model family. This method utilizes the FFT and
can offer higher precision than the one described in [11], while
keeping the low computational demands.

One of the aims of this paper is to compare the different
possibilities of identifying the Gilbert-Elliott model. Among
them, we can emphasize the Baum-Welch algorithm [12],
which is a well-known expectation-maximization algorithm
usable for identifying hidden Markov models (HMMs) [13],
[14], [15]. Moreover, the general algorithm can be easily
specialized for the models in question. Another approach is to
frame the identification as an optimization problem, and use
different global optimization techniques [16], [17]. This paper
briefly presents the Baum-Welch algorithm, its specializations,
the usage of global optimization for identifying an HMM, and
compares the proposed method to them.

The paper, which is an extension of [18], is arranged as
follows: section II gives a mathematical description of the
data loss, and the Gilbert-Elliott model class is presented.
Section III deals with the autocorrelation function and the
proposed identification method. Section IV briefly presents
the investigated alternative algorithms, discusses their imple-
mentation for the studied models, and compares them from a
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Fig. 1: Gilbert-Elliott data loss model

theoretical point of view. Section V illustrates the procedure
with some simulation and measurement examples. The paper
concludes in section VI.

II. PRELIMINARIES

A. Basic Definitions

Data loss can be described in discrete time with a so-called
Kn availability indicator function [9], [19]:

Kn =

{
1 if the sample is available at n
0 if the sample is lost at n

(1)

With the indicator function we can define the data availabil-
ity rate µ:

µ = P (Kn = 1) (2)

where P (·) is the probability operator. The Rk autocorrelation
function can be defined as follows:

Rk = E (KnKn+k) (3)

where E (·) is the expected value operator.
Data loss can easily be modeled as the product of the

Kn data availability function and the x0n discrete-time signal
subject of data loss:

xn = x0nKn (4)

The data loss is block-based when the data are grouped into
fixed size blocks and these blocks are either fully available or
fully lost.

B. The Gilbert-Elliott Data Loss Model Family

1) Gilbert-Elliott Model: The Gilbert-Elliott data loss
model is a two-state two-output HMM. In this paper, the
states will be marked with A and B. The probabilities of a
state transition from state A to state B and vice versa will
be marked with p and q, respectively. The probabilities of
getting an available sample in the two states will be a and b,
respectively. Fig. 1 depicts this data loss model.

2) Simpler Models: The Gilbert-Elliott model is practically
a model family. In this family simpler models are to be
separated:
• Gilbert-model [20]. When a ≡ 1, the sample in state A

is always available.
• Complementary Gilbert-model. When b ≡ 0, the sam-

ple in state B is always lost.
• Two-state Markov model. When a ≡ 1 and b ≡ 0, the

availability is a deterministic function of the state.
• Random independent model. When a = b or p+q = 1,

the availability of different samples becomes independent.
In the former case, the two states behave uniformly, using

the same random independent data loss, while in the latter
case, the states themselves are independent of each other.

The Markov model is also a special case of the Gilbert and
the complementary Gilbert models. Moreover, the random
independent model is a special case of all of the mentioned
models.

3) Basic Properties: The P transition probability matrix of
the Gilbert-Elliott model is

P =

[
1− p p
q 1− q

]
(5)

We can get the π stationary state distribution from the πP = π
equation:

π =
[
πA πB

]
=
[ q
p+q

p
p+q

]
(6)

The data availability rate of the Gilbert-Elliott model is

µ = πAP (1|A) + πBP (1|B) = aq + bp

p+ q
(7)

III. THE PROPOSED IDENTIFICATION METHOD

Our earlier research has been focused on the spectral
description of data loss. It has turned out, that data loss models
have specific power spectral density (PSD) function, which
implies that frequency domain identification can be worked
out [10], [11]. In [11] a simple identification method has
been introduced for the Gilbert-Elliott model family. This
simple method is based on the sampling of the PSD in three
specific points. Due to the inevitable measurement noise this
method often fails in practice. The new method proposed in
this paper overcomes this problem by the processing of the
autocorrelation function of the model. As the autocorrelation
function can be easily calculated by the FFT of the model
output sequence, it is an FFT-based identification method.

