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László Sujbert
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary
sujbert@mit.bme.hu

Abstract—The Adaptive Fourier Analyzer has been developed
for measuring the harmonic components of periodic signals with
changing or unknown fundamental frequency. Vibration analysis
of rotating machines, active noise control or harmonic component
measurements of the lines are typical applications. Nowadays,
radio or Internet-based communication is gaining popularity in
various fields, e.g., in signal processing. Due to the not reliable
real-time communication, some of the data are lost during the
transmission.

In this paper, an extension of the Adaptive Fourier Analyzer
is presented which is able to handle data loss. The paper briefly
presents the mathematical description of the data loss and the
modification of the Resonator-Based Observer for data loss. The
novelty of this paper is the modification of the Adaptive Fourier
Analyzer for signals with missing samples. The performance of
the algorithm is demonstrated with simulation and measurement
examples.

Index Terms—Adaptive Fourier analysis, data loss, digital
signal processing, order tracking

I. INTRODUCTION

In many applications periodic signals with unknown or
changing fundamental frequency are to be measured. A typical
task is to determine their harmonic components, which is
called order tracking [1]. Some examples are vibration analysis
of rotating machines, active noise control or measurement of
the harmonic components of the line voltages.

An observer-based approach can be utilized to solve the
problem. For a constant and known fundamental frequency,
this yields the Resonator-Based Observer (RBO) [2]. When
the fundamental frequency is unknown or changes, it can be
estimated based on the fundamental component. This is the
idea behind the Adaptive Fourier Analyzer (AFA) [3], [4].

The AFA has two main outputs. On one hand, it is able
to estimate the fundamental frequency of a periodic signal in
a wide range. On the other hand, it is a spectral estimator:
it performs harmonic decomposition based on the frequency
estimate. Consequently, when the structure has converged, the
exact values of the Fourier coefficients are available.

Despite being a nonlinear observer, many simulations, mea-
surement experiences and practical applications showed its
robust, stable behavior. According to the experiences, the AFA
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is stable even in the presence of frequency jumps, varying
upper harmonics and noise. It must be noted that the algorithm
is not sensitive to the numerical problems arising from limited
word length.

Based on the original algorithm, a family of adaptive Fourier
analyzers were developed. [5] presented a modification able
to track linear, logarithmic or hyperbolic frequency sweep.
[6] and [7] gave modifications with increased robustness and
noise rejection. [8] separated the frequency and the Fourier
component updates to two alternating stages, resulting in
the Block AFA algorithm. Although the convergence of the
original algorithm is not yet proved, exact conditions can be
derived for the Block AFA.

With decreasing the fundamental frequency, the AFA will
have higher computation requirements. However, the signal
will be significantly oversampled. In [9] a decimating filter
bank is applied to keep the computational demand in hand.
[10] and [11] also present solutions with reduced complexity.

Nowadays, with the spreading of sensor networks, radio or
Internet-based communication is gaining popularity in various
applications. Due to the not reliable protocols and equipment,
the message can be partially damaged during the transmission,
the measurement can be hindered by external circumstances.
As a result, some samples may be missing or invalid.

In this paper, we present the extension of the AFA for
the case of missing samples. The RBO has been previously
extended to handle data loss [12]. As the original AFA uses the
original RBO, the proposed structure uses the RBO extended
for data loss. The performance of the proposed structure is
demonstrated with simulations and measurements.

The paper is arranged as follows: Section II summarizes
the original RBO and AFA structures, and gives the used
mathematical description of the data loss. Section III deals
with the modifications of the RBO and the AFA for the case
of data loss. The performance of the proposed structure is
demonstrated with simulation and measurement examples in
Section IV. The paper concludes in Section V.

II. PRELIMINARIES

A. Resonator-Based Observer

1) Conceptual Signal Model: The conceptual signal model
plays a central role in the RBO. Generally, a periodic signal



Fig. 1. Block diagram of the RBO

can be described with its complex Fourier series:

x[n] =

L∑
k=−L

Xkck[n] (1)

where Xk is the kth Fourier coefficient and ck[n] is a complex
exponential:

ck[n] = ej2πf1kn (k = −L, . . . , L) (2)

where j is the imaginary unit and f1 is the fundamental
frequency of x[n] (relative to the sampling frequency).

