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Abstract—Worst-case circuit analysis (WCA) is an essential
task during developing safety-critical electronic systems. WCA
ensures that the system operates correctly under any possible
conditions. A practical system contains thousands of require-
ments that should be checked by WCA, so it is crucial to perform
WCA efficiently. This paper proposes a method that can speed
up the frequency-domain analysis of linear circuits by converting
the schematic into analytical form and then using an automatic
decomposition technique.

Index Terms—worst-case analysis, improving simulation per-
formance, converting simulation model into analytical equations,
system decomposition

I. INTRODUCTION

During the development process of safety-critical electronic
systems, the analysis of the designed product is an important
step to ensure that the product is operating correctly, con-
sidering component parameter tolerances and possible envi-
ronmental conditions. The analysis of the effect of extreme
conditions on the circuit operation is called worst-case analysis
(WCA) [1] [2]. Since a complex circuit may contain several
hundreds or thousands of analysis tasks, the efficiency of the
WCA solution is crucial.

WCA is typically performed using circuit simulation soft-
ware (e.g., LTSpice, OrCAD, Tina). These software tools
provide some basic and traditional analysis methods for per-
forming WCA, e.g., Extreme Value Analysis (EVA), Monte-
Carlo analysis, and sensitivity analysis [1].

However, these programs do not always provide a fast and
efficient solution. Simulator programs solve system equations
numerically to give solutions for diverse types of systems.
Sometimes, it may be possible to describe a problem in
analytical form and solve it more quickly than with simulators
using numerical algorithms.
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Several methods have been proposed in recent decades to
solve WCA tasks using analytical system equations. Some
examples are interval arithmetic [3] or affine arithmetic [4]
[5]. The analytical form also has the potential advantage of
the application of advanced extreme value search techniques
[6] [7] [8].

To exploit the advantages of both the simulation software
and the analytical solution, we introduce a software tool that
is able to convert a circuit schematic into MATLAB equations.
This software tool allows us to quickly set up analytical system
equations, synchronize the analytical and electrical models,
and eliminate human errors while writing system equations
manually.

Usually, the operation of electrical systems depends on a lot
of parameters and variables; hence, demonstrating and proving
that such a system fulfills the requirements is a computa-
tionally intensive problem. In order to improve the execution
time of analysis tasks, we propose an algorithm for the
automatic decomposition of such analysis tasks that involve
the evaluation of transfer functions. Breaking the system into
smaller subcircuits reduces the complexity of parameter space,
so the worst-case value is easier to find.

The paper is structured as follows. Section II provides an
overview of our proposed analysis workflow. In Section III,
we introduce a MATLAB tool that converts schematics into
systems of equations. Section IV introduces the proposed
decomposition technique, and an example of our proposed
automatic analysis method is presented in Section V.

II. PROPOSED METHOD

The illustration of the proposed analysis method is shown
in Fig. 1.

The workflow is divided into three steps:

¢ Creation of system equations according to schematic
diagram (netlist file).

o Separation of parameters into disjoint subsets.

o Solution of worst-case problem for the independent pa-
rameter sets.

The algorithm for parameter separation into disjoint sets is
presented in Section IV. The algorithm works for problems
that involve transfer function calculation.
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Fig. 1. Illustration of the proposed method.

The above method preserves the advantage of simulation
software, i.e., we can use an intuitive graphical representation
of circuits and easily create and modify a schematic. Never-
theless, after transforming the circuit into analytical equations,
we can take advantage of the analytical form, i.e., faster
evaluation and exact solution. Note that since it is an automatic
conversation technique, we can eliminate human errors: the
equations could also be written manually, but it would be prone
to error. The equation generator uses a standard SPICE netlist
file [9], which can be generated by most simulation software.

Note that there are some similar conversion tools [10] [11],
but they can’t be integrated into our MATLAB framework.

A simple example of how the variable decomposition can
speed up the WCA process can be illustrated with the EVA
method. EVA assumes that minimum or maximum exists at the
extreme values of the parameters, so it requires 2 evaluation
of the circuit to be analyzed to find the worst-case solution. If
we partition the N parameter into two subsets N = Nj + No,
the required evaluation number is 2™V* 4 2V2. For example, if
N = 8 we have 2% = 256 evaluations, and if N; =4, N, =4
we have only 2% + 2 = 32 evaluations.

The parameter decomposition could also be used in the case
of interval arithmetic since it reduces the complexity of the
equations, which generally results in tighter error bounds [12].