A. Autocorrelation of the Gilbert-Elliott model

The autocorrelation function of the Gilbert-Elliott model
(for k ≥ 0) is

Rk =

{
Z
X k = 0
Z2

X2 + Y
X2 (1−X)

k
k > 0

(8)

where X = p + q, Y = pq (a− b)2 and Z = aq + bp. For
the derivation of the autocorrelation function see appendix A.
Using the formula µ = Z

X , we can rewrite the autocorrelation
as

Rk = µ2 +
Y

X2
(1−X)

k
+

(
µ− µ2 − Y

X2

)
δk (9)

where δk is the Kronecker delta.
We can determine the origins of the different terms by

substituting the conditions for the simpler models into (9).
The constant term µ2 simply comes from the nonzero mean
of Kn.

If we take the conditions for the random independent model,
the exponential term vanishes. When a = b holds, Y = 0
is true, and in the p + q = 1 case, (1−X)

k becomes 0.
Furthermore, the exponential term appears in all of the other
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models of the Gilbert-Elliott family, so we can conclude that
the exponential term comes from the underlying Markov chain.

If we calculate the autocorrelation of the function Kn −
µ, we get the same result as (9), only without the constant
term µ2. In this case, R0 equals to the variance of Kn. The
variance has two components, this is because there are multiple
sources of randomness in the model: the state transitions and
the random outputs in each state. The exponential part comes
from the state transitions, and if we express the coefficient of
δk with the model parameters, we get

µ− µ2 − Y

X2
= πAa (1− a) + πBb (1− b) (10)

which means that this part of the variance is the sum of the
variances in each state weighted by the stationary distribution.

B. Overview of the Proposed Method

The steps of the proposed method are summarized below:
1) Handle the block-based data loss, decimate Kn if

needed.
2) Calculate µ̂ = mean (Kn), K ′n = Kn − µ̂.
3) Obtain the R̂k autocorrelation estimate.
4) Get the LPC (linear prediction coding) coefficients.
5) Examine the derived coefficients, check for random

independent model, get X̂ and Ẑ estimates.
6) Fit the C(1 − X̂)k exponential to R̂k, calculate the Ŷ

estimate, check for two-state Markov model.
7) Calculate the model parameters.
Fig. 2 illustrates the method. Boxes marked with yellow

contain the handling of the block-based data loss, red color
shows the steps from the method described in [10], while blue
color indicates the extension for the Gilbert and complemen-
tary Gilbert models.

C. The Proposed Method in Detail

Step 1. The case of the block-based data loss is to be
handled. In this case, we only need to know the availability
of the blocks, so the indicator function can be decimated
by the block size. For this step, the block size needs to be
known, which is usually known in advance, e.g., from the
communication protocol. If for some reason the block size is
unknown, it can be estimated as the greatest common divisor
of the sequence lengths of the available and the lost samples.

Step 2. The value µ̂ is calculated as the mean of Kn, then
subtracted from it:

K ′n = Kn − µ̂ (11)

The value of µ̂ will be used later for getting the Ẑ parameter
estimate. The subtraction removes the constant µ2 term from
the autocorrelation as its presence can impair the dynamic
model fitting in step 4.

Step 3. The R̂k autocorrelation of K ′n is calculated. It can
be performed efficiently by getting the IFFT of the PSD of
K ′n. With this way of estimation the autocorrelation, it is
necessary for the autocorrelation to decay in the DFT block.
Fortunately, as the decay is exponential, this condition is not
critical. For the PSD estimation, overlapping blocks can be

used. [21] recommends a maximum of 75% overlap. The DFT
length should be chosen with care: in too short DFTs the
autocorrelation does not decay, while with too long DFTs the
number of DFT blocks will be lower, resulting in worse SNR.