Assuming proper anti-aliasing filter, the following holds:

Lf1 < 0.5 < (L+ 1)f1 (3)

Note that there is no component modeled at the Nyquist
frequency. This is not a problem for real signals.

2) Observer: Based on the conceptual signal model, the
corresponding observer can be designed. As the Fourier coef-
ficients are the state variables of the signal model, the observer
will estimate them directly. With the X̂k estimated Fourier
coefficients the estimate of the input signal can be calculated:

y[n] =

L∑
k=−L

X̂kck[n] (4)

The estimation error is

e[n] = y[n]− x[n] (5)

The update equation of the observer is

X̂k[n+ 1] = X̂k[n] + gk[n]e[n] (6)

where gk[n] is a reciprocal complex exponential:

gk[n] =
1

N
c̄k[n] =

1

N
e−j2πf1kn (k = −L, . . . , L) (7)

where ·̄ denotes the complex conjugate and N = 2L+1 is the
number of components. The observer is depicted in Fig. 1.

In steady-state, the estimated and the original Fourier-
coefficients are equal, thus the signal is perfectly reconstructed
[2]. Although the steady-state is reached in infinite steps, when
(3) holds, the settling is fast.

Fig. 2. Block diagram of the AFA

The observer provides the unbiased estimates of the Fourier
coefficients of the input signal, its only requirement is that the
fundamental frequency has to be known.

B. Adaptive Fourier Analyzer

1) Fundamental Frequency Estimation: The adaptive
Fourier analyzer tries to estimate the value of the fundamental
frequency instead of requiring its knowledge. It can be ob-
served, that X̂1[n] rotates approximately proportionally with
the fundamental frequency error [4]. Using this, the frequency
estimator can be updated as

f1[n+ 1] = f1[n] +G · angle(X̂1[n+ 1], X̂1[n]) (8)

where the angle(·, ·) function returns the angle between two
complex numbers. The gain G controls the speed of the
frequency adaptation. Because of the approximate nature of
(8) and the noises, the gain G is chosen as G = 1

2πN [3].
It can be seen that the frequency estimator is updated on

the new and old values of the state variable X̂1.
2) Algorithm: The block diagram of the AFA can be seen

in Fig. 2. An RBO estimates the harmonic components, and
the fundamental frequency is estimated from the fundamental
component. Here only the steps of the algorithm are presented,
for detailed explanations see [4].

The steps of the algorithm are the following:
Initialization: the L[0] initial number of components is

arbitrary.

N [0] = 2L[0] + 1, f1[0] =
1

N [0]
(9)

X̂k[0] = 0, ck[0] = 1, gk[0] = 1 (10)

for k = −L[0], . . . , L[0].
Operation: for each sample
1) Calculate the y[n] output like in (4).
2) Determine the e[n] error by (5).
3) Update the X̂k[n+ 1] Fourier coefficients using (6).
4) Update the f1[n+ 1] fundamental frequency by (8).
5) Constrain the f1[n+ 1] fundamental frequency into the

range [fmin, fmax]. The maximal relative fundamental
frequency is just below 1/3 (see step 7). As the fun-
damental frequency decreases, the number of modeled
components grow. To limit the computation time, a
positive minimal fundamental frequency can be set.

6) Rotate the complex exponentials ck and gk:

ck[n+ 1] = ck[n]ej2πf1[n+1]k (11)



gk[n+ 1] =
1

N
c̄k[n+ 1] (12)

for k = −L[n], . . . , L[n]. Such an update makes the
phase transition continuous.

7) As f1 can significantly differ from its initial value during
operation, L[n] should be changed accordingly:

L[n+ 1]f1[n+ 1] < 0.5− 1

2N [n]

0.5− 1

2N [n]
< (L[n+ 1] + 1)f1[n+ 1]

(13)

and of course N [n + 1] = 2L[n + 1] + 1 is updated as
well.

