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Abstract 
Nowadays the manufacturers of analog-digital converters (ADCs) use self-defined 

methods for testing and datasheets for highlighting the good attributes of these devices. 

Therefore the engineers waste a lot of time to work at the parameters of ADCs. The solu-

tion of this problem would be a new standard method. 

The Institute of Electrical and Electronics Engineers (IEEE) created the IEEE-1241 

standard [1] for ADC’s testing in 2001. This standard describes the full testing method. 

Unfortunately this description is not totally complete. 

The testing procedure is simple. First we need a high precision sine wave generator. 

Its signal is connected to the ADC, what digitizes it. From these samples we try to estimate 

the original sine wave’s parameters. The standard suggests a 3 and a 4 parameters sine 

wave fitting method. Both of these methods are Least Squares fitting procedures. In 3 pa-

rameters fitting we have to know the frequency of the sine wave. In this case the fitting is 

linear. When we use 4 parameters fitting we do not know the frequency, therefore this is 

nonlinear procedure. So it is solved by an iteration algorithm. (It derived by us, matrix-

based proof of these algorithms in appendix). After the fitting we compare the measured 

samples with the estimated sine wave’s samples. The differences of these samples (residu-

als) are the ADC’s error. With these residuals we can calculate every test parameter like 

effective number of bits (ENOB), signal-to-noise and distortion ratio (SINAD) and root 

mean square of the residuals (RMS). These calculations are explained in the standard. 

In this work some improvements to the iteration procedure of Standard 1241-2001 

are suggested, and extension of the standard MATLAB program implementing the sine 

wave test is discussed. The program is compatible with the LABVIEW program already 

announced, and in other working modes offers extensions. 

We presented our results and improvements in a conference in Prague [13]. 

Keywords: IEEE-STD-1241, ADC testing, sine wave method, three and four pa-

rameter method, Interpolated FFT, Newton-Gauss Method, Cramér-Rao Bound, LAB-

VIEW, MATLAB. 
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1 INTRODUCTION 

The IEEE standard on ADC testing [1] defines the way how to make a reasonable 

sine fit to the measured data in a sine wave test. Unfortunately, no standard can deal with 

all details of the associated calculation procedures. This is especially true for iterative pro-

cedures. Starting values, stop criteria, numerical details can differ from implementation to 

implementation, and can cause different results in different implementations even when 

processing the same data. This causes special problems. The so-called four-parameter fit-

ting, described in detail in this standard (Section 4.1.4.3), is not fully defined. This proce-

dure is of iterative nature, therefore circumstances like starting values, and way of calcula-

tion, stop criteria, etc. need to be exactly defined. While the recursive steps are precisely 

described in the standard the stop criterion of the iteration is not specified at all, and the 

setting of the starting value is not uniquely specified. However, we think that internation-

ally reproducible results can only be achieved if these details are uniquely defined. There-

fore, we need to move in the direction of more precisely fixing these algorithms – either in 

the standard, or is some associated document. 

We have started to study this standard one year ago. We made some improvements 

in 4 parameters fitting algorithm and implemented it to the MATLAB program. In the fol-

lowings we describe what have we done: 

• We got acquainted with the fitting algorithm that is in the standard 
[1]. 

• We implemented the original algorithm in MATLAB and tested it 
and found some causes when it did not converge. 

• We looked into why did not converge those and we modified the 
searching of staring value with Interpolated FFT method and we 
modified our algorithm in the MATLAB program. This can be seen 
it in Section 3. 

• We made many tests of the new algorithm. We have not found any 
case yet when did not converge it, if we keep rules of the standard. 
This can be seen it in Section 3.1. 

• We observed how much precision do we need for displaying in the 
result window of the MATLAB program. How much error estimat-
ing causes if we know how many number of bits does ADC have? 
This can be seen it in Section 4.1. 
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• We observed how many iteration steps the program needs for ap-
propriate result. When must we stop the iteration? How large is the 
error of estimating? This can be seen it in Section 4.2. 

• We looked into LABVIEW implementation and improved user in-
terface of MATLAB program and made help generated for it. 

• We finished the compatible mode fully and we are working on the 
other modes. Therefore we could compare it with LABVIEW pro-
gram. We got good results. This can be seen it in Section 5. 

• We could find any proof about 4 parameters algorithm therefore we 
made it. This can be seen it in appendix Section 7.2. 

• We found a little mistake in the standard and suggested modifica-
tion. The IEEE accepted it. This can be seen it in appendix Section 
7.3. 

• We announced our improvements in a conference in Prague [13]. 

The method and the program are not yet fully complete. We are working on the following 

problems: 

• We are looking into that what can we do when iteration tries to 
move toward wrong direction (positive gradient). We are trying to 
implement the Levenberg-Marquardt method. 

• We are studying the speed of convergence. It is possible that we do 
not need to examine the stop criteria, because the algorithm is con-
verged in 10 steps at all cases. 

• We are working on building in the user’s events recording function 
to the program, and try to make an independent recorder for any 
MATLAB programs, which has standard interface. 

• We would like to finish the modes of the program as soon as possi-
ble. 
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2 DISCUSSION 

In the mathematical literature, details of iterative numerical methods are exten-

sively discussed. Therefore, it is possible to use these to exactly define the details of our 

algorithm. 