Step 4. The k > 0 part of the autocorrelation function
is approximated by an autoregressive system. In theory, the
Gilbert-Elliott model class gives autocorrelation functions with
no zeros and at most one pole. It has no pole if it is random
independent and one pole otherwise. The model fitting can
be done by using an LPC which determines the coefficients
of a forward linear predictor by minimizing the prediction
error in the least squares sense [22]. As the result of the LPC
estimation we get the a1, a2, . . . , aL coefficients, where L is
the order of the model (based on our experience, L = 10 . . . 20
is appropriate).

Step 5. The LPC coefficients are investigated. If the
a3, a4, . . . coefficients are not negligible, the data loss does
not belong to the Gilbert-Elliott model family. If the coefficient
a2 is negligible as well, the data loss is random independent
with data availability probability µ̂. Else, using (7) for Ẑ we
can get the parameter estimates

X̂ = 1 + a2 Ẑ = µ̂X̂ (12)

Step 6. The magnitude of the exponential term in the
autocorrelation is estimated. This can be done by least squares
fitting the Fk = C(1 − X̂)k = CEk function to R̂k for
k = 1, . . . ,M , where M is the length of the autocorrelation.
We get the value of constant C as:

C =

∑M
k=1EkR̂k∑M
k=1E

2
k

(13)

If R̂0 ' C, then the coefficient of the δk term is negligible
in R̂k, which means that two-state Markov model describes
the data loss. As C is the estimate of the magnitude of
the exponential term of the autocorrelation, we can get the
parameter estimate

Ŷ = CX̂2 (14)

Step 7. The model parameters are calculated from the X̂ ,
Ŷ and Ẑ estimates. Unfortunately, as the Gilbert-Elliott model
has four parameters, the model parameters are ambiguous.
However, for the simpler models, this is an unambiguous prob-
lem. The Gilbert model parameter estimates can be calculated
as

p̂=
X̂(X̂−Ẑ)2

(X̂−Ẑ)2+Ŷ
q̂=

X̂Ŷ

(X̂−Ẑ)2+Ŷ
b̂=

Ẑ(X̂−Ẑ)−Ŷ
X̂(X̂−Ẑ)

(15)

The complementary Gilbert model parameter estimates can be
obtained as

p̂ =
X̂Ŷ

Ẑ2 + Ŷ
q̂ =

Ẑ2X̂

Ẑ2 + Ŷ
â =

Ẑ2 + Ŷ

ẐX̂
(16)

Finally, the two-state Markov model parameter estimates are

p̂ = X̂ − Ẑ q̂ = Ẑ (17)
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Fig. 2: The proposed data loss model identification method

IV. ALTERNATIVE ALGORITHMS

The idea of the identification method comes from the
observation that data loss distorts the spectra in a specific way.
The model for data loss is a kind of state machine, an HMM.
In the field of instrumentation and measurement, HMMs are
intensively used for the description of various systems that
change their states, typically with purpose of classification
or detection. A continuous HMM is used in [13] to classify
pedestrian activity, while [14] uses multiple HMMs to detect
weld lines. Another example is machine health monitoring
[15].

The HMMs used in the previous examples are complex:
they can have many states, and even continuous outputs. In
contrast, the Gilbert-Elliott model class contains some of the
simplest HMM structures. This simplicity allows us to use the
proposed method.

A. Baum-Welch Algorithm

The training of an HMM is usually performed with the
Baum-Welch algorithm [12]. An HMM can be parameterized
with θ = (P,O, π), where P is the transition matrix, O is the
output matrix and π is the initial state vector.

The Baum-Welch algorithm finds the

θ̂ = argmax
θ

P (Y |θ) (18)

maximum likelihood estimate, based only on the observed
output sequence Y .

1) Usage for the Gilbert-Elliott Model: Because the
Gilbert-Elliott model is one of the simplest HMMs, the general
Baum-Welch algorithm is usable for its identification. Two
natural ways arise how to modify the general algorithm for
the simpler cases of the Gilbert-Elliott model class.

One modification is called the initialized Baum-Welch al-
gorithm. In this case, instead of a randomly chosen output
matrix, at least some elements of it are deterministic. Let us
denote the initial output probability matrix as

O0 =

[
PA1 PA0

PB1 PB0

]
(19)

where e.g. PA0 is the probability of getting a lost sample in
state A.

