
Pole Optimization of IIR Filters
using Backpropagation
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Abstract—Audio signal processing is a field where specialized
techniques are used to account for the characteristics of hearing.
In filter design the resulting transfer function need to follow the
specification on an approximately logarithmic frequency scale,
which can be done via methods such as frequency warping
or fixed-pole parallel filters. Although these IIR filter design
techniques are proven in practice, they do not produce optimal
pole sets for the given specification. In this paper we present
the first experiments of using a gradient-based pole optimization
framework implemented in TensorFlow by realizing the IIR
filter as a recurrent neural network (RNN). The method can
improve the pole set of a filter compared to the initial pole set,
resulting in a smaller approximation error. The proposed method
is demonstrated using four example filter specifications.

Index Terms—audio filter design, RNN, IIR filter

I. INTRODUCTION

In audio filtering, infinite impulse response (IIR) filters are
commonly used [1], where logarithmic frequency resolution is
highly desired, to approximate the characteristics of hearing.
In order to achieve this, several structures were developed in-
cluding warped filters [2] and second-order fixed-pole parallel
filters [3].

Warped IIR filters are derived from a direct-form IIR struc-
ture by substituting allpass sections into the delay elements [2].
The resulting structure has an additional parameter λ, called
warping coefficient. In the design process, the specification is
first transformed according to λ and then the filter coefficients
are set using traditional methods such as Prony’s method or
the Steiglitz-McBride algorithm. Figure 1 shows the frequency
mapping of the warping transformation. In essence the warping
coefficient controls the frequency resolution of the filter by
making specific parts of the specification more dominant in
the warped frequency domain.

In fixed-pole parallel second-order filters the frequency
resolution is controlled by the setting the poles appropriately.
After that, the filter response becomes linear in the numerator
parameters and thus they can be estimated using the least
squares (LS) method [4]. In their simplest form, fixed-pole
parallel filters have predetermined pole sets which control their
frequency resolution – for example poles uniformly distributed
on logarithmic frequency scale will result in logarithmic
frequency resolution. In addition, several more sophisticated
pole positioning strategies have been developed which offer

Fig. 1. Frequency transformation of warping.

better modeling accuracy at the expense of a somewhat more
complicated filter design procedure [5], [6].

In this paper we investigate whether the performance of
fixed-pole parallel filters can be improved by optimizing their
pole set using the backpropagation algorithm.

II. IIR FILTERS AS RECURRENT NEURAL NETWORKS

A recurrent neural network (RNNs) is a class of artificial
neural networks, which is often used in natural language
processing. Contrary to the commonly used feedforward neural
network topologies, RNNs have internal memory (state) and
assume that the input has one temporal dimension, which can
be arbitrarily long. The input is therefore processed along the
time dimension. There are many commonly used nonlinear
RNN structures such as long short-term memory (LSTM),
gated recurrent unit (GRU), Elman network, etc.

In essence all linear, time invariant IIR systems can be
considered as a special case of RNNs. To illustrate this, let’s
consider the Elman network [7], a simple RNN structure for
language processing:

h[n] = σh(Whh[n− 1] + Uhx[n] + bh), (1)
y[n] = σy(Wyh[n] + Uyx[n] + by), (2)
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Fig. 2. IIR direct-form 2 second-order section.

where the vectors x, y, h are the layer inputs, outputs and
hidden states, respectively. The matrices Wh,Wy, Uh, Uy and
vectors bh,by are the trainable weights of the network, n
is the temporal dimension, while σh, σy refer to activation
functions, which are usually nonlinear functions. By setting
the bias vectors to by = bh = 0, and removing the
nonlinearities, the resulting equations are equivalent to the
state-space representation of IIR filters:

h[n] = Whh[n− 1] + Uhx[n], (3)
y[n] = Wyh[n] + Uyx[n]. (4)

By representing audio filters as RNNs, the tools and frame-
works for training neural networks become accessible for filter
design [8]. When using mean square error (MSE) as cost
function, the training process will converge to the least squares
solution.