2.1 Starting values 

Setting of the starting value is described in the standard as “Make an initial estimate 

of the angular frequency ω0 of the recorded data. The frequency may be estimated by using 

a DFT (either on the full record or a portion of it), or by counting zero crossings, or simply 

by using the applied input frequency.” While this is correct from scientific viewpoint, leav-

ing a choice to the user can hinder international reproducibility even on the same data. As 

[3] points out, for short records even convergence can change with the setting of the start-

ing values, especially when the phase of the sine wave takes certain values. Also, conver-

gence speed may depend on proper setting of the starting values. By default, the procedure 

needs to have at least one default way of calculation. 

2.2 Calculation method 

The standard number representation for scientific calculations is IEEE double pre-

cision, like in MATLAB. However, even using this, the expression (4.1.4.3.6) is numeri-

cally inefficient, and imprecise. Instead of the calculation of ( ) ( )yDDDx T
ii

T
ii

1−
= , one 

needs to use rather matrix factorization algorithms to solve ii xDy = [10]. The result is 

theoretically the same, however, in extreme cases the explicit solution may give erroneous 

results while the numerical solution still works. 

2.3 Stop criterion 

An iterative algorithm needs to perform a finite number of iterations. The problem 

is in general that the number of necessary iterations depends on the nature of data, so it 

cannot be given in advance. If we observe the change in the cost function, and the limit of 

change is set too high, the error will still be too large at the end, while if the limit of change 

is too low, we waste our time on useless iterations. 
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3 IMPROVEMENT OF THE STARTING VALUES 

If the sampling frequency is accurately known we can use the 3-parameter fitting 

[1]. We have to find the parameters A, B and C, where A is the amplitude of the cosine, B 

is the amplitude of the sine and C is the DC value. In this case we do not have to use itera-

tion, the algorithm converges in one step, because the error function is quadratic. 

Although 3-parameter fitting with known frequency is extremely easy, usually we 

use 4-parameter fitting. In general we do not know the frequency precisely, because of the 

error of the sampling device and of the frequency generator. Naturally in this way we can 

eliminate the human factor (forgetting the sampling frequency), too. As we can see in Fig-

ure 1., if we do not know the sampling frequency exactly, we can make a high rms error, 

by using the 3-parameter fitting. 

As it is known, the result of iteration algorithm depends on the initial guess, but this 

is not completely defined in the standard. There were several attempts to determine the 

starting frequency accurately (DFT either of the full record or a portion of it, counting zero 

crossings, using the applied input frequency), but our algorithm (IpFFT) gives a better re-

sult. In this article we only deal with DFT, IpFFT [11], and one other method [3]. 

Although IEEE-STD-1241 [1] requires that at least 4 periods of the sine wave 

should be sampled, and this is usually enough to avoid getting into local minima, it can be 

made possible that the algorithm works well even when the record length is less than 4 

periods. The key is to find a good starting frequency value. 

One of these attempts was M. Fonseca da Silva attempt [3]. This method based on 

the fact, that if we use DFT to determine the starting value, we do not make higher error 

than 1/(2MΔt), with Δt being the sampling time, and M the number of samples. When using 

this treatment we need to use 4 times the three parameter sine-fitting method, which is not 

so fast, especially when the sample is long. This method supposed that the shape of the 

error curve is known. Interpolated FFT is more systematic, and it does not need any extra 

resources, the execution time does not depend on the length of the sample. 

When the frequency of the sinus wave can be written as n*Δf, where n is a natural 

number, and Δf is the frequency bin, the result of the DFT is absolutely punctual. Other-

wise, you will see more component of the signal. That is called leakage. That is what 
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IpFFT utilizes. By applying a f relative frequency sine-wave, by using DFT we will get the 

following result: 

 
1

1
)( /)(2

)(2

−
−= −

−

Nfmj

fmj

e

e
mH π

π

 (4.0) 

If we know the two biggest component of the FFT, the frequency of the original 

signal can be found by using IpFFT. If no windowing is used, an exact equation is known 

to interpolate the frequency: 

 ffLf Δ⋅=Δ⋅+= λδ )(   10 <≤ δ  (4.1) 

The algorithm is as follows. The DFT of the time series is taken, and the maximum 

and its larger neighbor are selected, where ML <≤0 . 

 LL jVULX +=)( , 11)1( ++ +=+ LL jVULX  (4.2) 
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where Mn π2= . 

By using IpFFT to determine the start frequency, a significantly better result can be 

found than by DTF, as shown in Figure. 1.  
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By using f1=0.020773fs as sine frequency and n=70 points, the four parameter fit to 

the sine wave, 

 70]);:[1*0.020773*sin(2y π=  (4.7) 

is bad when using DFT to estimate initial frequency, but when using IpFFT a good 

result is determined. With DFT we get to a local minimum at f0=0.042293fs, while by 

IpFFT we get to the global minimum with the true f1. This is illustrated by the program, 

non-convergence in compatible mode, and convergence in standard mode (with IpFFT). 

These data are available for comparison on the Internet [12]. 
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Figure 1. – The rms error of the 3-parameter algorithm (in LSB) as a function of the applied frequency 

value (shown as related to the nominal value). f1=0.020773fs,, M=70 points, no noise.  

□ the frequency estimated by DFT 

ο the frequency estimated by Silva’s method [3] 

∆ the frequency estimated by IpFFT 

In general, it is true that when having more than 4 periods of a sine wave, it can be 

recommended but it is not necessary to use IpFFT. If using IpFFT, it’s somewhat more 

probable that we get to the global minimum and the convergence can be faster. 
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3.1 Testing and results 

Testing has been made in order to compare our, and other methods in convergence. 

