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Abstract—Time-frequency representations are frequently used
in signal processing applications. This paper presents a frame-
work for recursive implementation of biorthogonal nonstationary
discrete Gabor transforms. These transforms can achieve a non-
uniform frequency resolution unlike the well known Fourier
transform. Typically they are realized with finite impulse response
filters. This paper shows an observer-based recursive implemen-
tation of these transforms based on Hostetter’s approach. In
addition it reviews the construction of generalized Gabor frames
and the conditions of their invertibility in detail. The design of
the observer’s parameters are discussed and multiple examples
are given to illustrate the properties and capabilities of both the
design process and the observer.

Index Terms—signal processing, Gabor transform, observer,
frames

I. INTRODUCTION

It is common to use time-frequency representations to
determine important signal characteristics when strict time or
frequency representations are not adequate. The most obvious
way to construct such a representation is to separate the time
domain signal into multiple (possibly overlapping) shorter
segments then calculate their Fourier transforms. This is the
essence of the short-time Fourier transform (STFT) also known
as Gabor transform.

This idea can be generalized to achieve non-uniform fre-
quency resolutions which might be mandated by the prob-
lem specification. For example in audio signal processing a
transform with logarithmic resolution might be a better choice
over a linear one because it reflects the resolution of the
human auditory system better. The tools of frame theory gave
rise to the construction of nonstationary Gabor transforms
[1]. Near arbitrary frequency resolutions can be achieved
with them, moreover they are invertible. Gabor transforms
were successfully applied to solve a variety of problems in
signal processing. A practical example is audio denoising
[2]. Furthermore an invertible constant-Q transform can be
constructed as a special case of Gabor-transforms [3] and it
can be implemented in real-time applications if the signal is
processed in a blockwise manner [4].

Gabor transforms can be interpreted as a filtering operation
with finite impulse response (FIR) filters, which can be im-
plemented naively with the help of convolutions. The novelty
of our paper is that it presents a real-time, recursive imple-
mentation of Gabor transforms with the help of Hostetter’s
observer theory [5]. The observer recursively estimates the
transformed signal as well as the signal itself. The estimation
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is refined based on the reconstruction error which leads to
desirable numerical properties.

In section II the relevant parts of frame theory and the
definition of discrete Gabor transforms and it’s generalizations
are presented. Section III presents the conceptual signal model,
it’s observer and their properties. Section IV contains the
derivation of the main results, the recursive estimation of
Gabor transforms with an observer. Section V illustrates the
method with examples. Finally section VI concludes the paper.

II. GABOR TRANSFORM

This section follows [3] and [4] in the presentation of the
theory of Gabor transforms.

A. Frames

Frame theory [6] is mainly concerned with signal repre-
sentations. It is a generalization of the theory of (orthogonal)
bases. Frames might be constructed with greater flexibility to
satisfy a specification by allowing “redundancy” in the signal
representation. Given a set of ¢, atoms (k =0,--- , K — 1)
the goal is to find wy expansion coefficients for a signal v
such that
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Frame theory provides conditions which ensure that v is
reconstructible from wy. In this article we assume that all
signals are elements of CV, i.e. they are N periodic and
discrete time, represented by a column vector. The n™ entry
in the vector is v[n]. In this setting all results can be proven
with the tools of linear algebra. We denote the inner product
of u and v as

(u,v) =vfiu= Z u[n]v[n] (2)
n
where the overline means complex conjugation. The atoms
can be ordered into a matrix called synthesis operator with
dimensions NV x K:

®=(po ¢ PKr-1) 3)

The frame operator can be defined as a Hermitian matrix with
dimensions N x N:
S = 4)

If it is invertible then the set of atoms is a frame. In this case
the dual frame elements are defined by

®=5"'® (&)



A discrete transformation can be defined with the matrix called
analysis operator which provides the expansion coefficients:

w=®"y (6)

The reconstruction is perfect in the sense of (1) because
)H

v=SSlv=08"S lv=98(S"'®) v==3ad"v (7)

When K = N, a frame implements a biorthogonal transform.

B. Gabor transform

All frames are constructed from a set of atoms. It is conve-
nient to create these in a structured manner. The set of Gabor
atoms can be generated with the help of an initial ¢ window
function, an a translation, and a b modulation parameter.

