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Abstract—The resonator-based observer has been developed
for measuring the harmonic components of a periodic signal
with known fundamental frequency. In certain applications, the
signal to be processed is sparse in the frequency domain: a subset
of its harmonic components have negligible amplitude. This
paper presents some extensions of the resonator-based observer
which can exploit this sparsity to speed up the convergence.
The performance of the proposed structures is demonstrated by
simulation examples.

Index Terms—periodic signals, order tracking, sparsity, con-
vergence speed

I. INTRODUCTION

In many applications, periodic signals are analyzed. Measur-
ing their harmonic components is also known as order tracking
[1]. Examples are active noise control, vibration analysis of
rotating machines or line voltage harmonic analysis.

This problem can be approached in a model-based way.
When the fundamental frequency is known and constant, the
resonator-based observer (RBO) [2] is an adequate solution.
The basic RBO has been already extended in multiple different
ways. For unknown or changing fundamental frequency, the
Adaptive Fourier Analyzer has been developed [3]. Another
extension is the ability to handle missing samples [4].

Generally, a signal is said to be sparse if there is a basis in
which it can be described with only a few nonzero coefficients.
The notion of sparsity can be applied to periodic signals
as well: strictly, it would mean that the majority of the
Fourier coefficients are zero. In this paper, we will be more
concessive: by sparse we mean that a non-negligible subset of
the coefficients have (approximately) zero amplitude.

Trivial examples for sparse periodic signals are a pure sine
wave, or a square wave with 50% duty cycle. A more practical
example is the vibration caused by a ventilator: e.g. if it
has five blades, then the 5th, 10th, 15th, . . . components are
expected to have significantly more power.

In this paper we present some extensions of the RBO which
are able to exploit the sparsity of their periodic input signal
in order to speed up the convergence. The core idea is to
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select those components which are presumably negligible, and
exclude them from the main structure. The main characteristics
of the structures are illustrated by simulations.

The structure of the paper is as follows: Section II reviews
the RBO, while the proposed structures are presented in
Section III. Section IV shows some examples, and the paper
concludes in Section V.

II. PRELIMINARIES

A. Conceptual Signal Model
The so-called conceptual signal model is the complex

Fourier series of a periodic signal:

d =
∑L

k=−L xk xk = Xkck ck = ej2πf1kn (1)

for k =−L, . . . , L, where Xk is the kth Fourier coefficient,
xk is the corresponding Fourier term, j =

√
−1, f1 is the

fundamental frequency (relative to the sampling frequency),
and n is the time index. In order to keep the notation clear,
explicit time indices will not appear unless necessary.

Note carefully the difference between Xk and xk. Xk is
a Fourier coefficient, which is constant for a given periodic
signal, while xk is obtained by rotating Xk according to the
frequency of the component and the time index.

The components are modeled up to the Nyquist frequency,
thus Lf1 < 0.5 < (L+1)f1. The lack of modeled component
at the Nyquist frequency poses no problem in practice.

Figure 1 depicts the conceptual signal model. The blue box
is a block definition for further use. Each integrator also has
a uk update signal:

Xk (n+ 1) = Xk (n) + uk (n) (2)

B. Resonator-Based Observer
The RBO is obtained by designing a state observer for the

conceptual signal model. As the state variables are the Fourier
coefficients, the observer estimates them directly. The observer
can be described by the following equations:

y =
∑L

k=−L x̂k x̂k = X̂kck e = d− y uk = α
N gke (3)

gk = c̄k = e−j2πf1kn (k = −L, . . . , L) (4)
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Fourier
Components (FC)

Fig. 1: The conceptual signal model. The blue box and its
signals define the Fourier Components (FC) block and its
interface for further figures. The equations in Section II-A
use the Xk and xk notation, all other equations and figures
use the X̂k and x̂k notation.