We tested usually less than 4 periods; because as we studied if more than 4 periods are 

sampled all the algorithms converge well by using simple DFT. 

We randomly modified all of these parameters at same time: 

• Number of bits (6…24) 

• Amplitude (60%-100% of half of the full-scale) 

• Signal to noise ratio (Gaussian noise, 20dB-80dB) 

• Starting frequency (to be sampled 10...40 samples per period) 

• Phase (0-2π) 

• Number of period (1-4) 

• DC (depends on the amplitude) 

The number of samples is calculated from the frequency and the number of periods. 

As we stated, the original algorithm converges when we sampled more than 4 periods, but 

when sampling less then 4 periods especially about one and a half period (half period be-

cause we wanted to make the highest mistake) sometimes the algorithm does not converge.  

After running 100 000 random testing cycles, we could not find any case which 

does not converge, or converges to a bad place. Problems with a DFT happened only when 

sampling about one and a half periods. When sampling more than 2 periods both algorithm 

converge. 
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3.1.1  Example 

As shown in Figure 1., we get better initial frequency value, when using IpFFT. In 

Figure 2, we can see, the iteration steps for the same samples shown in Figure 3. The rms 

on the figure has been normalized. So rms error 1 is the effective value of the signal. After 

the 50th iteration step the frequency change does not stop, although the rms does not 

change too much. It is because the computed amplitude is very small, as rms error we get 

the effective value of the signal. 

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Iteration steps

N
or

m
al

iz
ed

 R
M

S
 e

rr
or

0 20 40 60
0.05

0.1

0.15

0.2

0.25

0.3

Iteration steps

F
re

qu
en

cy
 (

ra
di

an
)

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration steps

A
m

pl
itu

de

 

Figure 2. The rms error, the frequency and the amplitude during iteration f1=0.020773fs, M=70 points,  

no noise, high precision  

 □ the rms error/frequency estimated by DFT 

 - - the true frequency/rms error 
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Figure 3. The rms error of the three parameter algorithm as a function of the applied frequency 

value in sample 01 

 □ the frequency estimated by DFT 

 o the frequency estimated by Silva’s method [3] 

 ∆ the frequency estimated by IpFFT  

+ the frequency during the iterations 

 ✫ the frequency after the iteration when starting frequency is estimated by DFT 

 

Iteration 1 2 3 4 5 6 7 8 9 
Frequency 0.3142 0.5679 0.5399 0.3074 0.3599 0.6719 0.7201 0.6665 0.6665 
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Here we can see some typical, and non-typical non-convergence for DFT. 
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14

Figure 4. The rms error of the three parameter algorithm as a function of the applied frequency value 

 □ the frequency estimated by DFT 

 o the frequency estimated by Silva’s method [3] 

 ∆ the frequency estimated by IpFFT  

 ✫ the frequency after the iteration when starting frequency is estimated by DFT 

 

 Bits A SNR (dB) ω Phase Period DC N 
01 23 0.6257 22.32 0.4597 4.6223 1.4617 0.1140 20 
04 15 0.6607 21.37 0.3398 4.9636 1.5927 -0.0935 29 
12 6 0.7586 34.99 0.1596 1.2674 1.5411 0.0232 61 
14 11 0.7766 37.33 0.1951 5.2615 1.5627 -0.0335 50 
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For example in 01 it iterates completely bad place. It is because in the first two gra-

dients were too big to determine the frequency. These gradients directions were opposite, 

but after a while the distance from the original frequency gets so high, that is not able to 

find the original frequency. 

In 04 finally we get to (-1) multiply the original frequency. However it does not 

give a bad value for the rms error (we find the global minimum), which is the most impor-

tant, but we cannot give this result for the user. I found some other examples, when the 

algorithm converged to one of the aliases (very high distance from the original), but we 

cannot be sure that the algorithm will find a global minimum. 

In 12, 14 the initial gradients were so high, that the program was not able to find the 

global minimum. In Figure 3, we can see all the iteration cycle of the sample 01. 

All the presented data can be found in [12]. This data is the result of simulations. 
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4 ANALYSIS OF FREQUENCY PRECISION 

An interesting question in the 4-parameter fitting is the following: how many itera-

tions are needed, and how accurately the result need to be displayed (non-significant digits 

should not be shown). The measured sine wave is imprecise, because of observation noise, 

quantizaton noise, parameter inaccuracies, etc. In this case the cost function analysis would 

be too difficult, so it needs simplification. We analyze here only the effect of frequency 

inaccuracy. 

The 4-parameter least squares fit to a sine wave minimizes the following sum (cost 

function) of the squared differences: 

 ( ) ( )( )
2

1

 sin cos∑
=

−⋅−⋅−=
M

n
nnn CtBtAye ωω . (5.1) 

where: M = number of sequential samples in the record 

yn = the nth output data sample within the record 

Ai, Bi, Ci, and ωi parameters of iteration 

Assume that the errors stem only from the inaccurately given frequency: 
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Utilize the next relationship: 
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Sufficiently close to the minimum, we expect that the cost function can be well ap-

proximated by a quadratic form, which can be written as (see appendix 8.1.): 
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The rms error is 
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If we prescribe that the rms error is smaller than half of the standard deviation of 

the quantizer error: 
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where N is the number of digitized bits, we obtain 
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Figure 5 illustrates this relationship. 
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Figure 5. Allowable relative frequency error as a function of the number of bits 

In a word this mean that the bigger the resolution of ADC the smaller the relative 

frequency error, and the result can displayed more precisely. 