According to the definitions of the Gilbert, complementary
Gilbert, and two-state Markov models, the following initial
output matrices should be used for them, respectively:

O0,G =

[
1 0
∗ ∗

]
O0,CG =

[
∗ ∗
0 1

]
O0,2S =

[
1 0
0 1

]
(20)

where ∗ marks a randomly chosen positive element (such that
the sum of each row is 1).

Another modification could be called the “constrained
Baum-Welch algorithm”. Now, same constraint matrices as
in (20) are introduced. The appropriate one is used for the
initial output probability estimate, moreover it is also used
as an “estimation mask”. This means that during the step of
estimating the output probabilities in each iteration, only the
ones marked with an ∗ are estimated, the others are used from
the constraint matrix.

B. Global Optimization

In essence, (18) describes an optimization problem. The ob-
jective function is the likelihood function and the optimization
variables are the HMM parameters. Moreover, because the
parameters are probabilities, the problem is constrained.

The Baum-Welch algorithm is an expectation-maximization
algorithm, which searches for a local optimum. However, we
are interested in the global optimum in (18), thus global opti-
mization algorithms can be used for training an HMM. There
are several global optimization algorithms, e.g. pattern search
[23], genetic algorithm [24] or particle swarm optimization
[25].

Traditional optimization algorithms usually use the gradient
or higher derivatives to find a local optimum, however this
approach does not guarantee a global optimum. Most global
optimization algorithms use only the values of the objective
function.

Pattern search evaluates the function in a specific pattern
around the current point. Based on these values the current
point can move to a tested point, the pattern can move or
scale.

Genetic algorithms try to model the evolution: there are
multiple individuals (test points) in each iteration. The best
of them can proceed directly to the next iteration, others
can mutate (some variables can randomly change) or two
individuals can create a child (with their variables mixed).



5

There are multiple test points in a particle swarm optimiza-
tion also, which tries to model the behavior of an insect swarm.
In an iteration, the function is evaluated in the test points, then
velocities are assigned to the points, finally they move to their
new place.

Recently, global optimization algorithms are beginning to
be used for HMM training. E.g. [17] uses a particle swarm
optimization, while [16] uses a combination of a genetic
algorithm and the Baum-Welch method.

1) Usage for the Gilbert-Elliott Model: As the models of
the Gilbert-Elliott family can all be described easily using at
most four parameters, the optimization problem will contain
them directly as optimization variables, instead of the general
θ = (P,O, π) form. Actually, if the optimization variables are
marked with xi, then the Gilbert-Elliott model parameters can
be obviously assigned to them:

x1 = p x2 = q x3 = a x4 = b (21)

Similar assignments can be done in the cases of the simpler
models. Moreover, the parameters are probabilities, thus they
are bounded to the [0, 1] range. The parameters are indepen-
dent of each other, no further constraints are needed.

C. Theoretical Comparison

The proposed method, the Baum-Welch algorithm and the
global optimization approach are compared to each other in
Table I.

The table clearly shows that the proposed method was
developed exactly for the identification of the simpler models
of the Gilbert-Elliott family, while the other two approaches
are solutions to more general problems.

The spectral estimation is the most computationally de-
manding step in the case of the proposed method. From this
we get O (N logNDFT) complexity, where N is the number
of samples and NDFT is the DFT length.

The complexity of the Baum-Welch algorithms comes from
the forward-backward algorithm, which is used in the expec-
tation step [12]. This requires O (N) operations in our case.
This calculation is performed in every iteration, yielding the
complexity of O (IN), where I is the maximal number of
allowed iterations.

The forward-backward algorithm is also used at the global
optimization algorithms for calculating the likelihood function
(used as the objective function). Regardless of the actual
optimization algorithm, the objective function is evaluated at a
set of points in each iteration (upper bounds for the number of
points can be expressed for each algorithm) [23], [24], [25].
In our case, the evaluation of the objective function is the
dominant term, which makes the complexity O (IN).