FC

Reciprocal Updater (RU)

Fig. 2: The resonator-based observer. The blue box defines the
Reciprocal Updater (RU) block for further figures. The thick
line represents a vectorial signal. This convention is kept in
further figures.

where y, e and d are the estimated input, error and input
signals, respectively. X̂k and x̂k are the estimates of the kth
Fourier coefficient and term, respectively, 0<α≤1, N=2L+1
is the number of modeled coefficients, gk is a reciprocal
complex exponential and ·̄ denotes the complex conjugate.

The RBO is illustrated in Fig. 2. Here we define the Recipro-
cal Updater (RU) block. The modulation-demodulation scheme
realized with ck and gk can falsely imply that the RBO is time
variant. An equivalent formalization places the modulator-
demodulator pair “inside” the integrator [5], which is clearly
a time invariant system. These two equivalent formalizations
also exist for the proposed structures.

In steady-state, the estimated and the original Fourier-
coefficients are equal, thus the signal is perfectly reconstructed.
The observer provides unbiased estimates of the Fourier coef-
ficients [2].

If 0<α<1, the Fourier coefficient estimates are exponen-
tially averaged [6] with an equivalent time constant of

β = 1− (1− α)
1
N (5)

We can see in (5) that for smaller N , the settling is faster,
since there are less parameters to adapt.

For β small enough (which is usually granted in practical
cases) the RBO is able to work over an arbitrary frequency
set with similar convergence characteristics [6]. The “rows” in
Fig. 2 (from uk to x̂k for a given k) are also called channels.
Each channel corresponds to a single harmonic component.
The magnitude response of any channel (from d to x̂k) is [6]

|Hk (f)|




= 1 at the own frequency of the channel
= 0 at the frequencies of other channels
> 0 at any other frequency

(6)

These relationships are illustrated for two cases in Fig. 3 (for
x̂2). The blue line corresponds to a full RBO with f1 = 1

15 ,
α = 1. The 3rd and 6th components have been removed from
this structure for the red line.
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Fig. 3: Magnitude response of a single channel (from d to x̂2,
on the interval [−fs/2, fs/2]). Blue line: full RBO with 15
channels. Red line: RBO with arbitrary frequencies.
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Fig. 4: RBO with significant component selection. The main
loop is drawn with black, while the auxiliary loop is depicted
in gray color.

III. THE PROPOSED STRUCTURES

A. Concept
Let us consider a strictly sparse periodic signal and process

it using the original RBO. In steady-state, there will be
channels whose state variable will be zero. Removing them
would have no effect on the estimated signal.

During the settling (with 0 < α < 1), each coefficient
estimate (approximately) exponentially tends to their steady-
state value. Assuming arbitrary initial state, after some time
the magnitudes of the nonzero (zero) coefficient estimates will
be significant (negligible).

The idea is to automatically distinguish between the signif-
icant and the negligible coefficients and their corresponding
channels. Since the input can be described with only the
significant coefficients, keep only them and drop the negligible
ones from the main adaptation loop. Consequently, the main
loop will contain less channels, which results in a faster
convergence.

Moreover, it is conceivable that over time, the coefficients of
the input signal change, some zeros become nonzeros or vice
versa. Thus, the negligible components should not be dropped
totally from the structure, but placed in an auxiliary loop and
adapted there. If any of them becomes large enough, they can
be placed back into the main loop.

B. Formalization
The basic proposed structure (Fig. 4, it will be referred as

CSL+RU) can be described by formalizing the above ideas.
There are two new blocks: the Component Selection Logic
(CSL) and the Multiplexed Adder (MA).

Let us define the selection indicator for k = −L, . . . , L:

Sk =

{
1 if the kth component is significant
0 if the kth component is negligible

(7)
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(a) Multiplexed Adder (MA)

FCRU

(b) Error Decomposition Updater
(EDU)

Fig. 5: Block definitions for the proposed structures

The Component Selection Logic provides this indicator along
with the N∗ =

∑k=L
k=−L Sk number of selected components.