Some numerical examples: 

If the number of bits is N=8, 4104.4 −⋅<Δ
ω
ω

, so we need 5 digits. 

If the number of bits is N=20, 71007.1 −⋅<Δ
ω
ω

, so we need 8 digits. 



 17

4.1 The Cramér-Rao Bound 

In the previous section, we analyzed the effect of frequency inaccuracy on the cost 

function. We arrived at the conclusion that the relative frequency error does not need to 

decrease to zero, because on the one hand, we would waste time on useless iterations, and 

on the other hand, this minimum can never be reached. There is a lower bound on the vari-

ance of the estimated parameters, so we cannot get any better estimate. This lower bound 

on the variance is the so-called Cramér-Rao bound (CRB). 

In the distortionless case this lower bound of conditional covariance matrix can be 
calculated from [14] 

 [ ] ( ) ( ){ } 1|ˆˆ|~,~cov −≥−⋅−= JaaaEaaa Tαα  (5.1.1) 

where J is the Fisher information matrix. 
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( )azf az ||  is an N dimension conditional probability function, where the samples 

are independent of each other. So 
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The noise of observation: 
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||  is a zero-mean Gaussian error function with variance σ2: 
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Utilize the next relations: 

{ } 0=⋅ qp eeE  if qp ≠ , because the samples are independent of each other, 

and 
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Thus J can be written as 
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Where 

 ( )kAA tI ⋅= ω2cos  (5.1.14) 

 ( )kBB tI ⋅= ω2sin  (5.1.15) 

 1=CCI  (5.1.16) 

 ( ) ( )( )2cossin kkkk ttBttAI ⋅⋅⋅−⋅⋅⋅= ωωωω  (5.1.17) 

 ( ) ( )kkAB ttI ⋅⋅⋅= ωω sincos  (5.1.18) 

 ( )kAC tI ⋅= ωcos  (5.1.19) 

 ( )kBC tI ⋅= ωsin  (5.1.20) 

 ( ) ( ) ( )( )kkkkkA ttBttAtI ⋅⋅⋅−⋅⋅⋅⋅⋅−= ωωωω cossincos  (5.1.21) 

 ( ) ( ) ( )( )kkkkkB ttBttAtI ⋅⋅⋅−⋅⋅⋅⋅⋅−= ωωωω cossinsin  (5.1.22) 

 ( ) ( )( )kkkkC ttBttAI ⋅⋅⋅+⋅⋅⋅−= ωωω cossin  (5.1.23) 

One can note that the information matrix is independent of the offset C. We are 

mainly interested in the frequency estimation error. [ ] 4,4
1)( −= ICRB ω  
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Decompose J as 
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For uniform sampling sk fkt =  with sf  being the sampling frequency, an 

approximation of the CRB of the absolute frequency f̂  and large N is 
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where SNR denotes the signal-to-noise ratio, that is, ( ) 222 2 σ⋅+= BASNR . 

The asymptotic result (5.1.26) only depends on the SNR. In particular, it is independ-

ent of absolute frequency and initial phase of the sine wave. 
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5 IMPLEMENTATION OF THE STANDARD 

In ADC testing procedure we need a device or a program, which makes the sine 

wave estimating process. If we use a program, we will have to save the ADC’s samples 

and then we could make the estimating with the program. In many case the recording of 

the ADC’s samples and the estimating do not happen in same place. We are studying these 

estimating programs and it’s algorithms, and we have joined in developing of a MATLAB 

implementation [5]. 

5.1 The first implementation of the standard (SWT VI for 

LABVIEW) 

Jerry Blair and his co-workers made the first implementation of the standard for the 

United States Department of Energy. Makers named this SWT VI for Analyzing Sine 

Wave Test. The program is originally made for IEEE-STD-1057 [2] standard, but it is very 

useful for IEEE-STD-1241 [3], because the standards describe very similar testing proce-

dures. The makers have chosen LABVIEW for implementation of the program, but LAB-

VIEW is not often too user friendly for this application type. 

5.1.1  A simple description of the standard testing method 

(IEEE-STD-1241) 

In the first step we digitize very accurately a generated sine wave with an Analog to 

Digital Converter (ADC), which we want to test. Then this data has to be recorded in a 

text-based file. If we get samples in same time periods, we haven’t to record time values. 

But if we record only amplitude value, we need the sampling frequency of the test. The last 

step is estimating the input sine wave parameters from the recorded data. With this esti-

mated values we can calculate very important parameters of the tested ADC. The program 

is used to make the estimating procedure, to calculate important parameters and to draw 

many useful figures. 

5.1.2  Testing procedure in SWT VI program 

The LABVIEW program assigns one description to every sine wave data file. This 

description contains the path of the data file, the parameters of the test (sampling fre-
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quency, etc.) the parameters of the ADC (Full Scale, Number of the distinguishable levels, 

etc.) and the type of data file (we recorded time and amplitude values or only amplitude 

values). We could choose what type does have the data file, it only contains amplitude data 

or it contains sample time and amplitude values. If we want to start a test, we have to fill a 

description for our data file. The program can manages lot of descriptor in same time, but it 

can only process one of them. Unfortunately the program cannot save the descriptor’s in-

formation to a file, that’s why we have to fill again the descriptor if the program is re-

started. 

Here we explain a simple testing process: 

• First, you have to get samples from an ADC test and put it (only the 
amplitude values) into a text file. 

• Create a descriptor (Add new descriptor button) in the descriptor 
window (Figure 6.), which saves cluster of information about sine 
wave samples, and locate the sample file. 