M T109} (1,m)€[0,N/a) x [0,N/b) ®)

where T, and M, denote a circular time-shift by 7 and a
modulation by w, i.e.
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T,v[n] =v[n—7] M,v[n] =v[n]- 79" (9)

where n_— 7 is calculated modulo N. N
——1

b
N . N2
and [ = 0, ---, ——1 so the total number of atoms is K = —.

i € Z must be satisfied, in that case m =0, - - -,
a

The two index variables foreshadow that atoms are locali%gd
in time and frequency.

For a particular choice of ¢, a and b the atoms can be
organised into the matrix ®. If the induced frame operator is
invertible then the Gabor transform of a v signal is (6). It is
an important result in the theory of Gabor frames that the dual
atoms can be generated with ¢, a and b.

The k™ element of the expansion coefficient vector becomes

N—-1
wlk] = Z v[n|@[n — lale I Fmb
n=0
which is the STFT of the input signal. This means that the a
and b parameters adjust the time and frequency resolution of
the transform. Note that the value of k depends on [, m and
on the order of the atoms in ®, for example

(10)

N
k= —I1
m+b

C. Nonstationary Gabor transform

1)

Ordinary Gabor transforms are limited to linear time-
frequency resolutions by construction. In the case of nonsta-
tionary Gabor transforms (NSGT) this restriction can be lifted.
The set of atoms is

{Mb, 21} (1,m)ef0,0) x [0, M) (12)

where {¢; } is a set of windows and {b;} is a set of modulation
parameters. The (12) atoms form a frame if their frame opera-
tor is invertible. These atoms are generated by the modulation

N
of the ¢; windows by b;. The number M; = > must be an

)
integer. The number of atoms derived from ¢; is M; which

means the total number of atoms in (12) is K = ), M;. For
a particular choice of windows and modulation parameters the
atoms can be organized into a matrix €. One possibility can
be seen below:
® = (Mos,0 Mipeo ++ Mao—1)p000 Mo o1 )
(13)
If the induced frame operator is invertible, then the Gabor
transform of a signal can be defined like (6).

N-1 L "
wlk = Y vinlg[ne /¥

n=0

(14)

In this case the frequency resolution remained linear but the
time resolution can be nonlinear which is determined by
the ¢; windows. This property is desirable when processing
unevenly sampled signals. It should be noted that ordinary
Gabor transforms are a special case of NSGTs.

D. Painless invertibility

Previously it was assumed that S is invertible but to
successfully construct an NSGT it is necessary to prove it.
Gabor transforms can be defined more generally on Hilbert
spaces where the invertibility of S is not enough, in a practical
implementation it must be computable in a straightforward
way. This was achieved in [7] where the authors could give
conditions which ensure that S is diagonal. In our case it is
enough to show that every ¢; has a finite support N; < N,

and every b; < N From these it can be asserted that S is
!
diagonal. We prove this statement in Theorem 1 based on [§]
(see appendix).
As a corrolarry it is easy to show that the dual frame of
(12) can be generated with {@;} and {b;}, where

@i[n] ei[n]
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E. Discrete Fourier transform

To develop further the theory of generalized Gabor trans-
forms, it is necessary to introduce the discrete Fourier trans-
form and it’s properties. The unitary discrete Fourier transform
(DFT) can be represented with F € CV*¥_ where

(16)

The inverse transform is

Fl=r" (17)
The DFT of a signal can be written briefly as v = Fv. The
translation and modulation theorems of the Fourier transform
take the following form
FT,=M_,F

FM, =T, F (18)



FE. Nonlinear frequency resolution

The nonstationary Gabor frames introduced in the previous
sections are adaptive in time resolution, but frequency adaptive
frames are straightforward to construct based on these. The set

{Tma, 01} 1,m)ejo,L)x [0, M) (19)

where M; =

Q]
is a frame. The frame operators of the set in (19) and
{M—7r1,al‘1bl} are

N
— € Z is a frame if and only if {M_,,,, ¢}

R=®®" Ss=o&" (20)

It is easy to prove that R is similar to S in the sense of linear
algebra. The former is invertible only if the latter is invertible.

R =FIS7'F 1)
In this case
N-1
wlk] = vinlEin — maj] (22)
n=0

The time resolution is linear, while the frequency resolution
is given by the set of windows, just as desired.

