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Abstract—Nowadays, radio or Internet-based communication
is gaining popularity in various fields, e.g., in signal processing.
Due to the not reliable real-time communication, some of the
data are lost during the transmission. There are several stochastic
models allowing the analysis of this phenomenon. The spectral
properties of these models result in specific distortion in the
signals’ spectra. As the spectrum of the signal can easily be
calculated via the fast Fourier transform (FFT), FFT-based
identification methods of the data loss can be developed. In this
paper a new identification method is proposed for the simpler
cases of the Gilbert-Elliott model class. The paper summarizes the
mathematical descripiton of data loss, and introduces the Gilbert-
Elliott model family. The novelty of the paper is the identification
method that is based on the autocorrelation function of the
Gilbert-Elliott model. Practical results are presented on the
validation of the identified model parameters, and the required
number of FFT points. The theoretical results are supported by
simulation and measurement examples.

Index Terms—data loss, Gilbert-Elliott model, hidden Markov
model, identification, FFT, autocorrelation

I. INTRODUCTION

In traditional measurement and communication systems
reliable, high-precision and fast data transmission is used.
Recently, due to the technological development and quickening
of the networking process (e.g., sensor networks, Internet of
Things), cheaper devices and less reliable data transmission
protocols are spreading. This can result in the partial damaging
of the message during the transmission, which is commonly
called as data loss.

Roughly speaking, data loss is a measurement or com-
munication error caused by the not reliable procedures and
equipment. It is a many-faced phenomenon: e.g. packets can
be lost over computer networks, radio communication can
be impaired by interference, or the success of the measure-
ments can depend on external circumstances. These external
circumstances can lead to invalid or missing samples. A typical
example for a missing sample is a lost packet over the Internet,
while a typical invalid sample is generated by an overdriven
AD-converter. Additionally, in a distributed system, where
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multiple clock domains are used, synchronization issues can
lead to multiplied or skipped samples.

When some data are lost, it is an obvious idea to retry
the measurement or transmission, but there are cases when it
is impossible. If a signal is measured in real-time, the lost
samples cannot be replaced. To achieve reliable transmission,
one needs to implement a complex state machine, which
may not be economical. Furthermore, reliable transmission
is impossible within a finite time interval, thus in real-time
systems data loss must be specially handled.

A likely practical application arises during the development
of real-time systems. In the early stages of the development
process, these systems can be tested against data loss via
simulation. To achieve this, the model of the data loss is
needed. Usually stochastic models are used, some examples
are the Gilbert-Elliott model [1], the hierarchical hidden
Markov model [2] or a two-level model created for UDP
channels [3].

On the other hand, identification of the data loss model
is necessary, given a measurement of a data loss process.
The identified model can be later used in the development
process for simulations. In a previous work [4], an FFT-
based identification method has been presented for the two-
state Markov and the random independent models. In [S] we
described the properties of the Gilbert-Elliott model family
and a simple identification method.

In this paper, we introduce the autocorrelation of the
Gilbert-Elliott model. Using this result, we present an im-
proved identification method for the simpler models of the
Gilbert-Elliott model family. This method utilizes the FFT and
offers higher precision than the one described in [5]. While
that former method only used some specific points of the PSD,
the proposed one uses all of its information, resulting in more
accurate estimates.

The paper is arranged as follows: section II gives a possible
mathematical description of the data loss, and the Gilbert-
Elliott model class is presented. Section III deals with the au-
tocorrelation function and the proposed identification method.
Section IV illustrates the procedure with some simulation and
measurement examples. The paper concludes in section V.
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Fig. 1: Gilbert-Elliott data loss model

II. PRELIMINARIES
A. Basic Definitions

Data loss can be described in discrete time with a so-called
K, availability indicator function:

1
K= {3

With this indicator function we can define the p data
availability rate:

if the sample is available at n 1)
if the sample is lost at n

p="PK,=1) )

where P (-) is the probability operator. We can define further
statistical properties, in this paper we will utilize the Ry
autocorrelation function:

Rk =E (K71Kn+k) (3)

where E () is the expected value operator.

Data loss can easily be modeled as the product of the
K, data availability function and the x,discrete-time signal
subject of data loss:

Tn = x()nKn (4)

B. The Gilbert-Elliott Data Loss Model Family

1) Gilbert-Elliott Model: The Gilbert-Elliott data loss
model is a two-state two-output hidden Markov model. In
this paper, the states will be marked with A and B. The
probabilities of a state transition from state A to state B and
vice versa will be marked with p and ¢, respectively. The
probabilities of getting an available sample in the two states
will be a and b, respectively. Fig. 1 depicts this data loss
model.

