Towards Automated Worst-Case Analysis of Circuits:
Selecting Initial Values for Global Optimization

Krist6f Horvéth, Baldzs Bank, Gyorgy Orosz
Budapest University of Technology and Economics
Department of Measurement and Information Systems
Budapest, Hungary
Email: {hkristof, bank, orosz}@mit.bme.hu

Abstract—Worst-case circuit analysis is a mandatory practice
in hardware verification and validation. To this end, several
methods, including extreme value analysis (EVA) and Monte
Carlo analysis are commonly used, however, each has its own
limitations. Numerical optimization-based methods have the po-
tential to be generally usable, but have the tendency to get stuck
in a local minimum, which can be mitigated using carefully
chosen initial values. In this paper we propose methods for
automated initial value selection for black-box circuit models.
The methods are demonstrated to work on several standard test
functions, which is a first step in building an automated worst-
case circuit analysis tool.

Index Terms—worst-case circuit analysis, numerical optimiza-
tion, initial values

I. INTRODUCTION

Worst-case analysis (WCA) is an important step in hardware
design verification [1]. Because the parameters of the circuit
components can vary in production, certain circuit properties
(e.g. amplifier gain, attenuation, power dissipation, etc.) should
be analysed to make sure that parameter variation will not push
the circuit outside its limits.

For this purpose, various methods have been developed over
the years. Among them, extreme value analysis (EVA) is a
popular tool in the industry. EVA is based on the assumption
that the extreme values of circuit properties can be found on
the boundaries of parameter values, therefore by evaluating all
extreme-value combinations it is possible to find those which
result in the highest deviation from nominal circuit properties.
The drawback of EVA is that it requires 2V function evaluation
where N is the number of parameters. In addition, for some
circuits the assumption of having the extreme value at the
boundaries is not valid (see Figure 2), and thus EVA leads to
incorrect results.

Monte-Carlo-analysis is another traditional method, where
simulations are used to calculate a probability distribution
estimator for the circuit property in question. It assumes that
the circuit property is an approximately linear function of the
component values, which might be a good approximation for
many, but not for all parameters. The downsides of this method
include a large computational demand as well as the fact that
the results are not exact [2].

A more general approach to worst-case analysis is to
perform it as an optimization task [3]. After all, the goal to
WCA is to find the extreme values of a circuit property, which

can be represented as a mathematical function. Tolerances
of the component parameters can be incorporated into the
optimization problem as boundaries to the search space.

Traditional optimization methods (e.g. gradient descent,
direct methods, etc.) assume cost functions that have only
one local minimum in the search space. These algorithms
operate from a starting point, and make incremental steps
that converge to a local optimum. In some circuit analysis
problems, however, the function describing the circuit property
in question can have multiple local optima, thus global opti-
mization strategies are necessary. One approach is to sample
the function and use clustering to select candidate points to be
used as initial values and start a traditional local optimization
algorithm from all of them [4], [5]. This way there will be at
least one point from where the local optimizer can converge
to the global optimum.

An additional difficulty in circuit analysis is that functions
rarely appear in closed-form, rather than as a result of a Spice-
based circuit simulation. Therefore, we only consider black-
box functions for optimization targets, whose derivatives can
not be evaluated.

In this paper we present methods for searching appropriate
initial values for global optimization of black-box functions.

II. EXAMPLE CIRCUIT

Consider the circuit in Figure 1. The objective of the
analysis is the maximum power dissipation of transistor Q2.
The tolerances for resistors are 5% of their nominal value, the
transistors are used at temperatures between 0°C and 40°C
and other parameters and tolerances came from the datasheet.
The supply voltage, denoted by VCC, can be between 6 and
12 Volts, and the input voltage, marked by Uin, is allowed to
be between 0 and 5.5 Volts. The number of parameters in this
example is 14.

Using physical considerations, we have deduced that the
power dissipation of Q2 is largely dependent on the input
voltage of the circuit. The relationship is plotted in Figure 2
with all other parameters being fixed at the results of a
preliminary worst-case analysis. It should be noted that there
are two (local) maxima in this graph; at around 4 V and around
1V, therefore global optimization is necessary.