• Fill in model, serial number of the ADC and sampling frequency. 
Leave in time min, time max, amp min and amp max fields default 
values. If you put only amplitude values into the file you, leave am-
plitude value in data fmt field. 

• If we have additional information of the test signal, we could write 
it in the comments field. 

• Click on Process Data button and wait for the results. 

After this procedure, if we have a little luck, the program makes estimates and dis-

plays a new window with the result. On the next figure (Figure 6) we can see the main 

window of the program, where we can give the starting parameters. This window is named 

sw_com.vi. 
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Figure 6. This is main window of the SWT VI. We can give the starting values at here. 

For the simple understanding I will explain the data field’s meaning in the next ta-

ble (Table 1.). If we fill the necessary fields, we could start the estimating process with 

pushing of Process Data button. If the given data is correct, the program will start calcu-

late. Unfortunately the processing time is often too long on a fast machine, and the pro-

gram doesn’t show, how many percent of the process has been done. 

 
Name of field Description 
File Path The path to a sine wave response file. 
Model The model number of waveform recorder. 

Channel # 
Provided for those who want to improve this program so that it can read 
more than one sine wave response from a single sine wave response file. 

Serial # The serial number of the waveform recorder. 
Units The units of the amplitudes of the sine response. 
Time min Discard all sine wave data with times less than time min. 
Time max Discard all sine wave data with times greater than time max. 
Amp min Discard all sine wave data with amplitudes less than amp min. 
Amp max Discard all sine wave data with amplitudes greater than amp max. 
Full scale  The full scale of the waveform recorder in number of levels. 

Sample freq 
If the sine wave response contains amplitudes only, you must provide the 
sampling frequency. 

Data fmt Describes the format of the sine wave response file. 
Comments Type of any information you wish here. 

Table 1. This table explains meanings of the Data Fields in SW_MAIN window. 

Now for 20000 samples the calculation time is approximately 2 – 3.5 minute on a 

Pentium 2 Celeron 333 MHz PC. This time is not too long in itself, but if we need 100 cal-

culations in one after the other, the process time will be up to 5 hours. 
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5.1.3  The result window 

The Sine Wave Test Result window is divided to three parts, descriptive informa-

tion, computed information and graphs. Descriptive information shows the starting values 

what we gave at descriptor creation in sw_main window. Computed information includes 

ADC’s measured parameters (effective bits, SINAD) and the estimated sine wave parame-

ters (amplitude, frequency, phase and DC). Unfortunately the program cannot change pre-

cision of displayed numbers when testing parameters range has changed. The result in-

cludes three graphs. The first is residual’s figure. It shows variance of estimated signal. 

The second is PSDF diagram. This shows the integral of the power spectral density. The 

units on the vertical axis are the square of the units of the input data. Third is modulo time 

plot  (Mod-T-Plot) of the signal. This shows all of the residuals plotted as a function of 

their phase rather than as a function time. The amplitude of the sine wave cycle has no 

meaning. This cycle is displayed to show the phase of each residual with respect to the 

input signal. On the next figure we can see a result window (Figure 7.). 

 

Figure 7. This is a sine wave result window. 

The next table (Table 2.) includes summarized information of the computed infor-

mation. 
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Name  Description 
Time spacing The average time between samples of the input signal. 
DC The constant term in the fitted signal. 
Amplitude The coefficient of the sinusoidal term in the fitted signal. 

Frequency 
The frequency of the fitted signal in units inverse to the time units of the 
input data. 

Phase  The value of φ for a fitted signal of the form ( )φω +tA cos*  
Effective bits Calculated as in the IEEE-STD-1241 
Resolution ENOB2 , Where ENOB is the number of effective bits. 
Amplitude 
(%FS) 

Amplitude in percent of full scale. 

Noise + Distor-
tion 

The rms value of the residuals. 

Table 2. This is summarized information of the computed values on the result window. 

5.1.4  How can I save my adjustments and results to hard 

disk? 

Unfortunately the SWT cannot save descriptors and adjustments of that to the hard 

disk. Therefore we must set descriptors and starting values after we restarted the LAB-

VIEW program and repeat of testing procedures are very complicated work. The actual 

result is saved after every processing and appended to SWT log file in the active directory 

of the system. This recording is made by LABVIEW system and we can see it, when the 

program (VI) doesn’t run. The logger file is binary file that is why we can’t read with a 

simple text editor. 

5.1.5  Summary of the SWT VI 

The SWT VI is the first implementation of the standard that is why there are many 

problems with the program. The user interface is simple, but not oblivious. We got mixed 

up many times and the program froze lot of times. In the next table (Table 3.) we try to 

summarize good and bad attributes of the program.  
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Good attributes Bad attributes 

Simple and good-looking user interface. 
User interface is difficult 

and hardly using. 

User can save the testing result. 
The program is not stable 
enough. When we tested it 

frost many times. 
Implemented the standard in a famous 
program. Therefore it could be got to 

know very simple. 
Very slow algorithm 

 
Program does not contain 
any help for the user. Only 
a user manual is available. 

Table 3. Comparing of good and bad attributes 
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5.2 MATLAB implementation of the standard 

János Márkus and István Kollár made this MATLAB implementation of the stan-

dard [5]. The first goal of the program is keep good attributes of the LABVIEW program 

and improve bad attributes. We relied on that the MATLAB implementation is much faster 

than LABVIEW implementation, because MATLAB was developed for matrix computa-

tion and equation solving.  