2) Simpler Models: The Gilbert-Elliott model is practically
a model family. In this family simpler models are to be
separated:

o Gilbert-model [6] When a = 1, the sample in state A is

always available.

o Complementary Gilbert-model When b = 0, the sample

in state B is always lost.

o Two-state Markov model When a = 1 and b = 0, the

availability is a deterministic function of the state.

+ Random independent model When a =bor p+¢q =1,

the availability of different samples becomes independent.
As we can see, the Markov model is also a special case of
the Gilbert and the complementary Gilbert models. Moreover,

the random independent model is a special case of all of the
mentioned models.

3) Basic Properties: The P transition probability matrix of
the Gilbert-Elliott model is

1—-p »p
P:
[q M} )

We can get the 7 stationary state distribution from the 7P = 7
equation:

7 7l ©)

The data availability rate of the Gilbert-Elliott model is

w=[ma 78] =

aq + bp
w=maP(1|A) + P (1|B) = — 7
(LA) + 7aP (1B) = = ——
III. THE PROPOSED IDENTIFICATION METHOD

The proposed identification method is an extension of
the method described in [4]. This method is based on the
autocorrelation of the Gilbert-Elliott model.

A. Autocorrelation of the Gilbert-Elliott model

The autocorrelation function of the Gilbert-Elliott model
(for k£ > 0) is

Ro- 1% k=0 ®)
FTlE+ L 0-X)F k>0

where X = p+¢q, YV = pq(a—b)2 and Z = aq + bp. For
the derivation of the autocorrelation function see appendix A.
Using the formula p = %, we can rewrite the autocorrelation
as

Rk:u2+%(1*X)k+ (u/f;) )
where ¢;, is the Kronecker delta.

We can determine the origins of the different terms by
substituting the conditions for the simpler models into the au-
tocorrelation expression. The constant y? term simply comes
from the nonzero mean of X,,.

If we take the conditions for the random independent model,
the exponential term vanishes. When ¢ = b holds, ¥ = 0
is true, and in the p + ¢ = 1 case, (1 —X)k becomes
0. Furthermore, the exponential term appears starting from
the two-state Markov model, so we can conclude that the
exponential term comes from the underlying Markov chain.

If we calculate the autocorrelation of the function K,, — p,
we get the same result as (9), only without the constant 2
term. In this case, the £ = 0 element of Ry is equal with
the variance of K,,. The variance has two components: one
comes from the exponential term, and the other comes from
the term with &. This is because there are multiple sources
of randomness in the model: the state transitions and the
random outputs in each state. As we have seen the exponential
part comes from the state transitions, and if we express the
coefficient of §; with the model parameters, we get

2—L:’ﬂ'/_\a(l—a)+ﬂ'3b(1—b)

- (10)
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which means that the part of the variance associated with
is the sum of the variances in each state weighted by the
stationary distribution.

B. Overview

The steps of the proposed method are summarized below.

1) Handle the block-based data loss, decimate K, if
needed.

2) Calculate ji = mean (K,,), K|, = K,, — [i.

3) Obtain the Rk autocorrelation estimate.

4) Get the LPC (linear prediction filter) coefficients.

5) Examine the got coefficients, check for random indepen-
dent model, get X and Z estimates.

6) Fit the C(1 — X)* exponential to Ry, calculate the ¥
estimate, check for two-state Markov model.

7) Calculate the model parameters.

Fig. 2 illustrates the method. Boxes marked with yellow
contain the handling of the block-based data loss, red color
shows the steps from the method described in [4], while blue
color indicates the extension for the Gilbert and complemen-
tary Gilbert models.

Fig. 3 demonstrates the computation dataflow. Here S (f)
denotes the PSD estimate.

C. The Proposed Method in Detail

Step 1. The case of the block-based data loss is to be
handled. The data loss is block-based when the data are
grouped into fixed size blocks and these blocks are either fully
available or fully lost. In this case, we only need to know
the availability of the blocks, so the indicator function can
be decimated by the block size. For this step, the block size
needs to be known, which is usually an a priori information,
e.g., from the communication protocol. If for some reason the
block size is unknown, it can be estimated as the greatest
common divisor of the sequence lengths of the available and
the lost samples.