G. Biorthogonality condition
Frame theory gives a flexible generalization of bases but it
can be used to construct biorthogonal transforms as a special
case of painless nonstationary Gabor transforms. For them to
be biorthogonal it is enough to ensure that ), M; = N as it
was noted in section II-A. Expanding the definition of M; the
equation can be rewritten as
1
IR
aj

l

(23)

In practice this is a restricting condition because it is not

. . N
enough to satisfy the above equation, but for all [ a; and —
. a

must be an integer.

H. Filter bank interpretation

Every NSGT designed with nonlinear frequency resolution
can be interpreted as a filter bank. It has two main parts.
The first is the analysis bank which decomposes the input
signal into several — possibly decimated — frequency bands.
The other part is the analysis bank which interpolates and
sums the components to restore the signal. Arbitrary signal
processing can take place between the analysis and synthesis
banks, but if it is omitted then the output signal is identical
to the delayed input. This is called the perfect reconstruction
property and it is ensured by the invertibility of the NSGT.

The analysis bank is realized by L FIR filters with coef-
ficients equal to the complex conjugate of the time flipped
dual atoms (see (22), where ; is from (19)). The output of
the analysis filters can be decimated by a factor given by the
time shift parameters. Finally the synthesis filters are also FIR,
these are given by (.

go[n] coln]
e g
91[n] ci[n]
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Fig. 1. An observer for recursive transformations.

III. A COMMON STRUCTURE FOR RECURSIVE DISCRETE
TRANSFORMS

A. Conceptual signal model

The conceptual signal model [9] is a linear system whose
y[n] output is acquired by the summation of cg[n] atoms
weighted by xy[n] state variables. The n = 0,---, N — 1
values serve as discrete time instants and £ = 0,---, K — 1
is used to enumerate the atoms. In this setting it is possible
to construct all discrete signals with period N with the right
choice of atoms. The referenced article assumes that all signals
are discrete and have period N and the conceptual signal
model has constant state variables. Let’s denote

x[n] = (zo[n] x1[n] a:K_l[n])T 24
c[n] = (co[n] c1[n) CK,l[n])T (25)

This means that the output of the system is
y[n] = " [nlx[n] (26)

B. Observer

The observer which was introduced and analyzed in [9] can
be seen in Fig. 1. It tries to reconstruct the y[n] input signal
by refining the X[n] estimated state variables based on the
reconstruction error with the help of the gx[n] dual atoms.
The latter is denoted by

gln] = (go[n] 1ln] gl @D

With the notation introduced so far, the time course of the es-
timated state variables can be given by the following equation:

x[n +1] = x[n] + g[nlc" [n](x[n] — x[n])  (28)

It was proven in [9] that X[n] = x[0] after N time steps (or
less) if g[n] and c[n] form a biorthogonal basis.



IV. OBSERVER-BASED GABOR TRANSFORM
A. Estimation with observer

Section III-A introduced the atoms of a conceptual signal
model. The output samples of the system can be organized into
a vector in CV if the state variables are constant, y = Cx][0].

<o [(1)] a [(1)] CK-1 [(1)}
C= CO:[ | Cl;[ | R e
ON-1 alN-1  exaIN—1]

Similarly the dual atoms can be arranged into a matrix

g0[0] go[1] go[N —1]
91[0] g1 1] g1[N —1]
G = . ) (30)
gx1l0] gx1[1] g1 [N — 1]

By comparing (29) and (3) one can see that both C and ®
are constructed from the atoms as columns. Likewise there is
a correspondence between G and ®%. Succinctly

ck[n] = pk[n]  gr[n] = Prln] (€29)

The two equations above connect biorthogonal Gabor trans-
forms and the conceptual signal models. An observer can be
constructed for said transforms which can recursively estimate
the state variables.

B. Designing an observer-based Gabor transform

If the NSGT has nonlinear frequency resolution then based
on (22) the generator atoms can be interpreted as FIR filters
with time reversed impulse responses. The DFT of these
impulse responses are the transfer functions sampled in regular
intervals. The condition for painless invertibility in this case
states that the individual amplitude characteristics of the filters
must have bounded support with length NV;, and their sum
must be nonzero on all frequencies. It also requires that the
a; time shift parameters satisfy the Nyquist-Shannon sampling
theorem. The number of filters is [ = 0, - - -, L — 1. To achieve
biorthogonality (23) needs to hold.