The state space representation of IIR filters preserve the
filter structure, therefore it’s important to specify the format
of the matrices and vectors in Equations 3-4. By restricting
which matrix elements can be trained the linear dependencies
between variables can be eliminated.

The state space representation of a second-order IIR direct-
form 2 section, as seen in Figure 2, is the following:
(
x1
x2

)
[n+ 1] =

(
−a1 −a2
1 0

)(
x1
x2

)
[n] +

(
1
0

)
u[n], (5)

y[n] =
(
b1 − b0a1 b2 − b0a2

)(x1
x2

)
[n] + b0u[n]. (6)

Note that contrary to the notation used in neural networks, in
filter structures the (hidden) state is denoted by x, while the
input is denoted by u. Thus the state-space IIR direct form
representation in Equations (5)-(6) corresponds to the regular
transfer function:

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
. (7)

RNNs are trained using backpropagation through time
(BPTT), which is a gradient-based technique. A training step
consists of two parts: forward propagation and backpropaga-
tion. In the former the network outputs and the cost function
(also called loss function) are calculated by unrolling the
mathematical operations used by the network for each time
point. In the second step the derivatives of the loss function

are calculated for all network weights. The network weights
are updated using the analytically computed gradients such
that the loss would decrease in each iteration.

III. PROPOSED METHOD FOR POLE OPTIMIZATION

Training the filter using backpropagation is equivalent to a
gradient descent method with analytically computed gradients.
Contrary to Prony and Steiglitz-McBride methods [9] though,
the optimization problem in this case is nonconvex, assuming
both the poles and zeros are tuned. This can cause problems
such as the tendency to stuck in a local minimum as well as
being prone to instability.

Iterative optimization methods, such as backpropagation,
are sensitive to the initial network weights. Incorrect setting
of the initial values can lead to slow convergence or getting
stuck in a local optimum. Therefore we suggest that the
initial network weights should be designed using the Steiglitz-
McBride algorithm.

Because in Prony and Steiglitz-McBride methods designing
the poles of the filter provide the biggest challenge, we suggest
that only the poles of the filter should be trained using
backpropagation and after a few epochs the zeros should be
updated via least squares (LS) in one step. This training cycle
should be repeated a few times.

Considering the previous points, the algorithm to design
audio filters is the following:

1) Warp the specification. As a first step the filter speci-
fication is transformed to the warped frequency domain,
where the filter design is performed [2].

2) Design IIR filter using Steiglitz-McBride algorithm.
The Steiglitz-McBride method provides the initial values
that are close to the optimum.

3) Convert filter to parallel structure. In order to use the
previously designed poles and zeros, the coefficients of
the direct-form representation are converted to parallel
second-order representation using partial fraction expan-
sion [10].

4) Optimize poles with backpropagation. The previously
computed coefficients are set as the network weights of
a filter represented as an RNN. In this structure only the
coefficients related to the poles are trained with MSE as
cost function.

5) Design zeros for optimized poles with LS. After the
poles are optimized, the zeros are adjusted using a
one-step least squares method based on Moore-Penrose
pseudoinverse [4].

6) Repeat steps 4-5. In each iteration the remaining MSE
is lowered with diminishing returns.

7) Dewarp the second-order denominators. In order to
implement the filter, the coefficients designed in the
warped frequency domain need to be transformed back.
Because the dewarping would insert an additional zero
to the second-order sections and thus would increase
the computational demand, only the denominator is de-
warped. For direct-form second-order sections the trans-
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formation is performed using the following equations
[11]:

a′1 =
(1 + λ2)a1 − 2λa0 − 2λa2

1− λa1 + λ2a2
, (8)

a′2 =
a2 − λa1 + λ2a0
1− λa1 + λ2a2

, (9)

where the dewarped coefficients are denoted by prime.
8) Design zeros with optimized poles. Using the opti-

mized pole set, the zeros of the parallel filter are de-
signed with the usual least squares method [4], similarly
to step 5.