8) If L[n+1] < L[n], then the components with order over
L[n+ 1] are canceled.
If L[n + 1] > L[n], then new components are started
with the following initialization:

X̂k[0] = 0, ck[0] = 1, gk[0] = 1 (14)

C. Data Loss

1) Basic Definitions: Data loss can be described in discrete
time with a so-called K[n] availability indicator function:

K[n] =

{
1 if the sample is available at n
0 if the sample is lost at n

(15)

This indicator function is assumed to be known. The data
availability rate µ can be defined as

µ = P (K[n] = 1) (16)

where P (·) is the probability operator.
A signal x[n] subject to data loss can be modeled as a

product:
x[n] = K[n]x0[n] (17)

where x0[n] is the original signal.
The data loss is block-based when the data are grouped into

fixed size blocks, and these blocks are either fully available
or fully lost.

2) Data Loss Models: There exists a variety of data loss
models. Here only the models used in our simulations are
introduced, for a more detailed description we refer to [12],
[13].

a) Random Independent Model: The random indepen-
dent model is the simplest data loss model. It has a single
parameter (µ), which is the probability of getting an available
sample at any time step. The availability of the different
samples is independent of each other, this model has no
memory.

b) Two-State Markov Model: The availability of the
samples in the two-state Markov model forms a two-state
Markov chain. This model has two parameters: the probability
of getting a lost sample after an available one (p), and getting
an available sample after a lost one (q).

The data availability rate of the two-state Markov model
can be calculated as

µ =
q

p+ q
(18)

Fig. 3. Block diagram of the RBO in the case of data loss

c) Periodic Data Loss: The data loss is periodic, when
the indicator function is periodic: K[n] = K[n+P ] for all n,
and P > 0 is its period when it is the smallest such P .

A periodic data loss is synchronized if the original signal
is periodic and the two periods are equal. This means that the
missing samples are at the same place in each period.

III. ADAPTIVE FOURIER ANALYZER IN THE CASE OF
DATA LOSS

In the case of data loss, there are some modifications to the
RBO and AFA structures.

A. Resonator-Based Observer in the Case of Data Loss

Modeling the data loss as in (17), the conceptual signal
model gets an extra term:

x[n] = K[n]

L∑
k=−L

Xkck[n] (19)

Even if the input signal is subject to data loss, the observer
continues to estimate the Fourier coefficients of the original
signal. In steady state, the original signal is reconstructed
perfectly, without using the lost samples.

For lost samples, the estimation error should be treated
as zero, since there is no new measurement to update the
estimates with. This can be done by multiplying the error with
the indicator function. The update equation of the observer
becomes

X̂k[n+ 1] = X̂k[n] + gk[n]K[n]e[n] (20)

The corresponding observer is depicted in Fig. 3.
When data loss occurs, the convergence becomes more

complicated. Exact results are available for the sufficient
and necessary conditions of the convergence of the Fourier
coefficients for the RBO at a constant frequency [12]. As an
example, the harmonic coefficient estimates are biased if the
data loss is synchronized. In practice, this case can happen
e.g. when an AD-converter is overdriven by a periodic signal.
However, it is conceivable that even if the harmonic com-
ponent estimates are biased, the frequency can be estimated
accurately.



B. Adaptive Fourier Analyzer in the Case of Data Loss

Let us consider signals with lost samples. While the samples
are available, frequency estimation can be done by (8). When
we reach a lost sample, X̂1 is not changed, so there is no
frequency update (there should not be, because there is no
new information).

Assuming a sinusoidal signal and inaccurate frequency
estimate, P consecutively lost samples would result in P + 1
times greater angle between X̂1[n + 1] and X̂1[n] in steady
state. Thus the frequency estimation formula can be modified
to

f1[n+ 1] = f1[n] +
G

P [n] + 1
·angle(X̂1[n+ 1], X̂1[n]) (21)

where P [n] is the number of consecutive lost samples before
the actual one.

There are a few modifications to the algorithm also. At the
initialization,

P [0] = 0 (22)

is set.
During operation, (20) is used instead of (6) for the state

update. The fundamental frequency is updated with (21)
instead of (8). Finally, after adjusting the number of modeled
components, the length of the lost sequence before the current
sample is updated:

P [n+ 1] =

{
P [n] + 1 if K[n] = 0

0 if K[n] = 1
(23)

IV. EXAMPLES

A. Illustrative Example

An example is shown in Fig. 4 to illustrate the performance
of the proposed structure. A 105 Hz square wave was selected
for the input signal, the sampling frequency was 10 kHz. At
n = 500 a frequency jump occurs to 130 Hz. There is additive
white Gaussian noise on the signal with SNR = 60 dB.
For n ≤ 500, all samples are available, after that a random
independent data loss was applied with µ = 80%.