Main features of the MATLAB program: 

• The program is based on same structure then SWT VI. It has two 
main parts (control and result window). 

• The program uses descriptors to distinguish sine wave dataset’s pa-
rameters, but program knows to save it to hard disk. 

• The program has a full compatibility mode with LABVIEW SWT 
VI. This mode is compatible mode. 

• The program contains our improvements of the standard and esti-
mating algorithms (starting values, stop criteria).  

• Makes a new improved user interface with good on-line user help. 

• Improves result window and make dynamic precision of the calcu-
lated information. 

• Users can use their fitting algorithms and can compare its result 
with our algorithm’s result. This mode is advanced mode. 

• The program can record events what user made, and could play it if 
we want. This function is good for pre-made testing procedures. 

• The program can save the result to the hard disk in a useful file 
format. 

5.2.1  Working modes of the program 

This program has five working modes. This modes is one after the other: 

• Compatible Mode. 

• Standard Mode. 

• Graphical Mode. 
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• Advanced Mode. 

• Development Mode. 

User can use four modes of all, because only developers can work development 

mode. These modes have different user interface and result window. These differences are 

explained in a latter section. 

5.2.2  Properties of the user interface 

Program’s user interface is very similar like a normal Microsoft Windows program. 

It has same components (text box, check box, combo box, etc.), pop-up help, Windows 

help system, user menus and window control function control (close, maximize, etc.). 

There is one difference with two kinds of programs. MATLAB must be running if we want 

to use this program, because it cannot run stand-alone. These similar properties make this 

program very useful for first time user, because user doesn’t have to get used to the new 

user interface. 

5.2.3  Control window 

Our first goal is the similar user interface to the LABVIEW program. Therefore the 

program has two main windows, the Control window, which makes the setting the starting 

values, and the Result window, which shows same structure of results like LABVIEW. 

This section explains main features of the control window, but it doesn’t care for differ-

ences between working modes. We can look this window on next figure (Figure 8.). 
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Figure 8. This is Control window (in Compatible Mode) of the MATLAB SWT program. 

The structure of this is window similar like LABVIEW SWT, but we can give more 

information about testing. For example, we can give number of bits of the ADC and the 

Full Scale parameter in Compatible Mode, but the program uses only Full Scale parameter, 

because LABVIEW program uses it too. We can work descriptors with buttons in right 

side of the window. We can create, set and save descriptors. Therefore the testing parame-

ters is set back later. Program can use several descriptors in same time, and when we proc-

ess data, program calculates results of all descriptors. Accordingly user can make many 

tests in same time, and we can save its parameters. If we start processing, we must press 

process button. 

5.2.4  Processing 

When program uses MATLAB equation-solving features (‘\’ operator), the estimat-

ing procedure is faster than LABVIEW. This time for 20000 samples processing is 2-3 

second on a Pentium 2 Celeron 333MHz PC. Probably this speed-up is due to MATLAB 

features. Unfortunately we don’t use processing bar too, because its time is very small. We 

improve the algorithm of processing and built its in this program. Program uses interpo-

lated-FFT [11] for evaluating starting values and monitors cost function for stopping crite-
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ria. These methods were explained in previous sections. If we make more descriptors than 

one, the program will process all of them. Therefore we could work with more than one 

sine wave at same time. 

5.2.5  Result window 

The result window is very various in different modes of program. Therefore we ex-

plain main features of this window. We can see result window on the next figure (Figure 

9.) We can find on it same information’s and figures like LABVIEW (descriptive informa-

tion, computed information, PSDF, Mod-T-Plot and Residuals diagram). If we want to 

process more datasets than one, user could change the active result with buttons. 

5.2.6  Results logging 

The program doesn’t make any file for latter use of results. We don’t feel it neces-

sary to the program save the result, because the testing process is very fast and we could 

make it in very smart time. In latter version of the program we will implement a logger 

function probably in order to user could make good presentation about test. 

 

Figure 9. This is result window (Compatible mode). 
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5.2.7  Saving user specific method of the test 

The program could save any setting and changing with user interface and program 

data. The name of this function is recording. This module is discrete part of the system and 

we could use it in any MATLAB user’s interface, which contains appropriate function and 

structure. This recorder was developed for Frequency Identification Toolbox GUI for 

MATLAB [13], but we made some changes for user could use it in any MATLAB pro-

gram. We can see it in Figure 10. This function would be used for making same test peri-

odically and searching functional disorders of the program. The recorder saves any hap-

penings with GUI and orders to this an index. After the testing, we could play back every 

GUI event in order and we could insert comment for every step. 

 

Figure 10. This is the recorder’s window. 

5.2.8  Help of the program 

Program has two kind of helping function. The first is the on-line popup help, 

which appears when we move mouse icon above any window control (textbox, combo box, 

button, etc.). This helps explain simply and briefly the chosen control functionality. The 

other help is the built in MATLAB help. Text of this help we can write in Microsoft Word 

and we could make a MATLAB file from it with a Word Script. The program uses this mat 

file for creating the help. 

5.2.9  The compatible mode  

Intention of this mode is giving a perfectly compatible user interface with [6]. The 

user’s interface contains two windows. The first is the Control Window. This window 
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manages the input dataset and the processing configurations of dataset. The Figure 7 shows 

these windows in the LABVIEW implementations. We expand this window with two data 

fields (the number of the samples [N] and the number of the ADC’s bits) and new func-

tions (Load and Save descriptors). These fields don’t contain any new information, there 

are only for the better perspicuity and the new functions facilitate for later using of the 

measured dates. The second window is the Test Result Window. In the SWT VI [6], the 

window includes three figures and two information divisions. Figure 9 shows the results of 

the programs. Windows have very similar framework, but about the else development pro-

grams the visual appearance of the windows are different. We minded that the [5] program 

gives very similar number precision of the computed information. There is one difference 

with two programs. The [6] saves all figures to the disk, so user can use it later, but the 

MATLAB program can save any starting parameter (into descriptor) and user’s commands 

(with Recorder), and we can reproduce the user’s events. 