While the computational complexity of all the methods
is linear in the number of samples, the proposed method
shows significantly lower computational times. Moreover, this
linearity guarantees that this observation stays valid at any N .

The optimization cell of the proposed method bears clar-
ification: the least squares fitting steps can be considered
as simple optimization problems. Their solution is known in
closed form and can be computed at once, this results in lower

TABLE I: Comparison of the identification methods

Criterion Proposed
Method

Baum-Welch
Algorithm

Global
Optimization

Computational
complexity Low High

Identifiable
models

Simpler models
of the Gilbert-
Elliott family

General HMM

Optimization
type

Finds global
optimum (of
simple problems)

Searches for
local
optimum

Searches for
global
optimum

Model
selection and
parameter
estimation

Series of simple
model selection
and parameter
estimation steps
(see Fig. 2)

Model selection in advance,
only parameter estimation

computational complexity and the ability to find the global
optimum.

V. EXAMPLES

A. Simulations

1) The Simulation Environment: A simulation environment
was created in MATLAB to test the proposed method, and
to compare it to the Baum-Welch algorithm and three global
optimization algorithms: pattern search, particle swarm opti-
mization and the genetic algorithm. A series of simulations
were conducted with the Gilbert model using the model
parameters p, q, b and the number of samples N as input
variables. They could take the following values:
• (p, q) ∈ {0.01, 0.02, . . . , 0.1}2
• b ∈ {0.1, 0.2, . . . , 0.9}
• N ∈ {1000, 2000, 5000, 10000}

and each parameter configuration has been tested with the
proposed method and the Baum-Welch algorithms. A less
dense grid was used for the global optimization algorithms.

The samples of the indicator function were generated arti-
ficially, starting from stationary state distribution.

In the proposed method, the order of the resulted LPC model
was 10. The negligibility of the got a3, a4, . . . coefficients
was decided by comparing their Euclidean norm with 0.1.
After calculation of the p̂, q̂, b̂ parameter estimates, they were
checked for being in the [0, 1] range. If any of the parameters
were outside this range or the a3, a4, . . . coefficients were not
negligible, the parameter estimates were excluded from further
processing.

The original and initialized Baum-Welch algorithms were
the ones provided by the hmmtrain function of MATLAB
[26]. It was the base of our implementation of the constrained
Baum-Welch algorithm. If the algorithms did not converge,
their results were excluded from further processing.

The used global optimization algorithms were provided by
the Global Optimization MATLAB Toolbox [27]. The log
likelihood was chosen for the objective function instead of
directly using the likelihood as in (18). It was calculated using
the hmmdecode MATLAB function [26]. If the algorithms
did not converge, their results were excluded from further
processing.
M = 20 simulations were carried out for each variable con-

figuration. The mean and standard deviation of the parameter
estimation errors were calculated. All the simulations were
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TABLE II: Computation times for the different methods by
the number of samples. BW: Baum-Welch.

Method Mean (seconds)
N=1000 N=2000 N=5000 N=10000

Proposed 0.0030 0.0035 0.0040 0.0049
Original BW 0.0804 0.1726 0.4777 1.0368
Initialized BW 0.0614 0.1212 0.3058 0.5987
Constrained BW 0.0620 0.1202 0.3033 0.6077
Pattern search 0.7596 1.4692 3.5490 7.1673
Particle swarm 2.8282 5.4849 13.393 26.664
Genetic alg. 7.2845 14.236 35.84 72.323

conducted on the same computer to be able to compare the
computation times. The mean of the required computation time
was also calculated.

The simulations described in [18] were focusing on testing
the behavior of the proposed method. In contrast, these simu-
lations depict a situation when there is a measurement record
with N samples of the indicator function, which needs to be
identified and now we seek the best identification method.

2) Computation Time: The mean of the required computa-
tion times for the different methods and number of samples is
given in Table II. The actual values of the different times in
seconds do not carry much information in themselves, as they
depend heavily on the hardware. However, their relations are
usable for comparison.