An MA (Fig. 5a) is used to calculate the y and y0 output
signals of the main and auxiliary loops, respectively:

y =
∑L

k=−L x̂kSk y0 =
∑L

k=−L x̂k (1− Sk) (8)

The two error signals are

e = d− y e0 = e− y0 (9)

The update signals of the two loops can be expressed in one
equation:

uk = α
N∗Skgke+

α
N (1− Sk) gke0 (10)

Note that the definition of Sk implies that the state variables
are updated separately.
C. Discussion

The main loop is an RBO with an arbitrary (but special) fre-
quency set. Since N∗ ≤ N , the convergence is faster than that
of the original RBO. If the user knew which components are
significant, he could use a traditional RBO with frequencies
set to those components. The main novelty of this approach
is that it detects the orders of significant components without
user interaction. Moreover, the increase in convergence speed
is independent from the orders of the significant components.
They can be arbitrarily grouped or scattered over the spectrum.

For noise suppression in the main loop, the results of [6]
apply, with N∗ instead of N in the formulas. The variance
of a given significant coefficient is inversely proportional to
N∗ (this variance is not less than in the original RBO). As a
consequence, the summed variance of the coefficients in the
main loop (which is related to the variance of y by Parseval’s
theorem) is approximately independent of the sparsity. In other
words, the noise bandwidth from d to y is the same as that of
in the original RBO.

In Fig. 4 the auxiliary loop is drawn as running on the error
signal. An equivalent point of view is that the output of the
auxiliary loop contains all channels and its input is d, not e.
This is the reason this loop uses N in the update equation.
D. Component Selection Logic

The responsibility of the CSL is to provide the selection
indicator, i.e. distinguish between the significant and the negli-
gible components. In this paper, we take a simple thresholding
approach. This threshold can be a fixed value, given a priori, or
it can be dynamic, e.g. based on the coefficient with maximal
magnitude:

Sk =

{
1 if |X̂k| ≥ γ|X̂|max
0 else

(11)
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Fig. 6: The proposed structure with error signal decomposition

where 0 < γ ≪ 1. Hysteresis can be used in order to eliminate
the “juggling” of components between the two loops.
E. Error Signal Decomposition

Let us consider the case when besides the significant com-
ponents, there are small (but not zero) ones in d, and they
do not get selected. Alternatively, let us consider the effect of
selection errors.

Let one not selected nonzero component be the ith one and
let us examine its effect on the kth (selected) component. The
magnitude response of the main loop has the characteristics
outlined in (6). Consequently, |Hk (fi)| > 0. This means
that the not selected component at fi causes an error in the
measurement of the selected component at fk.

For a particular example, let us take the case depicted with
the red line in Fig. 3 and consider the effect of the not
selected nonzero 3rd component on the selected 2nd one. Since
|H2 (f3)| ≈ 0.25 > 0, this component at f3 causes an error in
the measurement of the selected component at f2.

Thus the not selected nonzero components cause some error
in the measurement of the selected components. As a result,
the selected components do not vanish entirely from e. With
a similar reasoning one can see that in this case the precision
of the auxiliary loop is also impaired.

This problem can be solved via the decomposition of the
error signal. The structure is modified slightly: instead of the
RU blocks, an Error Decomposition Updater (EDU, Fig. 5b)
is used in both loops (Fig. 6). The EDU is a full RBO run on
e with α = 1, and the Fourier coefficient estimates are taken
as update signals. This variant will be referred as CSL+EDU.

Since the EDU is a full RBO, its magnitude response
from e to uk is characteristically same as the blue
line in Fig. 3, regardless of the actual selection. Now
|Hk (fi)| = 0 (i ̸= k, i = −L, . . . , L), thus the not selected
nonzero components do not cause error in the measurement
of the selected ones. For our particular example, the blue line
in Fig. 3 has a zero at f3, thus no component appears in u2.

Since there is a new feedback loop inside the main loop, the
α
N∗ gain of the main loop cannot get as large as for CSL+RU.
In our experience, an upper bound of α

N∗ ≤ 1
N yields similar

convergence to the CSL+RU.

