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Abstract—Compressive sensing has been developed for the
sampling of sparse or compressible signals. Strong theorems
state that when a signal is sufficiently sparse, its samples can be
accurately recovered from random sub-Nyquist measurements.
As a consequence, compressive sensing is emerging as a part
of various applications, such as image processing, biomedical
problems or audio signal processing. Designing a compressive
sensing application comprises the selection of many parameters,
e.g. data acquisition scheme, compression ratio, reconstruction
algorithm, etc. To make these decisions experimentally, a simple
criterion to compare several options can prove to be helpful.
This paper proposes to use the coherence function as a criterion
to evaluate the quality of a signal transmission via compressive
sensing. After a brief review of compressive sensing, the usage
of the coherence function is presented. Simulation examples
illustrate how it can help making the design decisions.

Index Terms—coherence function, compressive sensing, FFT,
stochastic signals

I. INTRODUCTION

Traditionally, sampling is governed by Shannon’s theorem.
This well-known result is universal, it can be used for sampling
any signal. In practice, many signals can be described with
only a few significant coefficients in an appropriate basis,
frame or dictionary (for brevity, in the following only the word
basis will be used). This phenomenon is called sparsity.

A signal is sparse if there is a basis in which it has few
nonzero coefficients. Similarly, a signal is compressible in a
basis if its sorted coefficients decay rapidly (enveloped by an
exponential decay). Whether a signal is sparse (compressible)
or not, depends on the basis. To illustrate this, one can consider
the (inverse) discrete Fourier transform of a single spike. A
basis in which a signal has a sparse representation, is called
the sparsifying basis (for that signal).

Compressive sensing was introduced in 2004 by Donoho,
Candès, Romberg and Tao [1], [2], [3] for the sampling of
sparse or compressible signals. Traditionally, using Shannon’s
theorem, one would take a number of samples, and then use
a compression algorithm to represent the signal with a fewer
number of samples. Compared to the sparsity of the signal,
one oversamples it, then performs the compression and only
keeps the significant coefficients. Thus, a great part of the
acquired data is discarded. In contrast, using compressive
sensing, one directly obtains a compressed representation via
random sampling. Sampling and compression are performed
simultaneously, at a sub-Nyquist rate.
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One would expect that if the sampling is sub-Nyquist, the
signal cannot be reconstructed exactly. For general signals, this
is true. However, for sparse signals compressive sensing offers
accurate reconstruction from sub-Nyquist measurements using
nonlinear reconstruction algorithms [4], [5], [6].

Applications of compressive sensing are emerging in various
fields of science and technology. A famous image processing
example is the single-pixel camera [7]. Some other fields
are biomedical problems [8], or face recognition [9]. For
a broad overview of compressive sensing acquisition and
reconstruction strategies, as well as applications we refer the
readers to the survey paper [10].

When one designs an application of compressive sensing,
there are multiple decisions to make. A major task is to
determine the sparsifying basis. Moreover, one needs to decide
the data acquisition and the reconstruction schemes. They can
have several parameters to tune, the most trivial is the rate of
compression. These decisions may require extensive knowl-
edge about the compressive sensing structures and algorithms.

Another way of making these design decisions is via exper-
imentation. In many applications, the signals to be processed
can be modeled well by stochastic signals, e.g. noise or
vibration signals; nonstationary signals; audio, acoustic and
speech signals or signals containing short periodic parts.
Furthermore, in many applications, the signals’ frequency
domain behavior is technically relevant. In these cases, it
is important to accurately transmit those frequency bands
which contain the signal. When such stochastic signals are
transmitted through a system, the transmission quality can be
assessed in the frequency domain by calculating the coherence
function between the input and output signals. We propose to
use the coherence function in order to help making the design
decisions by experimentation.

The paper is arranged as follows: Section II gives an
overview of compressive sensing. The usage of the coherence
function is discussed in Section III. Section IV presents some
simulation examples. The paper concludes in Section V.