5.2.10 Standard mode 

In this mode we improved availability of the program. For example, when will be 

the number representation of the calculated values good enough? And what kind of power 

spectrum diagrams the user like? Distribution or consistence. We made big change in the 

Control Window. In this window we can change the type of power spectrum diagram or we 

can set which figure (residuals, Mod-T plot) will be visible in the result window. Buildup 

of the result window is similar the Compatible mode. We change precision and representa-

tion of the calculated fitting values. For example we don’t set store by precision of the 

phase and DC, but the frequency needs to be very accurate. For our alteration of this mode 

we used our idea that we explain in previous sections of this document (staring value, stop 

criteria, Cramér-Rao bound). 

5.2.11 Graphical mode 

This mode has very similar functionality with the standard mode. In this mode the 

program has fully graphical control window and the user cannot change starting parame-

ters. This mode is used to make very fast previously set estimating. 
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5.2.12 Advanced mode 

The first aim is configuration of testing procedure in this mode. We can change al-

most everything (which fitting procedure will be used by the program, what will be the 

stop criteria, which method will be used for generate the staring frequency, etc.). We can 

set up the logging of procedures and figures. We can use this mode to try different or own 

algorithms and it’s very usual for any experiment. Therefore this mode will be used to 

measure processing time of algorithm and to make very user specific output data. We can 

see this mode in Figure 11. 

5.2.13 Developing mode 

This mode has same functionality with advanced mode and it is used to test the 

program’s functionality. Developers can test the new functionality of the program and they 

can make comparison of two fitting algorithms. Therefore user cannot view this part of the 

program. 

 
Figure 11. This is the control window in advanced mode of the MATLAB program. 
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5.2.14 Summary of our results 

We made some improvement in the standard and in the program. These improve-

ments make the program better speed and usability. The program cannot execute all of our 

goals what we describe in this section, but we can make the standardized estimating 

method in the compatible mode. In the following I will list that what we will have to make 

and we have made yet: 

• We made fully the compatible mode with LABVIEW program. In 
this mode the program has better performance (speed and usability). 
We reduced the time of process about 30 times. 

• We implemented out results (starting values, stop criteria and num-
ber of iteration) and built these into the program. These results can 
be used in the standard mode of the program which mode is half-
made at this time. 

• We are working on recording function of the program, we want to 
make available for other MATLAB programs. 

• We will want to finish the other modes of the program. 

• We will want to make a module, which can be used for real time 
data acquisition and real time estimating. 
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7 APPENDIX 

7.1 Analysis of the effect of frequency misfit 
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7.2 Matrix based proof of the algorithm for 4-parameter 

(General Use) Least Squares fit to sine wave data 

7.2.1  General statements 1: Newton-Raphson method 

Let us consider the Taylor expansion of the cost function: 
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where p is a column vector, and  
p
p

p
∂

∂= )(
)(grad

K
K  is a row vector. 

For having an extreme for K in p+δp, its derivative with respect to δp at p+δp 

should be equal to zero. 
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The solution of this linear set of equation gives the value of δp: 
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7.2.2  General statements 2: Gauss-Newton method 

Make use of the quadratic nature of the cost function. Let us consider the following 

cost function: 

 ( )( ) ( )( )pgypgyp T −⋅−=)(K . (8.2.4) 

The second order derivations are given by 
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If the second term in this sum becomes small (i.e. y-g is small) it can be discarded, 

and the second order derivative (the Hessian) can be approximated by 
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with the Jacobian 
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The Hessian (8.2.6) is positive semidefinite, thus gradK(p)δp is non-positive in 

(8.2.3), and the direction of the change is in the direction of decreasing K. 

Subtitution of this approximation in (8.2.3), and replacement of the first derivatives 

of K by 
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results in the Gauss-Newton method: 

 ( ) ( )( )11

1

11 −−
−

−− −= iiiii pgyDDDp TTδ  (8.2.9) 

or the Least Squares solution of 

 ( )11 −− −= iii pgypD δ . (8.2.10) 

7.2.3  Proof of the Least Squares Fit to Sine Wave Data Using 

Matrix Operations 

Minimize the following quadratic cost function: 

( ) ( )[ ] ( )( ) ( )( )pgypgy −−=−−−=∑
=
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T
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1
11111 sincos

M

n
iniiniin CtBtAyK ωω  (8.2.11) 

Create the following matrixes: 
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The model can be expressed as 

 ( ) 111 −−− ′= iii pDpg . (8.2.17) 

Substituting (8.2.17) into (8.2.9): 

 , (8.2.18) 

and from (8.2.15): 
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  (8.2.19) 

And finally, this is clearly the LS solution of 

  (8.2.20) 

This is important because (8.2.19) is numerically more difficult to evaluate than to 

solve (8.2.20) in LS sense. 

The new values are Ai, Bi, Ci, and . 
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7.3 Suggestion to correct IEEE-STD-1241 

7.3.1  Present text 

4.1.4.3 An Algorithm for Four Parameter (General Use) Least Squares Fit to Sine 

Wave Data Using Matrix Operations.  