The converted analytical model can also be useful when
performing an optimization process. In simulation software,
generally, we cannot run an arbitrary algorithm using the cir-
cuit model; only the built-in functionalities are available. The
applicable toolset (e.g., for parameter optimization) increases
dramatically by converting the schematic into a MATLAB
model.

III. SCHEMATIC CONVERSION

The circuit model of the electrical system is given as
a graphical schematic drawn in an arbitrary circuit design or

simulator software. Usually, these programs can generate so-
called netlist files in which the different types of individual
components are represented in text form, as well as their
associated nodes, model parameters, etc.

The MATLAB software tool we introduce converts a netlist
file automatically into a system of symbolic equations, tak-
ing into account different circuit component models and the
desired form of the equations.
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Fig. 3. Workflow of the schematic conversion.

As a first step, schematics to netlist conversion is done using
a system call in MATLAB, and then the processing chain
continues, as shown in Fig. 2.

Since the circuit may contain non-elemental components
whose model or equivalent circuit definition (subcircuit) is
located in an external file or parts library, the detailed de-
scription of those components must also be included in the
netlist. Note that these component model files should be in
a similar text format as the netlist describing the system itself.
Some libraries may contain others, so these nested libraries
should also be imported.

Once all the necessary files are included, a pre-processing
step is performed to remove every irrelevant part of the
netlist and to standardize the text format to facilitate further
processing.

An integrated circuit component may have a multi-level
hierarchical structure, i.e., it may contain non-elemental com-
ponents or other subcircuits in any number of instances or
nested at any depth. We aim to simplify the netlist so that
equation generation can be done in as few steps as possible.
Therefore, extracting the nested subcircuits and decomposing
the original hierarchical graph is an important step.

Subcircuit blocks extracted in this way are added to an
abstract prototype collection and used as a template in the
following steps. The use of templates is practical because there
may be several instances of the same type of subcircuit in the
original netlist, which do have the same internal structure, but
the elemental components they contain are not identical - in
terms of the network computation model - for the different
instances.

Schematic Component Component model
diagram libraries definitions
. Subcircuit . Equivalent circuit Component model Equation o
—>| o —>| Preprocessing > . . ; gl
Netlist definition p! g substitution assignment generation Parameterization

Fig. 2. Software components of the schematic conversion tool.



During instantiation, a copy of the prototype is made,
containing elemental components assigned with unique identi-
fiers. Since the subcircuit may contain nodes and components
that have the same names as in another - even embedded -
subcircuit or in the original netlist, it is essential to ensure
that the identifiers remain unique. In this case, the uniqueness
of the internal nodes of the sub-circuit must also be provided,
while the identifiers of the nodes at higher hierarchical levels
must not change.

The instantiation has been done recursively. The recursive
approach is justified by the fact that the number of instances
required is not known in advance due to the nested nature
of the integrated circuits. Theoretically, the iterative method
used for the hierarchical template decomposition could solve
this problem, but it cannot be used in this case due to the
propagation of node identifiers to nested subcircuits.

At this point in the process, we have the final netlist, which
no longer contains integrated circuits and is, therefore, directly
suitable for the algorithmic generation of the desired equations.

The complete system of network equations can be written
based on Kirchhoff’s current law, provided that there is a zero
voltage reference point in the circuit and the characteristic
equations of the components are given, which define the
relationship between the currents and the potentials of the
terminals.

The equations for the nodal currents are written in terms that
express how each component contributes to the node current as
a function of the potential of the adjacent nodes. These terms
come from the component’s characteristic equation, which is
defined in the belonging component model file. Such files can
also contain system-level constraints or introduce new state
variables.

Equation generation creates a standalone MATLAB script,
which contains the symbolic variables, an equation for each
node arranged to zero, and other necessary equations, e.g.,
constraints.

These equations can be solved analytically using the
MATLAB Symbolic Math Toolbox [13], the value of each
variable or component can be parameterized, and the resulting
function is ready for further analysis.