The table can be divided into three sections: the proposed
method requires the least time, the Baum-Welch based algo-
rithms significantly more, while the global optimization ones
have even higher demands. It is clear that the iterative methods
require multiple orders of magnitude more computation time
than the proposed one.

The time measurement, especially for the small time values
could be significantly influenced by the measurement overhead
or the operating system. However, even considering these
effects the former comparisons remain valid.

The results clearly show that with the exception of the
proposed method, all the other algorithms have computational
time proportional to the number of samples. As the algorithm
is fast, the overhead was the main component of the elapsed
time for the proposed method, at higher number of samples
the proportionality is clearly observable.

3) Bias and Standard Deviation: Fig. 3 shows the relative
bias and relative standard deviation of the parameter estimates
given by the different methods. Each mark corresponds to a
parameter configuration. Green crosses mean simulations with
N < 10000, while the N = 10000 cases are drawn with black
dots.

The plots of the figure have common bounds for easier
comparison. There were results outside these bounds, their
amount is shown in Table III. The original Baum-Welch
algorithm was not plotted, because it gave so large errors that
only a fraction of the results would be visible in the plots.

We can conclude that there were a significant proportion of
“outliers” only at N < 10000: for the parameters p, q with the
particle swarm and the genetic algorithm.

Comparing the figures, at first glance we can see that the
different algorithms produced estimates of similar quality. It
can be generally observed that while the iterative methods
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Fig. 3: Relative bias and relative standard deviation of the
estimates. BW: Baum-Welch. Green crosses: N < 10000,
black dots: N = 10000.

TABLE III: Amount of data points outside the plot borders in
Fig. 3

Method N
Parameter

p q b

Proposed < 10000 1.59% 1.58% 6.35%
10000 0.56% 1.69% 0.0%

Initialized < 10000 2.46% 1.73% 0.17%
Baum-Welch 10000 0.0% 0.0% 0.0%
Constrained < 10000 0.06% 2.08% 0.06%
Baum-Welch 10000 0.0% 0.0% 0.0%
Pattern < 10000 4.53% 5.31% 0.0%
search 10000 0.0% 0.0% 0.0%
Particle < 10000 15.43% 18.82% 0.1%
swarm 10000 3.09% 4.32% 0.0%
Genetic < 10000 12.90% 16.99% 0.0%
algorithm 10000 2.56% 4.15% 0.0%

require multiple orders of magnitude more calculations, they
do not offer multiple orders of magnitude better results.

It must be noted, that when more samples are available for
identification, the proposed method is able to give estimates
of better quality. As an example, in the N = 106 case
(discounting the outliers) the relative bias is in ±0.03, while
the relative standard deviation is below 0.04. It is reasonably
fast to apply the proposed method for a large number of
samples (less than 0.2 seconds), while the other methods
would require much more time (e.g. the genetic algorithm
would require about two hours).
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Fig. 4: Measurements – accuracy
B. Measurements

The performance of the proposed method is demonstrated
by the measurement data used in [11]. These data were
acquired by periodically sending UDP packets between two
computers. The indicator function was obtained from the
identifiers of the received packets. Several measurements were
performed with varying packet size, sending interval, means of
connection, parallel network activity, etc. Since now the data
loss model type is also unknown, the quality of the estimate
could be determined based on the measured PSD and the PSD
of the estimated model.

1) Accuracy: Fig. 4 illustrates the accuracy of the proposed
method using the data of a measurement from the previously
described set. This measurement incorporated a shared Internet
connection of a mobile phone, the packets were sent between
computers physically about 250 km apart.

The measurement data were identified with all the previ-
ously described methods. The proposed method recognized it
as a Gilbert model and gave a good fit.

The original and the initialized Baum-Welch algorithms
both identified a Gilbert-Elliott model. They gave identical,
poor results. The constrained Baum-Welch algorithm identifed
a Gilbert model, but its estimate was also poor.

The global optimization algorithms were run for both the
Gilbert and the Gilbert-Elliott models. For the Gilbert model,
the pattern search gave a good estimate, while the particle
swarm and the genetic algorithms yielded poor results. In the
case of the Gilbert-Elliott model, the genetic algorithm gave
a poor fit, while the other two resulted in acceptable, similar
estimates.