II. COMPRESSIVE SENSING

Compressive sensing can be split into two tasks:
• Data acquisition: getting the compressed measurements

from the input signal.
• Reconstruction: getting the estimate of the input signal

from the compressed measurements.
In the following, these tasks are reviewed briefly.



A. Data Acquisition
Data acquisition can be modeled as follows:

y = ϕx (1)
where x ∈ Cn is the input vector, ϕ ∈ Cm×n is the
measurement matrix and y ∈ Cm is the vector of compressive
measurements.

Usually ϕ is chosen as a random matrix, e.g. with elements
drawn from a Gaussian distribution. Furthermore, m = τn,
where 0 < τ ≤ 1 is the compression ratio [11]. τ < 1 means
m < n. In certain applications, even m� n can be achieved.
The actual value of τ depends on the sparsity of the signal.
To obtain a low value, the measurement matrix needs to be
incoherent with the sparsifying basis [12].
B. Reconstruction

In the reconstruction problem, we are given the measure-
ments y, the measurement matrix ϕ, and we try to solve the
measurement equation (1) for x. This is an underdetermined
system with infinitely many solutions. The usual least squares
approach yields poor results, since it tries to give a solution
with minimal energy, disregarding the sparsity of the signal.

If ψ ∈ Rn×k is the sparsifying basis of the signal, that is

x = ψs (2)
where s ∈ Rk (or Ck), k ≥ n is the sparse (or compressible)
coefficient vector, then the measurement equation (1) can be
rewritten as

y = ϕψs = Θs. (3)
Since we know that s is a sparse vector, the unique solution

of the reconstruction problem can be determined by choosing
the sparsest possible s. Mathematically, this is described by
the following l0 optimization:

ŝ = arg min
s
‖s‖0 subject to y = Θs (4)

where ŝ is the estimated coefficient vector and ‖·‖0 denotes
the l0 pseudonorm which is the number of nonzero elements.

Now the input signal can be estimated:

x̂ = ψŝ. (5)
Directly solving (4) is computationally extensive, since it

involves trying all the possible combinations, which is an NP-
hard problem. Several alternate methods have been proposed
in the literature, e.g. to use convex optimization (l1 norm):

ŝ = arg min
s
‖s‖1 subject to y = Θs (6)

This modified reconstruction problem can be solved using
linear programming techniques. This solution is called Basis
Pursuit [4].

III. COHERENCE FUNCTION

The γ2 (f) coherence function [13] between signals x and
z is defined as

γ2xz (f) = |Sxz (f)|2 / (Sxx (f)Szz (f)) (7)
where Sxx (f) and Szz (f) are the auto power spectral den-
sities, while Sxz (f) is the cross power spectral density. In
practice, they can be efficiently estimated using FFT. Note
that this coherence function is a different concept than the
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Fig. 1. Setup used for the coherence function example

0 0.1 0.2 0.3 0.4 0.5
f/f

s

0

0.5

1

H
n
(f

),
 

2
(f

)

Coherence function example

Normalized magnitude response
Coherence (x,z)

Fig. 2. Coherence function example. Grey area: normalized magnitude
response, |H|max = 1. Red line: coherence between signals x and z.

(in)coherence between the ϕ measurement and the ψ sparsi-
fying matrices [14] used in the field of compressive sensing.

At each frequency, the coherence function indicates the
correlation between signals x and z. That is, 0 ≤ γ2xz (f) ≤ 1
and a high value indicates a linear relationship between signals
x and z. The coherence is decreased in the presence of
uncorrelated noise or nonlinearities in the system.

The following demonstrative example illustrates the appli-
cation of the coherence function for assessing the quality of a
signal transmission.

Fig. 1 depicts the setup: first, 10000 samples of Gaussian
white noise are generated (signal x). Then, it is processed by a
4th order Butterworth bandpass filter (passband: [0.05 . . . 0.2] ·
fs, where fs is the sampling frequency) to obtain z0. Then
the nz Gaussian white noise is added to the output with
SNR = 10 dB to get the z output signal. Finally, the coherence
function is calculated for the input against the noisy output.