Assuming the data record contains the sequence of M samples, y1, y2, ..., yM taken 

at times t1, t2, ..., tM, this algorithm uses an iterative process to estimate the parameters Ai, 

Bi, Ci and ωi, that minimize the following sum of squared differences: 

 y -  A cos( t ) -  B sin( t ) -  Cn i i n i i n i
2

n=1

M

ω ω∑  (4.1.4.3.1) 

where ωi is the frequency applied to the ADC input. 

 

• a. Set index i=0. Make an initial estimate of the angular frequency 
ω0 of the recorded data. The frequency may be estimated by using a 
DFT (either on the full record or a portion of it), or by counting 
zero crossings, or simply by using the applied input frequency. Per-
form a prefit using the 3-parameter matrix algorithm given in clause 
4.1.4.1 or clause 4.1.4.2 to estimate A0, B0, and C0. 

• b.  Set i = i + 1 for the next iteration. 

• c.  Update the angular frequency estimate using: 

•    

 (4.1.4.3.2) 

• d.  Create the following matrices: 

 y =  

y

y

.

.
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2
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 (4.1.4.3.3) 
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 Di = (4.1.4.3.4) 

 xi = 

Ai
Bi
Ci

iΔω

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (4.1.4.3.5) 

• e.  Compute the least-squares solution, xi: 

 ( ) ( )xi =
−

i
TD iD i

TD y
1

 (4.1.4.3.6) 

• f.  Compute the amplitude, A, and phase, θ, for the form 

 yn’ = Acos(ωtn + θ) + C (4.1.4.3.7) 

using 

 A = A  +  Bi
2

i
2  (4.1.4.3.8) 

and 

 θ = tan-1 -
B

A
i

i

⎡

⎣
⎢

⎤

⎦
⎥ , if Ai ≥ 0 (4.1.4.3.9) 

 θ = tan-1 -
B

A
i

i

⎡

⎣
⎢

⎤

⎦
⎥  + π, if Ai < 0 (4.1.4.3.10) 

• g.  Repeat steps b-f, recomputing the model based on the new val-
ues of Ai, Bi, and ωi, calculated from the previous iteration. Con-
tinue to iterate until the changes in A, B, C, and ω are suitably 
small. 

The residuals, rn, of the fit are given by 

 rn = yn - Aicos(ωitn) - Bisin(ωitn) - Ci (4.1.4.3.11) 
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and the rms error is given by 

 erms = ∑
M

=1n

2
nr M

1
 (4.1.4.3.12) 

7.3.2  Modification 

In step g. the values Ai, Bi, Ci and ωi do not belong to each other. The proper set is 

Ai, Bi, Ci and ωi+1 = ωi + ∆ωi. Practically, after convergence there is no problem, since ωi+1 

= ωi. But it would make sense to modifiy the description to have a consistent set of pa-

rameters at each step. 

Suggested modifications: Replace ωi with ωi-1, and step (c) should follow step (e), 

so that the updated frequency is used in steps (f) and (g). 

4.1.4.3 An Algorithm for Four Parameter (General Use) Least Squares Fit to Sine 

Wave Data Using Matrix Operations. 

Assuming the data record contains the sequence of M samples, y1, y2, ..., yM taken 

at times t1, t2, ..., tM, this algorithm uses an iterative process to estimate the parameters Ai, 

Bi, Ci and ωi, that minimize the following sum of squared differences: 

 y -  A cos( t ) -  B sin( t ) -  Cn i i n i i n i
2

n=1

M

ω ω∑  (4.1.4.3.1) 

where ωi is the frequency applied to the ADC input. 

• a. Set index i=0. Make an initial estimate of the angular frequency 
ω0 of the recorded data. The frequency may be estimated by using a 
DFT (either on the full record or a portion of it), or by counting 
zero crossings, or simply by using the applied input frequency. Per-
form a prefit using the 3-parameter matrix algorithm given in clause 
4.1.4.1 or clause 4.1.4.2 to estimate A0, B0, and C0. 

• b.  Set i = i + 1 for the next iteration. 

• c.  Create the following matrices: 
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 Di = (4.1.4.3.3) 
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• d.  Compute the least-squares solution, xi: 

 ( ) ( )xi =
−

i
TD iD i

TD y
1

 (4.1.4.3.5) 

• Update the angular frequency estimate using: 

   (4.1.4.3.6) 

• f.  Compute the amplitude, A, and phase, θ, for the form 

 yn’ = Acos(ωtn + θ) + C (4.1.4.3.7) 

using 

 A = A  +  Bi
2

i
2  (4.1.4.3.8) 

and 

 θ = tan-1 -
B

A
i

i

⎡

⎣
⎢

⎤

⎦
⎥ ,if Ai ≥ 0 (4.1.4.3.9) 
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 θ = tan-1 -
B

A
i

i

⎡

⎣
⎢

⎤

⎦
⎥  + π, if Ai < 0 (4.1.4.3.10) 

• g.  Repeat steps b-f, recomputing the model based on the new val-
ues of Ai, Bi, and ωi, calculated from the previous iteration. Con-
tinue to iterate until the changes in A, B, C, and ω are suitably 
small. 

The residuals, rn, of the fit are given by 

 rn = yn - Aicos(ωitn) - Bisin(ωitn) - Ci (4.1.4.3.11) 

and the rms error is given by 

 erms = ∑
M

=1n

2
nr M

1
 (4.1.4.3.12) 