The first step in the design process is to construct the
¢; windows directly in the frequency domain with center
frequencies positioned (possibly irregularly) according to a
specification and with N; < N finite support. The second
step is to check the invertibility of the frame operator and that

the time shift parameters a; = — are integers. If this is the

case then the biorthogonality corfdition automatically holds,
and the windows partition the whole frequency domain into
disjoint segments. Finally the

ck[n] = pi[n — may] gr[n] = (R~1r)[n —mai] (32)

atoms of the conceptual signal model can be calculated, where

-1
k=m+> M, (33)
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Fig. 2. Amplitude characteristics of the filters used in the three band transform
example. The sampling frequency is normalized to 1.
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Fig. 3. Some of the c¢i[n] atoms corresponding to the three band transform
example. The two on the left are the impulse responses of the bandpass filter,
they differ only in a time shift. The upper right corresponds to the impulse
response of the lowpass filter while the bottom right to the highpass filter.

V. EXAMPLES
A. Three band transform

This example shows the usage of the observer-based method
on an intentionally simple specification. L, the number of
generator atoms — filters — is chosen to be 4. The first is a
lowpass filter, while the second and fourth form a complex
conjugate pair, and the third one is a highpass filter. The ¢;
atoms were chosen to be rectangular windows. The length of
the supports were constructed with biorthogonality in mind,
they are computed from the time shift parameters

CLO:6 a1:3 a2:6 CL3:3 (34)

N
To ensure that all — is integer, /N was selected to be 54. The

amplitude Charactecrl{stics of the filters can be seen on Fig. 2.
The calculation of the basis/reciprocal basis is straightforward
based on (32) and (33). Fig. 3. illustrates some atoms of the
conceptual signal model, which are the impulse responses and
their time shifts. For k = 0,---,8 cx[n] = @o[n — 6m)], for
k=9,---,26 cg[n] = ¢1[n — 3m], and so on. The real part
of the observed signal and the output during a simulation are
depicted on Fig. 4 and Fig. 5. The conceptual signal model’s
state variables are initialized with random real values. The



IRV I
[T 1Al
‘ ”“w\‘“ JI

Amplitude
S

'
w

60 80 100
Time [sample]

120 140 160

Fig. 4. The real part of the output of the conceptual signal model and the
observer in the three band transform example. The state variables are random
generated real values with normal distribution. The dotted vertical line marks
the N™ timestep.
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Fig. 5. The reconstruction error in the three band transform example. The
dotted vertical line marks the N timestep.

observer has a delay of N samples, afterwards it reconstructs
the signal perfectly.

B. Discrete Fourier transform

To obtain the DFT as a special case, the K number of ¢y [n]
windows should be equal to N then they can be specified as
Vr[n] = eg[n], where ey are the standard basis vectors of
CN. This results in equal support 1eR§ths for all I M; = 1.

Equation (23) is satisfied with a; = A = N.
The atoms of the conceptual signal émdel are

1 oy,

%

(35)
where q; is effectively a constant with value N. Before com-
puting the dual atoms the inverse of the frame operator should
be determined. S = $W7 = Tand R = F!'S7'F =1
which leads to

cxln] = (F~op)[n—ma)] = (F~'ey)[n—mN] =

gr[n] = (R~1er)[n — mai] = px[n — mN| =

C. Third-octave filter bank

Filter banks are frequently used in audio signal processing
algorithms. Third-octave filter banks are especially useful
during the analysis of speech or music. [3] introduces the
invertible constant-Q transform (CQT) as a possible imple-
mentation of these filter banks. The invertibility ensures the
perfect reconstruction of the analyzed signal. This property can
be utilized in the development of noise reduction methods.

The signal-to-noise ratio (SNR) of a noisy microphone
can be improved with the help of a third-octave filter bank
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Fig. 6. Amplitude characteristics of the filters used in the constant-Q
transform example. The sampling frequency is 8 kHz.

[2]. It works on the assumption that the useful signal is well
localized in frequency — which holds reasonably well for
speech signals — while the noise is wideband. Furthermore
the signal to noise ratio is already positive. Estimating the
power of the noisy signal components generated by the filter
bank and comparing it to the estimated level of the noise
makes it possible to detect and suppress the unwanted signal
components with tresholding.