Step 2. The value i is calculated as the mean of K, then
subtracted from it:

K, =K, — i (11)

The value of ji will be used later for getting the Z parameter
estimate. The subtraction removes the constant x? term from
the autocorrelation as its presence can impair the dynamic
model fitting in step 4.

Step 3. The R), autocorrelation of K is calculated. It can
be performed efficiently by getting the IFFT of the PSD of K.
With this way of estimation the autocorrelation, it is necessary
for the autocorrelation to decay in the DFT block. Fortunately,
as the decay is exponential, this condition is not critical.

Step 4. The £ > 0 part of the autocorrelation function
is approximated by an autoregressive system. In theory, the
Gilbert-Elliott model class gives autocorrelation functions with
no zeros and at most one poles. It has no pole if it is random
independent and one pole otherwise. The model fitting can be
done by using an LPC which determines the coefficients of a
forward linear predictor by minimizing the prediction error in

the least squares sense [7]. As the result of the LPC estimation
we get the aq, aq, ..., ay, coefficients, where L is the order
of the model.

Step 5. The LPC coefficients are investigated. If the
as,aq, ... coefficients are not negligible, the data loss does
not belong to the Gilbert-Elliott model family. If the coefficient
as is negligible al well, we have a random independent data
loss with data availability probability /. Else, we can get the
parameter estimate

X=1+a (12)
From (7) we can get the next parameter estimate:
7= pX (13)

Step 6. Estimation of the magnitude of the exponential term
in the autocorrelation. This can be done by least squares fitting
the E;, = C(1— X)* function to Ry, for k =1,..., M, where
M is the length of the autocorrelation. We get the value of
constant C' as: " R

p—1 Ex Rk

Yl BF

If Ry ~ C, then the coefficient of the 8, term is negligible
in Rk, which means we have a two-state Markov model
based data loss. As C is the estimate of the magnitude of
the exponential term of the autocorrelation, we can get the
parameter estimate

C = (14)

Y =CX? 5)

Step 7. Calculation of the model parameters from the X , Y
and Z estimates. Unfortunately, as the Gilbert-Elliott model
has four parameters, the model parameters are ambiguous.
However, for the simpler models, this is an unambiguous prob-
lem. The Gilbert model parameter estimates can be calculated
as

2(X-2)-Y
X(X-2)

(16)
The complementary Gilbert model parameter estimates can be
obtained as

Xy
T X2y

X(X-2)?

e - b=
(X—2)24Y

ﬁ:

XYy  ZX . Z’4Y
= — —= q = — —= a = — (17)
Z24Y Z24+Y zYy
Finally the two-state Markov model parameter estimates are
p=X-2 =17 (18)

D. Remarks

Steps 4 and 5 are a significant improvement over the method
described in [5]. While the former method simply sampled
the PSD is some specific points, the new one fits a model to
the autocorrelation. It means that the new method uses all
the information contained in the PSD, in contrast to only
some specific values of it. This acts as a noise reduction
which makes the precision of the parameter estimates much
higher. Consequently, now we have a more reliable check
for belonging to the Gilbert-Elliott model family, opposed to



) Calculate and . . .
Known YeS_| Obtain K, block > N . +« Estimate - | Fit autoregressive
block size? indicator function sub};?ci;;{avia?ge. ”| PsD > IPFT "] model: [a; . . .az]
no¢
Block size Random as,...,ag
estimation independent model coefficients are

Calculate two-state
Markov model
parameters

Two-state
Markov model

®,49)

k = 0 also fits to
the exponential?
no

small?

(i2)

Fit exponential
function to the
autocorrelation for

A

(X,2) ~ (5,9)

Calculate Gilbert
model parameters

(X,Y,Z) = (p,q,b)

k>0—C

Complementary
Gilbert model
(1;7 qA7 &)

Gilbert ondeI
(ﬁ7 é! b)

Calculate complementary
Gilbert [‘nodel parameters

(X,Y,2) ~ (p,4,4a)

Complementary
Gilbert model
parameter check

ok

error

Fig. 2: The proposed method
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Fig. 3: The computation dataflow

TABLE I: Lower bound for X

N\r | 2 3 1 5
64 | 0.134 0.194 0.25 0.302
256 | 0.0353 | 0.0525 | 0.0694 | 0.086
1024 | 0.00895 | 0.0134 | 0.0178 | 0.0222
4096 | 0.00225 | 0.00337 | 0.00487 | 0.00561
16384 | 0.000562 | 0.000843 | 0.00112 | 0.0014
65536 | 0.000141 | 0.000211 | 0.000281 | 0.000351

forcing identification and only checking the model parameters
afterwards for the obvious errors.