IV. SYSTEM DECOMPOSITION
A. Theory

In the case of a linear system, the circuit equations will yield
a transfer function in the s-domain, which can be expressed
as the fraction of two polynomials [14]:
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In equation (1), the roots of B(s) are called zeros, and the roots
of A(s) are called poles. If B(s) and A(s) are expressed with
irreducible factors, the transfer function can be expressed with
the poles, zeros, and the static gain, K:

W(s) = (1)
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Since it was derived from the circuit, K, z;, and p; are all
functions of the circuit parameters. If the analysis aims to
determine the gain or phase of the system, it can be expressed
the following way at a given w frequency, derived from (2):
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The gain can be calculated as a product of terms, where the
terms depend on the poles, zeros, and the static gain. The
phase can be calculated as a sum of terms where the terms
depend only on the poles and zeros. A pole or zero is not
necessarily a function of all circuit parameters (x) but only of
a subset of them (xy). Following this idea:
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In equations (6) (7), x is a subset of the circuit parameters
that influence a given pole or zero. A particular case is present
if the poles and zeros are real. In this case, f; and gj are
monotonic functions of the real poles and zeros. In the case
of a WCA task, the objective is to calculate the extreme values
(minima and maxima). Therefore, we aim to find the extreme
values of K, fi, and g; functions in the parameter space
defined by x. If the terms are functions of disjoint subsets of
x, they can be analysed independently in the parameter spaces
defined by the subsets, which may lead to fewer calculations.
Two terms (of a product or sum) are independent if they have
no common parameters or variables influencing them.

The possibility of decomposition of the transfer function
is not the general case; it depends on how the poles, zeros,
and static gain are constructed from the circuit parameters. To
obtain such a decomposition, we must observe the polynomial
roots and the static gain and order them in groups, where
disjoint subsets of parameters influence them. In the most
simple case, A(s) and B(s) are polynomials with a maximum
degree of three [15]. In this case, the roots can be expressed
in closed form, from which it can be seen how the parameters
influence them. If A(s) and B(s) are polynomials of higher
degree, numerical methods can be used to obtain the roots.
This information is enough to rewrite (7) into a sum of
independent terms. If the parameters can be gathered into L
disjoint subsets:

L
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Where x; are disjoint subsets of the whole set of parameters
(x), therefore the following stands:
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Equation (8) can reduce the computational load since the
minima and maxima can be searched in the parameter spaces
defined by x; instead of the space defined by x. This means that
the searches can be done independently and also in a lower
dimensional parameter space since x; C x

With the observation of roots, (7) could be rewritten as the
sum of independent terms, but to rewrite (6) into a product
of independent terms, additional information is needed since
the static gain K(x) also needs to be decomposed. K can be
obtained from (3) in closed form regardless of polynomial
order. If the gain is known, it can be checked analytically if
the same partitioning can be applied to decompose K into
a product of independent terms. Suppose a partitioning of
parameters into L disjoint subsets is found based on the
information of roots. If the same partitioning can be applied
to K, (6) can be decomposed into a product of independent
terms:

L

W (jw)l =[] Fix) (1D
=1

This decomposition can reduce the computational load for the

same reasons as (8).

B. Implementation

Our method is based on numerical sensitivity analysis: we
calculate the nominal poles (p; o) and zeros (z;,0), then observe
the changes if a single parameter is modified. This will be done
by reevaluating the transfer function, recalculating the roots,
and then comparing them to the nominal roots. Formally:

Ap; ; =root; {A(s,x1,...,2; + Axj,...,xN) }—pio (12)
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If Ap;; # 0 or Az;; # 0, the parameter x; has an
impact on the pole p; or z;, respectively. The equality check
to zero should be performed with a certain tolerance to avoid
numerical imprecision.

Since higher-order polynomials are analysed, numerical
methods are used. The observation of roots results in a table
where it is noted how the parameters influence the poles and
zeros. An example of this can be seen in Fig. 4. K is calculated
in closed form from b,, and a,,, then checked if the same
partitioning can be applied using symbolic manipulations.

If a partitioning is found, minima and maxima can be
searched in the parameter spaces defined by the disjoint
subsets. Note that in (8) and (11), F; and G; functions
are not known explicitly, therefore the search will be done
by evaluating (1). If a combination of subset parameters
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Fig. 4. Example of circuit parameters influencing the roots.

corresponding to an extreme value is found, we’ll store the
combination and look for the extreme value in the space
defined by the following subset. We will do this for all subsets,
and due to the independence of terms in (8) and (11), we will
end up knowing the parameter combinations corresponding to
the extreme values in the entire space of parameters.

V. EXAMPLE

To demonstrate our method, we use the EVA method to
do the WCA of an active low pass filter shown in Fig. 5. The
operational amplifiers will be modeled as ideal amplifiers. The
passive components have 1% tolerance, and their nominal val-
ues are shown in Table I. Capacitance values are in nanofarads;
resistance values are in kiloohms.

The netlist is generated from LTSpice. By solving the
system equations for W = %, the transfer function was
calculated in the s-domain, resufﬁng in a transfer function with
six poles and without zeros. The processing of the netlist files,
equation solving, symbolic manipulation, and decomposition
procedure was done in the MATLAB programming environ-
ment using many features of the Symbolic Math Toolbox.