{Vec]
Vec]

V2
E RC1 RE2

<+ 2.3k 1.5k
~N
w
- 2
o
=]
RB2 oo PNP
Q2
1k
uin B usi Q1
NPN]
2
-
PWL(0015) w RC2
RE1 9.1k
470
~
Fig. 1. A simple transistor-based circuit example. The property in question

is the power dissipation of transistor Q2.

%107

Dissipation (W)

= N

[$)] N [4)]
T T T

-
T
L

0 1 2 3 4 5 6
U_in (V)

Fig. 2. Dissipation of the Q2 transistor in the example. Here, we only plotted
the dissipation in terms of the input voltage, with the other parameters being
fixed.

III. METHODS FOR DETERMINING A SET OF INITIAL
VALUES

Usually, initial values are chosen based on nominal values
[3], or results of a pen-and-paper-based analysis. Another ap-
proach is to start the optimization from a random initial value.
When the optimization is performed from several random
initial values, it is likely that the optimization algorithm will
converge to the global optimum from at least one set of initial
values. The downside of using a large number of initial values
is the excessive amount of redundant computations.

Our approach of determining a set of initial values is
based on function sampling. The core idea has been used for
empirical estimation of function shape and properties [6], [7]
as well as by global optimization methods [4], [5]. The latter
sample the function in a large number of random points and
select only a few of them. Ideally, only one point is selected

Algorithm 1 Barrier search (BS) algorithm

1: Generate random sampling points: {x;} fori=1... M

2: Evaluate function in sampling points: y; = f(x;) for Vx;

3: Make an ordered list: f(x,,) < f(Xo,) < ... < f(Z0y,)

4: Add first element to output set: D = {x,, } where x,, =
arg min, (£(x;))

5: for all x,,, k=2...M do

6: for all x4, € D do

7: Define midpoint as: m; = (X4, + Xo,)/2

8 if f(xq4,) < f(m;) and f(x,,) < f(m; ;) then

9: D:=DuU {Xok}

10: else if f(m; ;) < f(x4;) then

11: Replace x4, in D with my 4,

12: Restart inner loop

13: end if

14: end for

15: end for

from the region of attraction around each local minimum,
because selecting more than one will lead to unnecessary
calculations in the subsequent local optimization step.

Obviously, an important condition for this approach is the
proper sampling of the function of interest: for example, if the
sample point set does not contain any points from the vicinity
of a certain local minimum, then sampling-based methods can
not find that local minimum.

IV. PROPOSED ALGORITHMS FOR INITIAL VALUE
SELECTION

Our intention in constructing our algorithms was to keep
them simple, yet at the same time use the least amount of
function evaluations at searching suitable initial values for
global optimization.

As a first step, all algorithms generate an arbitrary number
of random sampling points, x;, and evaluate the objective
function at these points: y; = f(x;). The output of each
algorithm is a set of initial values, which we denote by
D = {X4,,Xdy,---,Xds }» Where di g denote the indices
selected as initial values from set {x;}.

Barrier search algorithm (BS) is based on the fact that two
local minima should be separated by a barrier, i.e. there should
be an area between two local minima where the function value
is higher than any of the two minima. In practice, the condition
is checked only at the midpoint between two testpoints. The
pseudocode for BS algorithm can be found in Algorithm 1.

Convex definition check (CDC) algorithm is based on the
necessary condition for convexity: in convex areas, any line
segments connecting two points on the graph of the function
lies above the graph between the two points. In practice,
this condition is checked only at the midpoint between two
testpoints. The pseudocode for CDC algorithm can be found
in Algorithm 2.

Both the BS and CDC algorithms perform a simple prelim-
inary optimization too: if the function value at the midpoint

Algorithm 2 Convex definition check (CDC) algorithm

1: Generate random sampling points: {x;} fori=1... M

2: Evaluate function in sampling points: y; = f(x;) for Vx;

3: Make an ordered list: f(x%,,) < f(%X0,) < ... < f(20,,)

4: Add first element to output set: D = {x,, } where x,, =
arg min, (£(x.))