2) Other Model: Fig. 5 shows the PSD of the indicator
function from another measurement (wired Internet connec-
tion, 250 km distance, sending many packets in a short time),
and of the identified models.

All the methods except the proposed one forced the identi-
fication of a predetermined model, thus they gave an estimate.
This is a poor fit disregarding the two bumps in the PSD
at higher frequencies. It is interesting that all the estimates
coincide.
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Fig. 5: Measurements – other model. The legend is the same
as in Fig. 4.

On the contrary, the proposed method recognized that this
is not a Gilbert-Elliott type model: during the 5th step in the
identification the higher LPC coefficients were not negligible,
thus this measurement cannot be described with a Gilbert-
Elliott model. This model type validation is an advantage of
the proposed method over the other ones.

VI. CONCLUSION

In this paper a new identification method for the simpler
cases of the Gilbert-Elliott model class was presented. The
paper started with the mathematical description of the data
loss, then the Gilbert-Elliott model class was introduced.
Next, the main contribution of the paper was presented. This
is the proposed identification method which estimates the
autocorrelation, then fits a dynamic model. The autocorrelation
function of the Gilbert-Elliott model is of key importance.
Up to the knowledge of the authors it has not been shown
before. Examining the coefficients it can be determined which
model of the Gilbert-Elliott family is a good hypothesis and
the model parameters are calculated. The usage of the Baum-
Welch algorithm, its modifications and the global optimization
for the task was also discussed. The proposed method has
been extensively tested using simulations and measurements,
accompanied by comparisons to the other methods. Generally,
the proposed FFT-based method offers similar identification
results to the Baum-Welch algorithm and the global optimiza-
tion, along with significantly less computational demand.

APPENDIX

A. Derivation of the Autocorrelation Function

The derivation needs the expression of the powers of the
transition probability matrix. Based on [28] and [29] they can
be expressed as

Pk =

(
λ2λ

k
1 − λ1λk2

)
I+

(
λk2 − λk1

)
P

λ2 − λ1
(22)

where λ1 = 1− p− q = y and λ2 = 1 are the eigenvalues of
P. With some calculation, we can get

Pk =
1

p+ q

[
q + pyk p− pyk
q − qyk p+ qyk

]
(23)

Now the autocorrelation function can be expressed by defini-
tion:

Rk = E (KnKn+k) = E (K0Kk) (24)
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The latter equation holds because of the time invariance of the
Gilbert-Elliott model. Considering that Kn ∈ {0, 1} we can
write

Rk =
∑

S1,S2∈{A,B}

πS1
P (1|S1)P

(
S1

k→ S2
)
P (1|S2) (25)

where P (1|Si) is the probability of getting a 1 output in
state Si and P

(
Si

k→ Sj
)

is the probability of transitioning
in k steps from state Si to Sj . Noticing that the former
probabilities are the a and the b parameters of the Gilbert-
Elliott model and the latter probabilities are the elements of
Pk, the autocorrelation function can be expressed as:

Rk = πAaP
k
AAa+ πAaP

k
ABb+ πBbP

k
BAa+ πBbP

k
BBb =

=
(aq + bp)

2
+ pq (a− b)2 yk

(p+ q)
2

(26)

The above expression is correct for k > 0, but incorrect for
k = 0. For k = 0 the availability probability was counted
twice, hence the result is incorrect. The correct result can be
obtained directly from the definition:

R (0) = E
(
K2

0

)
= E (K0) = µ (27)

as Kn ∈ {0, 1}. Putting together, the autocorrelation function
is

Rk =

{
aq+bp
p+q k = 0

(aq+bp)2+pq(a−b)2yk

(p+q)2
k > 0

(28)

With the substitutions p + q 7→ X , pq (a− b)2 7→ Y and
aq + bp 7→ Z, the correlation function is

Rk =

{
Z
X k = 0
Z2

X2 + Y
X2 (1−X)

k
k > 0

(29)
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