IV. EXAMPLES
The examples model the measurement of the significant

harmonic components of the line voltage. As such, the input
signal will have 50 Hz frequency, sampled at 5 kHz. The
fundamental component has a magnitude of 1 and there is
no bias. The examples will differ in the higher harmonics.
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Fig. 7: Measurement errors by the time index for strictly sparse
signals, averaged from 100 simulations

A. Strictly Sparse Signal
In the first example, the input signal is strictly sparse.

In the beginning, the even harmonics are zeros, while the
odd ones have a random magnitude drawn uniformly from
[0.05, 0.1] and a random phase. After 4000 samples, the
harmonic components change: the odd ones become zeros and
the even ones up to the 20th order get a random magnitude
and phase the same way as the even ones before. There is an
additive white Gaussian noise on the input, with 60 and 80 dB
SNR in the two signal parts.

This signal is processed using the original RBO, CSL+RU
and CSL+EDU. All structures use α = 0.35. The CSLs are
operated by (11) with γ = 0.02, 4 times per signal period.
100 such simulations were conducted. The averaged relative

squared error of the fundamental component is shown in
Fig. 7a. Both proposed structures are able to speed up the
convergence. Although there is an upper bound on the feed-
back gain of CSL+EDU, it was even faster than the CSL+RU.
This acceleration depends also on the sparsity of the signal: the
less components a signal has, the faster the convergence is for
the proposed structures (the error of the proposed structures
decays faster for the sparser signal part; the RBO is unaffected
by the sparsity). The proposed structures have only slightly
worse steady-state error than the RBO, due to their larger noise
bandwidth.

The error signals (Fig. 7b) show the same convergence char-
acteristics as the selected component estimates. Moreover, the
steady-state reconstruction error is the same for all structures.

At the signal change point, the fundamental component is
unchanged. As a result, its error jumps only because the other
components affect it during the transient. After such an abrupt
change in the Fourier coefficients, some time is needed for
the CSL to actualize the selection (since the corresponding
component estimates need to change). During the settling,
some channels may be placed back and forth multiple times.
B. Effect of Small Components

The second example illustrates the effect of the small
components. The input signal has the same parameters as in
the first half of the previous example, with one exception: the
small components are not zero, but have a magnitude drawn
independently from a normal distribution with zero mean and
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Fig. 8: Measurement errors by the time index for for signals
with significant and small components, averaged from 100
simulations.

0.01 standard deviation, and a random phase. The structures
and their parameters are the same as before.

Again, results from 100 simulations were averaged to obtain
the results. For the fundamental component estimate (Fig. 8a),
CSL+RU has a significantly higher error than the other struc-
tures, the original RBO included: the not selected nonzero
components cause an error in the selected ones. CSL+EDU
has only slightly worse error than the RBO, due to its larger
noise bandwidth. Moreover, as in the previous example, the
proposed structures have faster convergence.

It is not surprising that CSL+RU has a higher steady-state
reconstruction error than the RBO (Fig. 8b). But one could
expect the CSL+EDU to have significantly lower error than the
CSL+RU. This is unfounded though: even when all selected
components are measured perfectly, the error signal of the
main loop contains all the small components by design.

V. CONCLUSION

This paper presented two structures to improve the conver-
gence speed of the RBO for sparse periodic signals. After
reviewing the original RBO, the proposed structures have
been presented. The core idea is to automatically separate the
significant and negligible components, and measure only the
significant ones in the main loop Little additional complexity
is required: parallel and/or series connected resonators, adders,
switches and some control logic. Since this way there are fewer
parameters to adapt, the convergence becomes faster. The
properties of the proposed structures were demonstrated with
simulation examples: they converge faster than the original,
and the speed depends on the sparsity of the input. Using
error signal decomposition, the left out nonzero components
cause no error in the measurement of the selected ones.
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