IV. ENSURING STABILITY

Recurrent neural networks often suffer from two major
issues during training: the vanishing and the exploding gradi-
ents problem. The former is the result of unrolling nonlinear
activation functions in time and as such it it is not relevant
for IIR filters represented as RNNs. The exploding gradients
problem, however, can be encountered when the poles of
the filter are moved outside the unit circle, resulting in an
unbounded growth at the output, which leads to high error
values. One way to circumvent this issue is to use small
learning rate and carefully initialize the coefficients [8].

In order to ensure that the poles would not become unstable
during training, we have added a regularizer such that if a
pole is moved outside of the unit circle in a training step,
the regularizer puts it back to the circle while keeping its
frequency intact.

Deriving the formulas for a conditional regularizer is hard
for an arbitrarily high degree IIR filter, but for a second-order
IIR direct-form section it is easy. Here we show the equations
used by our implementation. If

4a2 > a21 (10)

then the section has a conjugate complex pole pair. In this
case the pole radius is computed as

Rc =
√
a2. (11)

If Rc > 1 then the pole is outside the unit circle and must
be corrected to avoid instability. Optionally this condition can
be tightened to avoid instability after coefficient quantization
in the implementation. Thus the condition for correction is
Rc > 1−ϵ where ϵ is a small number that limits the maximum
amplification of the pole. The correction is done using these
formulas:

a1 :=
a1

Rc + ϵ
, (12)

a2 :=
a2

(Rc + ϵ)2
. (13)

If the condition in Equation (10) is false then the section
has real poles. In this case the two poles and their radii are
the following:

p1,2 =
1

2

(
a1 ±

√
a21 − 4a2

)
, (14)

R1,2 = |p1,2|. (15)
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Fig. 3. Magnitude plots of example transfer functions. (1) is a room response,
(2)-(4) are loudspeaker responses. The plots have been shifted in order to fit
the figure.

System Prony Steiglitz-McBride Proposed method Gain
1. 1.49 · 10−5 1.15 · 10−5 1.05 · 10−5 9%
2. 1.19 · 10−6 6.82 · 10−7 6.00 · 10−7 12%
3. 1.97 · 10−6 1.47 · 10−6 1.24 · 10−6 16%
4. 5.48 · 10−7 2.19 · 10−7 1.78 · 10−7 19%

TABLE I
MEAN SQUARE ERROR (MSE) LOSSES OF DIFFERENT DESIGN METHODS
ON THE EXAMPLE SPECIFICATIONS. THE VALUES ARE CALCULATED IN
THE WARPED DOMAIN. ADDITIONALLY, THE REDUCTION OF THE MSE

ERROR COMPARED TO THE SEIGLITZ-MCBRIDE METHOD IS ALSO SHOWN.

If either of the pole radii are larger than 1, the pole regularizer
moves them back to the unit circle. Suppose R1 > 1− ϵ, the
correction formulas are the following:

a1 := a1 − p1 +
p1

R1 + ϵ
, (16)

a2 :=
a2

R1 + ϵ
. (17)

The formulas are similar for the case of R2 > 1− ϵ.
Note that the zeros of the filter have no direct effect on the

stability. The only way a zero can contribute to instability is
when it covers a pole that is outside of the unit circle – in
this case internal overflow can happen. Restricting the pole
movements will eliminate this problem.

V. EXPERIMENTS

To demonstrate the proposed method, we have designed
second-order parallel filters with 4 different specifications,
shown in Figure 3: one room and three loudspeaker impulse
responses. In this paper we refer to these transfer functions by
their numbers.

In our experiments, we have designed parallel filters with
10 second-order sections, altogether 20 poles and zeros. The
warping coefficient was λ = 0.9, the learning rate during back-
propagation was 10−4, each pole optimization had 15 epochs
and 800 steps per epoch. For the learning rate scheduler
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Fig. 4. Magnitude plots of system (3) and the filter responses designed by
Steiglitz-McBride method and the proposed method.
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Fig. 5. Magnitude plots of system (4) and the filter responses designed by
Steiglitz-McBride method and the proposed method.

we have used Adam [12] with default moments. The whole
design process had 5 optimization cycles (steps 4-5 in the
algorithm). The scripts were implemented using Python 3.6
and Tensorflow 2.1.0.