The coherence function is shown in Fig. 2 alongside the
Hn (f) = |H (f)| / |H|max normalized magnitude response of
the system (|H|max is the maximal magnitude response). The
coherence between the noisy output and the input is drawn
with red color, while the gray area is the magnitude response
of the filter. To make the coherence function easily comparable
to the magnitude response, the magnitude response is drawn
as an area, on a linear scale.

The coherence between the noisy output and the input signal
is as one would expect: it is high (low) when the magnitude
response is high (low). Since the spectrum at the input x
is white, the spectrum of z0 is shaped like the magnitude
response. Because of the noise nz , the output z is dominated
by the noise in the stopband, where the magnitude response
is low. As this noise is uncorrelated with the input, it is
not contained in the Sxz (f) cross spectrum, but contained
in the Szz (f) output spectrum. Thus, the numerator of (7)
is unchanged, while its denominator grows: the coherence is
decreased. Similar arguments can be made for the passband.

A potential application of compressive sensing is compress-
ing the transmitted data. In many cases, the signals to be
transmitted can be modeled well by stochastic signals. Some
examples are noise measurement [15], vibration analysis [16],
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or signals containing short periodic parts such as speech [17],
acoustic or in general audio signals.

In these cases, the transmission utilizing compressive sens-
ing can be modeled as the processing of a stochastic signal
with a system. For this model, a possible way of assessing
the quality of the transmission is to calculate the coherence
function between its input and output signals. We propose to
use the coherence function in order to help making the design
decisions by experimentation.

A. Alternative Metrics

There are several metrics to evaluate a compressive sensing
scheme [11]. E.g. two popular ones are the Normalized Root
Mean Square Error (NRMSE) and the Signal-to-Error Ratio
(SER):

NRMSE = ‖x− x̂‖2 / ‖x‖2 (8)

SER = −20 lg NRMSE (9)

Note that while the NRMSE is a normalized metric, it can
obtain values higher than one (since the normalization refers
to the division by ‖x‖2).

The usual metrics give a scalar, integral measure of the
quality from time domain analysis. In contrast, the coherence
function provides a vector of quality metrics in the frequency
domain.

IV. EXAMPLES

To illustrate how the coherence function can help designing
a signal transmission using compressive sensing, some simu-
lation examples are presented.

Thus the aim of the examples below is not to illustrate the
power of an optimized data transmission using compressive
sensing, but to present how the coherence function shows the
difference between various compressive sensing schemes. As
a consequence, not necessarily the best sparsifying bases or
the most powerful reconstruction algorithms are used.

A. The Simulation Environment

The setup used for the simulations is shown in Fig. 3. To
generate the x input signal, the n Gaussian white noise is pro-
cessed with a system. Then this x signal is passed through the
compressive sensing data acquisition–reconstruction scheme to
obtain the x̂ estimate of the input signal.

The elements of the ϕ measurement matrix are drawn from
a Gaussian distribution. The τ compression ratio was varied
from 5% to 50% in steps of 5%. The l1-magic implementation
[18] of solving (6) is used for the reconstruction. For simplic-
ity, only changes in τ and in the sparsifying basis are shown
in the examples. However, the proposed analysis is applicable
e.g. to changes in the reconstruction algorithm as well.
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Fig. 4. First example, DCT basis. Grey area: normalized magnitude response,
|H|max = 1. Colored lines: coherence function at different compression ratios.

5 10 15 20 25 30 35 40 45 50
 (%)

0

0.5

1

N
R

M
S

E

First example

DCT basis
Haar wavelet basis

Fig. 5. NRMSE with different compression ratios in the first example

B. Example 1: Elliptic Bandpass Filter
In the first example, the system is an elliptic bandpass filter

(6th order, 1 dB passband ripple, 60 dB stopband attenuation,
[0.45 . . . 0.55] · fs/2 passband). Its magnitude response is
shown in Fig. 4 as the grey area. Consequently, the signal
x should contain significant coefficients only in the passband,
that is, x should be approximately sparse.