To explore the parameters’ influence on the poles, the nom-
inal roots were calculated and then recalculated 2N times (N
is the number of parameters, in this case 15). In each iteration,
a single parameter was set to its minimum or maximum (based
on the tolerance), while the other parameters were set to
their nominal values. The roots were obtained with numerical
methods. The calculated poles were truncated to 8 significant
decimal digits to avoid errors due to numerical imprecision.
The transfer function’s static gain was expressed from the co-
efficients based on (3). K was decomposed symbolically into
components. After the decomposition, three disjoint subsets of
parameters were formed, as shown in Table II.

In the example, the gain characteristic of the circuit was
evaluated over a logarithmic frequency scale ranging from

TABLE I
PARAMETER VALUES (nF', kQ2)

Ciy | Ci2 | Cop | Cop | C31 | C33 | Ryp | Rpp
10 33 6.8 47 2.2 100 6.2 6.2
Ris | Rop | Ry | Rp3 | R31 | C32 | R33
12 5.6 5.6 15 7.5 7.5 15
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Fig. 5. Schematic of example circuit.

1 Hz to 1 MHz, with 500 points in each decade. The EVA
was done for each subset. The parameter combinations corre-
sponding to the extreme values were stored. The minimal and
maximal gain were calculated for each point at the frequency
scale, and the corresponding sets of parameters were saved.
Results are shown in Fig. 6.

The EVA was also done for the same circuit in LTSpice and
in the MATLAB environment based on the analytical transfer
function but without the decomposition for comparison. All
three methods ended with the same results. The runtime of
the methods and some of their subsections was also measured
with MATLAB. Since the runtimes can be influenced by
the processor’s and operation system’s state, ten consecutive
runs were measured and averaged. All the simulations were
done on the same computer equipped with a 2.30 GHz
Intel Core i7-11800H CPU. The runtimes are summarized in

TABLE II
DISJOINT SUBSETS OF PARAMETERS
X1 X2 X3
Cs1, Csa, Ch, Cha, Ch1, Oy,
Rs1, Rsp, Rsg | Riy, Rio, Rz | Rot, Rog, Ros

10 Transfer function gain

Maximum
Minimum
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0 d
o \
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Fig. 6. Minimal, nominal and maximal gain of the circuit in the example.

Table III.

We can make the following conclusions. Even the con-
version of the schematic model into an analytic equation
resulted in a reasonable decrease in the runtime, i.e., the
original analysis time decreased from 247 sec to 11.5 sec.
The decomposition of parameters into disjoint subsets further
reduces the analysis time to 3.24 sec. The analysis time
decreased almost by two orders of magnitude.

The limitations of the proposed method are the following.
The results show that the conversion from schematic to equa-
tion takes almost three seconds, which is not a negligible
runtime. If the execution time of the WCA task in the simulator
software is in the same order of magnitude, the user can
decide whether to use this method. In the actual form, the
decomposition can be solved for transfer function evaluation;
other analysis tasks are not currently supported. It is also
a design decision whether to try to decompose the system
because there could be cases where decomposition cannot be
solved, but it consumes additional time.

VI. CONCLUSION

This paper presented an analysis method that can be used to
speed up the process of circuit analysis tasks where the evalua-
tion of the transfer function is required. This tool automatically
converts a schematic into an analytic equation, and a further
post-processing step is available where system parameters are
decomposed into disjoint subsets. The automatic conversion
tool reduces the risk of errors during composing the system
equations. The decomposition algorithm uses the pole-zero
form of the transfer function. By partitioning the parameter
space into several independent subspaces, it is easier to find
global extreme values.

TABLE III
RUNTIME SUMMARY
runtime LTSpice MATLAB MATLAB
in EVA EVA decomp+EVA
[sec] eq. eq.
: from EVA from decomp. EVA
schem. schem.
subtotal 247 2.94 T 8.57 2.94 T 0.245 ( 0.059
total 247 11.5 3.24




Our method generally ensures faster evaluation in those
cases where the evaluation of analytic equations can be solved
more efficiently than with numerical methods. The analytical
form also has the potential advantage of applying advanced
extreme value search techniques.

Plans involve extending the decomposition methods on other
analysis tasks like time-domain analysis. The decomposition
step assumes, at this time, total decoupling between the
subsystems. The extension of the separation method in the
case of loosely coupled subsystems could be promising.
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