5: for all x,,, k=2...M do

6: for all x4, € D do

7: Define midpoint as: m; , = (X4, + X0,)/2
8: if f(mz,k) > (f(xdl) + f(XOk))/Q then
9: D:=DuU {Xok}

10: else if f(m; ;) < f(xq4,) then

11: Replace x4, in D with mj 4,

12: Restart inner loop

13: end if

14: end for

15: end for

Algorithm 3 Local minimum definition (LMD) algorithm

1: Generate random sampling points: {x;} fori =1... M
2: Evaluate function in sampling points: y; = f(x;) for Vx;
3: Make an ordered list: f(Xo,) < f(Xo0,) < ... < f(@o,,)
4: Add first element to output set: D = {x,, } where x,, =

arg min,, (f(x;))
5: for all x,,, k=2...M do
6: Find closest L points: || X, —X¢, |2 < [|Xo, —Xes |2 <
- < %o, — Xey |2
if f(%o,) < f(%x¢,;) for Vi=1...L then
: D:=DU{x,,}
9: end if
10: end for

(M) is lower than the function value at the point in the
output set (x4,), then the latter is replaced by the midpoint.

The third algorithm (Local minimum definition, LMD) is
inspired by the definition of local minimum. For each sample
point, the closest N points are considered: if the tested
point has the lowest function value out of the closest L
sampling points then it is assumed to be a local minimum. The
pseudocode for LMD can be found in Algorithm 3. Note that
LMD does not need additional function evaluations besides
the initial sampling points.

V. PERFORMANCE EVALUATION

In order to compare the proposed initial value search
algorithms, we have tested them on some standard 2-
dimensional test functions [8]: sphere, inverse sphere, Rosen-
brock, Styblinski-Tang, Goldstein-Price, Booth, Matyas, Him-
melblau, Three-hump camel, and McCormick functions. The
reason for choosing these functions is that their properties are
well-known, and the functions themselves are well-behaved
and closely resemble typical physical systems that are analysed
in WCA problems.

In our tests, we have sampled the functions in 1000 random
points and used these samples for all tested algorithms. We

TABLE I
RATIO OF MISSED REGIONS OF ATTRACTION AND THE RATIO OF
DUPLICATE POINTS IN REGIONS OF ATTRACTION FOR THE
MULTIDIMENSIONAL FUNCTION EXAMPLE.

Missed regions of attraction | Duplicate points in output
Dim. BS CDC LMD BS CDC LMD
2 0% 0% 0% 0% 68.8% | 24.5%
3 0% 0% 0.4% 0% 82% 34.5%
4 0% 0% 1% 0% 85.5% | 40.3%
5 3.6% | 0.1% 3.9% 1.2% | 82.1% | 34.9%
6 19.7% | 0.2% 16.5% 3.1% 74% 22.2%
7 38.8% | 4.7% 39.5% 4.8% | 60.9% 12.4%

have found that considering the closest 10 points in LMD
algorithm leads to the lowest amount of redundant initial
values. To measure performance, the number of initial values
and the total number of function evaluations were used. The
tests were performed on 30 different random point sets and
the numbers of initial values returned by each algorithm were
averaged. For finding the closest local optimum from each
initial point, we have used Matlab’s fmincon interior-point
method as local optimizer.

Figure 3 shows the ratio between the average number of
initial values returned by the algorithms and the number of real
local minima of the functions. Additionally, the performances
on the example circuit in Figure 1 are also shown. In all cases,
the local optimization converged to either of the local minima,
so a ratio of 1 means that the algorithm managed to find the
region of attraction around each local minimum. Values higher
than 1 mean that the algorithm returned more initial values
than necessary, which lead to unnecessary calculations in the
subsequent local optimization step. The BS algorithm could
not find all of the local minima of Goldstein-Price function.
This is caused by the fact that the function is relatively flat
around its local minima and so there is a significant chance
that the algorithm can not find a barrier between sampling
points.

A box plot containing the required number of function
evaluations can be found in Figure 4. It can be seen that
the CD algorithm that is based on the definition of convexity
requires more function evaluations than the other two in more
than 50% of the cases. This is caused by the large number
of initial points, as it returns all sampling points in a concave
area of the function.

Probably the most surprising is that the LMD algorithm re-
quires the least amount of function evaluations. This is because
despite returning the highest number of initial points in the
majority of the cases, it only needs to evaluate the function at
the sampling points, which in our case is 1000 points. In later
experiments we have found that this advantage diminishes as
the number of dimensions increases.