The availability was drawn in the top plot using the trans-
formation 0.5K[n] − 2 to place it under the signals. Its high
(low) level still means available (lost) samples. The estimated
signal is able to follow the original one: even in the presence
of data loss, the estimates converge. The convergence is slower
when data loss occurs.

B. Convergence with Random Data Loss

We have tested the proposed structure with numerous simu-
lations in a setup similar to the illustrative example. Noisy
(SNR = 40 dB) and noiseless sine, triangle and square
waves were investigated with frequency jump. The signals
were generated by their truncated Fourier series, only the
components below the Nyquist frequency were kept. Random
independent and two-state Markov data loss models were used
with 40% ≤ µ ≤ 100% and block sizes from 1 to 100. General
conclusions gained from these simulations are presented in the
following.
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Fig. 4. Illustrative example with random independent data loss (µ = 80%).
Top plot: original input signal without data loss (blue line), y[n] signal
estimated by the AFA (green line) and data availability (orange line). Middle
plot: e[n] error signal of the AFA. Bottom plot: frequency of the input signal
(blue line) and frequency estimated by the AFA (green line).

All three signal shapes produced similar results. As an
example, Fig. 5 depicts the convergence of the frequency esti-
mate and the e[n] error signal with an SNR = 40 dB triangle
wave at different data availability values. The frequency of
the input signal jumps from 150 to 180 Hz at n = 0. The
sampling frequency is again 10 kHz. It is clear that both the
frequency and the harmonic components converge, even when
only 40% of the data are available. When the number of lost
samples is greater, the estimates need more time to settle.

To numerically assess the speed of the convergence, differ-
ent settling metrics were calculated. The 5% frequency settling
index nf,5% was obtained by the following definition:

nf,5% = min {n|f1[m] ∈ [fL, fU ] ∀m ≥ n} (24)

fU,L = (1 + δ)f0 ± 0.05|δ|f0 (25)

where f0 and (1 + δ)f0 are frequencies before and after the
frequency jump. The required number of periods is Nf,5% =
nf,5%(1 + δ)f0.

For the error signal, similar ne,5% and Ne,5% values were
determined. Here the 5% settling means that the error signal
stays within the ±5% range of the RMS value of the original
signal.

Table I shows the above mentioned convergence metrics
averaged from 100 repetitions of the simulation depicted in
Fig. 5. The upper half corresponds to the frequency estimates,
the lower one to the error signals. The error signals reach their
steady state just after the frequency estimates have settled. This
is as expected: the settling of the error signal means that the
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Fig. 5. Convergence with random data loss. Left side: e[n] error signal of the
AFA, right side: relative error of the frequency estimation. Each row belongs
to an investigated data availability value.

observer creates the same signal as its input, therefore their
frequencies are equal.

One could intuitively expect that if e.g. 10% of the sam-
ples are missing, the convergence is 10% slower. At µ data
availability it would mean 1

µ times larger convergence metrics.
However, even the RBO requires more time to settle if there
are missing samples. E.g. when the sampling is coherent and
a single, randomly selected sample is missing from the first
period, in average the settling takes 150% time compared to
the case when all samples are available. The settling of the
AFA is slightly slower, as the frequency and the harmonic
component estimates are coupled.

Considering the rows showing the number of periods re-
quired for the settling (capital N values), 20 periods with
data loss were enough in average, even at µ = 40%. Even
µ = 80% can be considered a strong data loss, and in this
case the estimates settled in about twice the time as without
data loss.

TABLE I
REQUIRED NUMBER OF SAMPLES AND PERIODS FOR THE FREQUENCY

ESTIMATE AND THE ERROR SIGNAL TO CONVERGE AT DIFFERENT DATA
AVAILABILITY VALUES

µ 100% 80% 60% 40%

nf,5% 183 266 381 639
Nf,5% 3.294 4.784 6.859 11.50
ne,5% 232 374 577 1013
Ne,5% 4.176 6.734 10.38 18.24

C. Convergence with Periodic Data Loss

To investigate the influence of periodic data loss, similar
simulations were conducted to those in [12]. A 50 Hz periodic
signal was sampled at 10 kHz, the amplitudes of the compo-
nents were inversely proportional to their order (|Xk| = 1

k ,
k = 1, 2, . . . ) and their initial phases were random. Additive
white Gaussian noise with SNR = 20 dB was applied.