The DFT length required for the PSD can be estimated by
the decay of the autocorrelation function. Provided that the
exponential term can be neglected if (1 — X)¥ < 107", the
length of the DFT is at least

2r

Nmin = T 1 v\
lg(1-X)

(19)
Based on our experience, usual DFT lengths (e.g., 1024 points)
are satisfactory for the calculation of the PSD. Conversely, for
a given N DFT length and r decay exponent, the following
condition for the value of X can be given:

X e [1—10—%,1“0—% (20)
Table I shows the lower bound of this condition for some r
and N values.

The choice of M in (14) is important. We should include
that part of the autocorrelation where its value is high, but
exclude the part where it decayed. If the decayed part is also
included, on that part the model is fit to the noise, which is
not a problem in itself, but it reduces the weight of the initial
part which carries the important information. If M is too low,
then too much of the initial part is left out.

Another possibility of estimating X and Y would be to take
the logarithm of Ry, and then perform a linear regression for
k > 0. After removing the mean value from K,, ]A%k should
decay to 0 while staying positive. As noise can cause Ry, to be
negative, and the logarithm is sensitive to changes with these
small values, this linear regression should also be performed
to the first M values of Rj,. This could be the subject of future
research.

IV. EXAMPLES
A. Simulation Results

1) The Simulation Environment: A simulation environment
was created in MATLAB to test the proposed method. A series
of simulations were executed with the Gilbert model with the
following input variables:

e D, q, b Gilbert model parameters
o Nppr DFT length
e Ny number of DFT blocks

During the simulation NpgrNp samples of the indicator
function of a Gilbert model with p, ¢, b parameters were
generated. The initial state distribution was the stationary one.
The autocorrelation estimate was calculated using FFT, with
Npg not overlapping blocks of Npgr samples.

The order of the resulted LPC model was 10 (or 7 — the
maximum possible — for Nppr = 16). The negligibility of the
got as, ay, ...coefficients was decided by comparing their
Euclidean norm with 0.1. After calculation of the p, g, b
parameter estimates, they were checked for being in the [0, 1]
range. If any of the parameters were outside this range or



the as, a4, ...coefficients were not negligible, the parameter
estimates were marked as invalids.

M = 1000 simulations were executed for each
[p, ¢, b, Nprr, Ng] variable configuration. From this, the Piyyalia
probability of invalid results was calculated. Furthermore,
from the valid results the mean and standard deviation of the
parameter estimation errors were calculated.

2) Comparison with the “Three-Point” Method: An identi-
cal set of simulations were executed for the method described
in [5]. That method is termed as the Three-Point method,
because that method used only three specific values of the
PSD. To demonstrate the improvement over the Three-Point
method, the p = 0.05,¢ = 0.03,b = 0.01, Nppr = 256 cases
were selected with Ng going from 1 to 1000 in 1-2-5 steps.

Fig. 4 shows the comparison of the two methods. As we
can see on the topmost plot, this method has much better
probability to acquire a valid estimation. We got valid results
from all of the simulations with 20 or more DFT blocks, while
the Three-Point one did not reach even 80% valid probability
until 100 DFT blocks.

The lower three plots show the estimation errors of p, ¢ and
b. The lines show the mean error, the length of the error bars
corresponds to one standard deviation. When only one DFT
block was available, the Three-Point method did not produce
valid results in any of the 1000 repetitions, thus there are
no error data for these cases. A significant improvement can
be seen in the accuracy of the p and ¢ transition probability
estimates, where the decrease in the mean and the standard
deviation of the error is about an order of magnitude. A
smaller, but still definite improvement can be seen in the
accuracy of the b parameter estimate.

3) Accuracy with “Short” DFTs: Fig. 5 shows the results
of simulations with parameters p = g = 0.01, b = 0.2, Ng =
1000 and Nppr going from 16 to 4096 by the powers of 2.
The meaning of the error bars in the lower plot is the same
as in Fig. 4.