The discrete cosine transform (DCT) [19] is selected for the
sparsifying basis as an initial choice. The results are shown
in Fig. 4 with the colored lines. As the compression ratio
increases, the coherence increases first in the passband, then
also in the stopband. The coherence function takes almost 1
values in the passband at τ ≥ 35%. From this, one could infer
that τ = 35% is enough for a good transmission.

This claim can be verified by looking at the NRMSE.
Fig. 5 shows this error for the investigated τ values. The error
decreases rapidly from 30% to 35%, while from 35% to 50%
it is still decreasing, but at a slower rate. There is a clear break
in the NRMSE where the coherence function fully “envelopes”
the input spectrum.

From the perspective of the designer, plotting the input
spectrum and the coherence function is more informative than
calculating a single number.

Other potential sparsifying bases can be tried and evaluated,
here the results of the Haar wavelet basis [20] are presented
(Fig. 6). Comparing to Fig. 4, it is clear that the coherence
at a given τ is worse for the Haar wavelet basis than for
the DCT basis. This also can be seen on the NRMSE plot.
Consequently, the DCT basis is a better choice than the Haar
wavelet basis in this example.

Note that for both bases, the coherence function has higher
values in the passband and lower values in the stopband. This
is as expected: as τ grows, less and less significant parts of
the signal are getting transmitted also. When the coherence is
high in all the significant bands, the useful information in the
signal are transmitted. This is harder to see in the time domain
error plot.

A potential remark would be the idea to transform this
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Fig. 6. First example, Haar wavelet basis. Gray area: normalized magni-
tude response, |H|max = 1. Colored lines: coherence function at different
compression ratios.
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Fig. 7. Second example, DCT basis. Grey area: normalized magnitude
response, |H|max = 1. Colored lines: coherence function at different com-
pression ratios.

signal to baseband and there use traditional sampling. In
this simple case, this is a viable solution. However consider
a case when the signal has several bands scattered in the
spectrum, with the same “total bandwidth” as here. In such a
case, compressive sensing requires similar compression ratio
as here, while generally the transformation to baseband is not
applicable.
C. Example 2: Butterworth Bandstop Filter

The system in the second example is a Butterworth bandstop
filter (6th order, [0.1 . . . 0.95]·fs/2 stopband). Fig. 7. illustrates
its normalized magnitude response with the gray area. In the
first example, there was a single, narrow passband. Here, the
passband is still narrow, but is split into two bands. Similarly
to the first example, x should be approximately sparse.

After calculating the coherence function with the DCT basis,
we got the results shown in Fig. 7. Compared to the previous
example, at first glance now we can see that τ = 50% is
required to reach the coherence value of 1 in the passbands.
This is larger than there, however, the total width of the
passbands is also larger than in the first example.

The time domain analysis shows that τ = 50% transmission
offers similar quality to the τ = 35% case in the first example
(Fig. 8). Again, the coherence is higher in the passbands and
lower in the stopband.

V. CONCLUSION

In this paper the usage of coherence function was proposed
to assess the transmission quality of stochastic signals via
compressive sensing. After taking an overview of the com-
pressive sensing process, the coherence function was reviewed.
In many signal processing applications, the signals’ frequency
domain behavior is technically relevant. Thus, it is important
to accurately transmit those frequency bands which contain the
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Fig. 8. NRMSE with different compression ratios in the second example

majority of the signal’s power. When such stochastic signals
are transmitted through a system, the coherence function can
be used as a tool to compare the quality of different data
transmission options. Simulation examples illustrated the us-
age of coherence function to qualify a signal transmission via
compressive sensing. The results showed that in certain simple
cases, similar compression can be reached with compressive
sensing as with traditional methods. A potential future task is
finding such examples which can better illustrate the usage of
the coherence function.
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