In these simulations a special kind of periodic data loss
was used, where each period consisted of a available samples
followed by l lost ones:

K[1] = · · · = K[a] = 1

K[a+ 1] = · · · = K[a+ l] = 0

K[n] = K[n+ a+ l]

(26)

This will be marked as Pa,l data loss.
Fig. 6 shows some selected simulation examples with pe-

riodic data loss. The error signals and the frequency errors
are shown like in Fig. 5 for three different periodic data
loss patterns. Generally, the data loss tolerance is heavily
influenced by the relation of the periods of the original signal
and the indicator function: the smaller the value of the least
common multiple of the periods (compared to the signal
period), the less lost samples are tolerated.

The top plots illustrate the convergence with P195,5 data
loss. Note that a + l = 200, so this is a synchronized data
loss. On one hand, it is clear that the Fourier coefficients are
biased: in steady-state the e[n] error signal shows not only
the noise, but it contains a spike at every 200 samples. These
spikes mark the places of the lost samples. On the other hand,
the frequency is estimated correctly: at n > 600 the frequency
estimation can be considered accurate.

The middle plots belong to P140,60 data loss. The data loss is
still synchronized, and now less samples are available in each
period. As a result, now even the frequency cannot converge.

The bottom plots were created with P107,60 data loss. The
data availability is even lower than in the previous case (µ =
64.1%), but the data loss is no longer synchronized. In fact, the
greatest common divisor of the signal and the data loss period
lengths is one. Both the frequency and the Fourier coefficient
estimates settle.

D. Experimental Results

Measurements were carried out with a test system intro-
duced in [14]. In the test system, wireless sensors perform real-
time data acquisition, and these data are transmitted through
a gateway node to a PC for processing. In this measurement
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Fig. 6. Convergence of the frequency with periodic data loss. Left side: e[n]
error signal of the AFA, right side: relative error of the frequency estimation.
Each row belongs to a different data loss pattern.

only one sensor was used. This sensor measured a triangle
wave generated by a signal generator. The data sent by the
sensor were processed on the PC.

As data transmission and acquisition are performed in a hard
real-time manner, there is no possibility for re-measurement
or re-transmission: data loss is inevitable. Lost data are rec-
ognized with a time-out mechanism. To create measurements
with different data availability rates, the sensor was placed in
a metal cabinet with a sliding door. The data availability was
roughly controlled by varying the door position.

Fig. 7 shows the frequency estimate and the error signal of
the AFA. The frequency estimate clearly shows the original
pattern of changing the frequency from 100 Hz through 150
and 50 Hz and back to 100 Hz in 10 Hz steps. The error
signal is approximately zero in most of the time, the Fourier
coefficient estimates also converged. During the measurement,
data loss occasionally caused the AFA to lose the convergence,
but it was always regained quickly.

V. CONCLUSION

The paper dealt with adaptive Fourier analysis in the case of
data loss. After recalling the original RBO and AFA structures,
and the mathematical description of the data loss, the handling
of data loss has been discussed. First the modified RBO has
been presented, then the main innovation of this paper, the
modified AFA has been introduced. The proposed structure
was tested with simulations and measurements thoroughly. In
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Fig. 7. Estimated frequency and error signal (measurement).

the case of random data loss, the estimates generally converged
even when half of the samples were missing. When the data
loss is periodic, the data loss tolerance mainly depends on the
relation of the periods of the signal and the data loss. Based
on the experiences, the modified AFA is able to efficiently
determine the harmonic components in the case of data loss.
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[13] A. Palkó and L. Sujbert, “FFT-based identification of Gilbert-Elliott data
loss models,” in 2020 IEEE Int. Instrum. and Meas. Technol. Conf.
(I2MTC), Dubrovnik, Croatia, May 2020, pp. 1–6.

[14] G. Orosz, L. Sujbert, and G. Peceli, “Testbed for wireless adaptive
signal processing systems,” in 2007 IEEE Instrumentation Measurement
Technology Conference IMTC 2007, 2007, pp. 1–6.