The achieved mean square error (MSE) values of the design
process, which has been the targets of the optimization process
in the warped domain, can be found in Table I. For reference
we have added the results of traditional methods such as
Prony and Steiglitz-McBride. Note that because the impulse
responses are decaying over time and the mean is computed for
N = 1000 samples, their mean squared value is small, leading
to very small error values for all cases. However, this does not
mean that this error is negligible, or would be comparable to
an error coming from coefficient quantization, for example.

Accordingly, it is not the actual value of the MSE that
describes the improvement due to optimization, but the relative
reduction of the MSE compared to previous methods. It can be
seen that the proposed method can produce coefficients that fit
the example specifications with 9-19% lower remaining mean
square error compared to traditional methods.

The magnitude plots of the specification and the designed
filters can be found in Figures 4-5. It can be seen that the
filter designed by Steiglitz-McBride method is improved by
the proposed method in the full frequency range.

It should be mentioned that we have found that backpropa-
gation is particularly sensitive to the learning rate. By setting
too large learning rates the design process does not converge
and therefore does not result in a usable filter. However, when
setting the learning rates to too small values the poles barely
get shifted and thus the method practically keeps the initial
values. Finding a correct learning rate is a process of trial and
error.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a method for improving
the poles of parallel filters using backpropagation. The results
show that the method can produce filters that have lower mean
square errors compared to the ones based on the original pole
set designed by the Steiglitz-McBride method.

Future work includes using the proposed method for equal-
ization, not just for modelling. Since the gradient calculation
and the convergence rate is dependent on the structure of
the second-order section, different implementation structures
should be evaluated as well.

The use of backpropagation opens up the possibility for
different cost functions, which can lead to audio filter design
methods where the transformation (e.g. warping) is embedded
in the loss function.
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[1] V. Välimäki and J. D. Reiss, “All about audio equalization: Solutions
and frontiers,” Applied Sciences, vol. 6, no. 5, 2016, art. no. 129, doi:
https://doi.org/10.3390/app6050129.
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and J. Huopaniemi, “Frequency-warped signal processing for audio
applications,” J. Audio Eng. Soc., vol. 48, no. 11, pp. 1011–1031, Nov.
2000.

[3] B. Bank, “Audio equalization with fixed-pole parallel filters: An efficient
alternative to complex smoothing,” J. Audio Eng. Soc., vol. 61, no. 1/2,
pp. 39–49, Jan. 2013.

[4] ——, “Perceptually motivated audio equalization using fixed-pole par-
allel second-order filters,” IEEE Signal Process. Lett., vol. 15, pp. 477–
480, 2008.

[5] ——, “Loudspeaker and room equalization using parallel filters: Com-
parison of pole positioning strategies,” in Proc. 51st AES Conf. on
Loudspeakers and Headphones, Helsinki, Finland, Aug. 2013.

[6] E. Maestre, G. P. Scavone, and J. O. Smith, “Design of recursive digital
filters in parallel form by linearly constrained pole optimization,” IEEE
Signal Process. Lett., vol. 23, no. 11, pp. 1547–1550, Nov. 2016, doi:
https://doi.org/10.1109/LSP.2016.2605626.

[7] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[8] B. Kuznetsov, J. D. Parker, and F. Esqueda, “Differentiable IIR filters for
machine learning applications,” in Proc. Int. Conf. Digital Audio Effects
(eDAFx-20), 2020, pp. 297–303.

[9] K. Steiglitz and L. E. McBride, “A technique for the indentification of
linear systems,” IEEE Trans. Autom. Control, vol. AC-10, pp. 461–464,
Oct. 1965.

[10] A. V. Oppenheim, R. W. Schafer, and J. R. Bruck, Discrete-Time Signal
Processing. Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1975.

[11] K. Horváth, “Rounding effects in audio filters,” Master’s thesis, Budapest
University of Technology and Economics, Budapest, Hungary, Dec.
2015, in Hungarian.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

45