A third-octave CQT can be approximated by a biorthogonal
Gabor transform, it’s design is illustrated with the following
example. The number of filters are L = 20. There is a lowpass
and highpass filter and 9-9 third-octave bandpass filters with
approximately geometrically spaced center frequencies. The
sampling frequency is 8 kHz. The cutoff frequency of the
lowpass filter is 450 Hz, while the cutoff frequency of the high
pass filter is 3000 Hz. The bandpass filters have center frequen-
cies 500-25/3 Hz, where k = 0, - - -, 8. The bands above half of
the sampling frequency have the mirrored amplitude charac-
teristics from the matching ones from below. This is illustrated
in Fig. 6. The q; time shift parameters were determined by an
iterative process by hand to minimize their least common mul-
tiple while satisfying (23). This leads to a value of 2376 for N.

Fig. 7. shows the response of the observer for a triangle
wave input. It may seem that the input is amplitude modulated
but it is just a consequence of the non-coherent sampling. It is
important to note that several state variables are corresponding
to one filter. If one of the harmonic components of the triangle
wave is in the passband of the filter then the value of the
state variables will be affected accordingly. Based on this
knowledge the estimation of the power content of each signal
component can be carried out.

D. Comparison of the naive and observer-based method

The implementation of a NSGT with the help of FIR
filters is straightforward. But in certain cases it becomes
numerically sensitive. Using the filter bank interpretation,
when the signal is reconstructed during the synthesis, the sum
of the upsampled components might have some uncertainty.
This effect is amplified if the calculations are carried out
with fixed point representations. In contrast, the observer-
based method has significantly lower numerical sensitivity
[10] which makes it a suitable choice where floating point
representations cannot be used.
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Fig. 7. The outputs of the FIR and observer-based third-octave filter banks.
The input signal is a 674 Hz non-coherently sampled triangle wave. The
dotted vertical line marks the N timestep.
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Fig. 8. The comparison of the reconstruction errors acquired as the difference
of the delayed input and the output of the filter banks. The dotted vertical
line marks the N™ timestep.

If the coherent sampling of the input signal cannot be
ensured the observer-based method can estimate the signal
with greater precision. This claim is supported by Fig. 8
which clearly shows that the naive FIR-based implementation
is able to reconstruct the signal but the error settles just below
—65 dB. On the other hand the error obtained with the use of
the observer does not exceed —290 dB. Furthermore it is able
to reconstruct arbitrary non-periodic signals which is due to
the fact that the observer is refining it’s estimation based on a
feedback. [4] describes a method to calculate the samples of a
filter bank implemented with an NSGT in real time which han-
dles non-periodic signals as well. It is computationally efficient
because it is utilizing the FFT, but it suffers from blocking
artifacts. In contrast, the observer based method can estimate
these samples in a recursive manner avoiding these artifacts.

VI. CONCLUSION

The paper reviewed the generalizations of Gabor transforms
and their theoretical background. It showed a correspondence
between a subset of NSGTs and filter banks. Then it described
a conceptual signal model and an observer which can estimate
the parameters of the aformentioned model. As a main result
a method was given to the observer-based implementation of
biorthogonal nonstationary Gabor transforms. This enables the
recursive, real-time computation of the transform coefficients
with low numerical sensitivity. Lastly three examples are given
to illustrate the method. The first two examples demonstrate
the design process with the implementation of a simple filter
bank and the DFT. Finally a third-octave filter bank is pre-
sented and used to examine the desirable numerical properties
of the observer-based method compared to the naive approach.

It has been showed that it can reconstruct the signal with
greater precision due to the fact that the observer is refining
it’s estimation based on a feedback.

APPENDIX
A. Diagonality of the frame operator
Theorem 1: Given a nonstationary Gabor frame, if every ¢;
has an N; < N finite support and every b; < N, then the

induced S frame operator is diagonal.
Proof:

Sip, q] = (2®")[p,q] =

L-1 M1
=Y allalg > &m0 =
=0 m=0
L-1
=Y eilpleila]Midlmod (p — ¢, My)] - (37)
1=0
The first two equations expand definitions and uses the linear-
ity of the inner sum. The last equation can be derived from the
formula for the sum of geometric series. On the main diagonal
d[mod (0, M;)] = 1, where d[n] is the Dirac delta function, so
the sum depends only on ¢;[p]. Off the main diagonal there
are two separate cases. If d[mod (p — g, M;)] = O then the
sum is trivially zero. But if 6[mod (p — ¢, M;)] = 1 then it is

also zero because |p — gq| > N; < M, = 3 S0 either ¢;[p] or
!
©1]g] or both will lie outside of the support of ¢;. [ |
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