As the figure shows, there are deterministic errors in the
parameter estimates for the shorter DFTs. They are originated
in the too small DFT length, which means that the autocor-
relation did not decay in the DFT block. For X = 0.02 and
r = 2, according to (19) we would need at least 456 DFT
points. This length is drawn as a green line in the figure. As
we can see, it clearly separates the plot to two parts with high
and low errors.

B. Measurements

The performance of the proposed method is demonstrated
by the measurement data used in [5]. These data were acquired
by periodically sending UDP packets between two computers.
The indicator function was obtained from the identifiers of the
received packets. Several measurements were performed with
varying packet size, sending interval, means of connection,
parallel network activity, etc..

Fig. 6 illustrates the accuracy of the proposed method using
the data of a measurement from the previously described set.
This measurement incorporated a shared Internet connection
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Fig. 4: Simulation — comparison: the proposed method requires
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Fig. 5: Simulation — DFT length: using too small DFT length,
the autocorrelation does not decay, which results in a biased
estimate

of a mobile phone, the packets were sent between computers
physically about 250 km apart. Both the Three-Point and
the proposed method identified this data loss as a two-state
Markov model. It can be clearly seen that the proposed method
gave a more accurate estimate.

Fig. 7 shows the PSD of the indicator function from another
measurement (wired Internet connection, 250 km distance,
sending many packets in a short time), and the PSD of its
identified model using the Three-Point method. The mentioned
method identified this data loss as a Gilbert model, however,
comparing the PSDs, it can be seen that this model is a poor fit
disregarding the two bumps in the PSD at higher frequencies.
On the contrary, the proposed method recognizes that this is
not a Gilbert-Elliott type model.
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disregards the bumps at higher frequencies, while the proposed
method recognizes that this is not a Gilbert-Elliott type model

V. CONCLUSION

In this paper a new identification method for the simpler
cases of the Gilbert-Elliott model class was presented. The
paper started with the mathematical description of the data
loss, then the Gilbert-Elliott model class was introduced.
Next, the main contribution of the paper was presented. This
is the proposed identification method which estimates the
autocorrelation, then fits a dynamic model. The autocorrelation
function of the Gilbert-Elliott model is of key importance.
Up to the knowledge of the authors it has not been shown
before. Examining the coefficients it can be determined which
model of the Gilbert-Elliott family is a good hypothesis and the
values of the model parameters are calculated. Comparing the
method to the previous one, the usage of all of the information
contained in the PSD results in higher precision, assuming the
same observation interval. On the contrary, less time is needed
for the same accuracy. These improvements in precision and
model selection ability were demonstrated by simulation and
measurement examples.

APPENDIX

A. Derivation of the Autocorrelation Function

The derivation needs the expression of the powers of the
transition probability matrix. Based on [8] and [9] they can be
expressed as
AAT = AA5) T+ (A — A7) P

A2 — A1

where \y =1 —p— g =y and \s = 1 are the eigenvalues of
P. With some calculation, we can get

-

e

21

_ q+py* p—py*

ptaqla—ay* p+ayt

Now the autocorrelation function can be expressed by defini-
tion:

(22)

Ry, = E (K, Kn4t) = E (Ko Kp,) (23)

The latter equation holds because of the time invariance of the
Gilbert-Elliott model. Considering that K,, € {0,1} we can
write

Re= > 7s,P(1S1)P (51 Lt 52) P(AS2) (24

$1,52€{A,B}
where P (1]S;) is the probability of getting a 1 output in
state S; and P (S; LA S; ) is the probability of transitioning
in k steps from state S; to S;. Noticing that the former
probabilities are the a and the b parameters of the Gilbert-
Elliott model and the latter probabilities are the elements of
P*, the autocorrelation function can be expressed as:

Ry, = maaPhpa + maaPhgh + mgbPEsa + mebPhgh =
_ (ag+tp)* +pg(a—b)*y*
(p+0q)°

(25)

The above expression is correct for k¥ > 0, but incorrect for
k = 0. For k = 0 the availability probability was counted
twice, hence the result is incorrect. The correct result can be
obtained directly from the definition:

R(0) =E (K§) =E(Ko) = (26)
as K, € {0,1}. Putting together, the autocorrelation function

1S
ag+bp

+
Ry = (squp)2+pQ(a*b)2yk @7

(p+9)*

With the substitutions p + ¢ — X, pg(a — b)2 — Y and
aq + bp — Z, the correlation function is

k=0

Ry = )
g +LA-X)" k>0

(28)
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