VI. MULTIDIMENSIONAL EXAMPLE

We have tested our algorithms on a scalable multidimen-
sional function too:

N
f(x) = —Zcos(%’xi), Vz; € [0;1], (1
i=1

Number of initial values / Number of local minima

1000 T T T T T T I
[BS
[coc
[— s}
100
10
o ‘\o (o0 o
(\)(\c K\“‘ (\é . KO“C <\° S c,‘ \<0
\ & (\ Ne:
600“ 6‘\‘?& e,\‘o\ Q\(\é (,Q‘\e 22 e R ° (((\\C 135«
W N) © OF X \J o <
. e S e C
<(\
NN o (& o« \‘0\\0 o\&} o W
X N © <&
<

Fig. 3. Ratio between the number of initial values the algorithms found and the number of local minima of each function. Additionally, the analysis of the

example circuit is shown for reference.

Number of function evaluations
6000 T T T

5000F b

40001

3000 I b

=

2000 - b

10001 b

BS CbC LMD

Fig. 4. Total number of function evaluations from initial value search to found
optimum. The values contain the local optimum search too.

where x is an N-dimensional vector and x; is the ¢th element
of x. This function has 2"V local minima at the corners of the
search space.

Table I shows the ratio of missed local minima and the
ratio of duplicate points per local minima. It can be seen that
at most 4-dimensional problems, the BS and CDC algorithms
did not miss any local minima in the search space. Over 5-
dimensional functions, the algorithms started omitting regions
of attraction. Out of three, the CDC algorithm missed the
least number of local minima. In our experiments we have
found that if the example function has at most 4 dimensions,
the BS algorithm returns exactly the same number of initial
values as the number of real local minima, while the other
two algorithms always have multiple initial points in the same
attraction regions. This problem is the most severe for the CDC
algorithm: for example, even at the two-dimensional case,
CDC returns more than three times as much duplicate points as
real local minima. The LMD algorithm also produces a large

number of duplicates, even below 5-dimensional problems too.

Based on our experiments, we suggest to use the BS algo-
rithm for searching for initial values in numerical optimization
based worst-case circuit analysis tasks.

VII. CONCLUSION AND FURTHER RESEARCH

Numerical optimization is a powerful tool in the worst-case
analysis of complex circuits. The algorithms shown in this
paper provide initial value sets suitable for global optimization
tasks.

Further research include evaluating and comparing the
performance of additional global optimization methods (e.g.
GLOBAL [5] and memetic algorithms [4]).

VIII. ACKNOWLEDGEMENT

Project no. 2019-1.3.1-KK-2019-00004 has been imple-
mented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed under
the 2019-1.3.1-KK funding scheme.

REFERENCES

[1] W. Smith, “Worst case circuit analysis-an overview (electronic
parts/circuits tolerance analysis),” in Proceedings of 1996 Annual Re-
liability and Maintainability Symposium, 1996, pp. 326-334.

[2] A. Singhee and R. A. Rutenbar, “Why quasi-monte carlo is better than
monte carlo or latin hypercube sampling for statistical circuit analysis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29, no. 11, pp. 1763-1776, 2010.

[3] A. Lokanathan and J. B. Brockman, “Efficient worst case analysis of
integrated circuits,” in Proceedings of the IEEE 1995 Custom Integrated
Circuits Conference. 1EEE, 1995, pp. 237-240.

[4] F. Schoen and L. Tigli, “Efficient large scale global optimization through
clustering-based population methods,” Computers & Operations Re-
search, vol. 127, p. 105165, 2021.

[5] B. Banhelyi, T. Csendes, B. Lévai, L. Pél, and D. Zombori, The GLOBAL
Optimization Algorithm: Newly Updated with Java Implementation and
Parallelization. Springer, 2018.

[6] J. W. Chinneck, “Analyzing mathematical programs using mprobe,”
Annals of Operations Research, vol. 104, no. 1, pp. 33—48, 2001.

[7] ——, “Discovering the characteristics of mathematical programs via
sampling,” Optimization Methods and Software, vol. 17, no. 2, pp. 319—
352, 2002.

[8] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for
global optimization problems,” arXiv preprint arXiv:1308.4008, 2013.

