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Összefoglaló 

Az autóipar napjaink egyik leggyorsabban fejlődő iparága. Az iparág 

növekedésével az autóipari teknológiák robbanásszerű fejlődésnek indultak. Az 

elektronikai eszközök népszerüsödésével, elkerülhetetlen, hogy az elektronikai 

komponensek egyre nagyobb szerepet játsszanak az újabb és újabb autók tervezésénél. 

A mai okos autókban számtalan biztonsági és kényelmi funkció van. Egyre több 

mechanikai komponenst cserélnek le az elektronikai megfelelőjükkel. Ezen funkciókat 

elektronikus vezérlőegységek (Electronic control unit – ECU) biztosítják az autó 

különböző pontjaiban. Ezek az egységek szabványos autóipari kommunikációs 

protokollokon (tipikusan CAN, FlexRay, Lin és Ethernet protokollokon) keresztül 

kommunikálnak egymással, egy elosztott hálózati rendszert megvalósítva ezzel. 

A vezérlőegységek komplexitásának növekedésével, egyre gyakoribbá válik, 

hogy az egy hálózatba kerülő ECU-kat egymástól függetlenül fejlesztik. Azonban a 

vezérlőegységek fejlesztéséhez szükség van a környezetükkel való kommunikációhoz. 

Ezt gyakran úgynevezett Restbus simulation-nel biztosítják az ECU számára. A 

módszer lényege, hogy egy külső teszt eszköz segítségével emulálják a hiányzó 

kommunikációs hálózat viselkedését. 

A feladatom egy olyan szkript nyelv megtervezése és implementálása amelynek 

segítségével effektíven és könnyedén lehet Restbus-hoz hasonló teszt eseteket leírni. A 

nyelvnek biztosítania kell a kommunikációt vezérlőegységekkel CAN-en és FlexRay-en 

keresztül. A nyelvnek képesnek kell lennie komplex kommunikációs viselkedést leírnia 

magas szintű szkript parancsok segítségével, ezzel elrejtve a teszt mérnök elöl az 

implementációs részleteket. 

A végső célom egy olyan asztali alkalmazás létrehozása, ami segíti a 

felhasználót szkriptek létrehozásában, fordításában és letöltésében a teszt hardverre. 
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Abstract 

The automotive industry is among the fastest growing industries nowadays. 

Owing to the huge amount of capital being invested in the industry annually, 

automotive technologies are being developed at an accelerated rate. With the exploding 

growth of electronics, it is inevitable that electric components play an increasingly 

critical role in the development of new cars.  

Smart cars today have a multitude of safety and comfort functions, often 

replacing mechanical parts with their corresponding electric versions. Functionality of 

these features are centered in separate electronic control units (ECU) throughout the car. 

These units communicate with each other through standard automotive network 

communication protocols (typically CAN, FlexRay, LIN and Ethernet), realizing a 

distributed control system. 

As the complexity of individual ECUs increase, it is more economical and 

practical to design them independently of each other (by different development teams or 

even companies). These components demand substantial interaction with its 

environment during development phase. Said interaction is frequently provided by 

Restbus (remaining bus) simulation, where a designated testing unit emulates the 

required behaviour of the ECUs’ environment.  

My task is the design and implementation of a flexible script language with the 

intention to efficiently describe and create extensive test cases determined by use case 

analysis. The language should provide interfaces for CAN and FlexRay 

communications for ECU testing. The main benefit is the ability to emulate complex 

communication behaviours through high level script commands, hiding software 

specific details from the test engineer. 

My ultimate objective is the creation of a desktop application, to faciliate the 

creation and downloading of individual scripts in a custom-made IDE1. 

                                                 

1 Integrated Development Environment 
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1 Introduction 

In the following chapter, I am going to give a comprehensive description about 

the different aspects of my thesis. 

1.1 Significance and motivation 

The work described in this thesis was done at ThyssenKrupp Presta Hungary kft. 

The company is a technology leader in the field of steering systems and a major 

innovative partner of the automotive industry. 

My task is to create a user friendly script language with IDE support, capable of 

describing required communication behaviours (e.g. restbus simulation tests) to help 

ECU development at the company. The language will be run on our so-called Gateway 

hardware. The Gateway has an existing software structure operating on an RTOS and 

offers advanced drivers to communicate through CAN and FlexRay protocols. The 

software offers GPIO functionalities as well. It comes with a desktop API implemented 

in the Java programming language, making it possible to configure and use it from a 

desktop environment. 

The language shall be designed to offer ways to effectively and concisely 

describe communication behaviours required for testing. A code generator module 

parses and transforms the target script into an embedded software configuration in the 

form of C++ source code. This is compiled and downloaded to use with the Gateway’s 

base software framework. The Gateway acts as an independent testing unit after 

flashing and requires no configuration or connection to a desktop computer. The 

hardware can then be put directly into a car or used in a continuous environment (where 

tests run autonomously for long periods of time).  

The language takes inspiration from the CAPL language used by Vector tools. 

CAPL is a script language created to configure hardwares supplied by Vector [8]. Since 

there are a limited amount of vector tools at the company, the GatewayScript is aiming 

to replace the role Vector tools play at testing departments. 
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1.2 Communication protocols in the automotive industry 

Since communication will be a central role of the language features, I will give a 

brief description about the communication protocols used in the industry today. 

1.2.1 Overview 

As the role of electronic components grows at an accelerated rate in todays cars 

as does their heavy reliance grow on intercomponent communications. In the earlier 

years of electronization data exchange between components were accomplished with 

dedicated cables between desired ECUs. This method of cable infrastructure is called 

point to point communication. 

As the increased amount of information that had to be exchanged grew, the 

cabling necessary to faciliate point to point communication became unacceptably large 

and complicated. The solution that ultimately completely replaced point to point 

communication was the use of so-called communication buses. A bus is a single 

communication route that has multiple components connected to it, thus information 

traveling on the bus is shared between all participants. 

 

1-1. Image - Point to Point versus Bus communication 

Characteristics that are present and are subjects for comparison between all bus 

based protocols: 

Information filtering 

Since data traveling along the bus is visible to all participants, it is necessary to 

establish some kind of system that helps each individual component separate the 

relevant and the useless information. This is normally accomplished by encoding extra 

addressing information into the data. We differentiate between sender-selective and 
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reciever-selective addressing. When using sender-selective addressing the sender 

specifies the recipients of the message. The more conventional strategy – reciever-

selective – brands each message with a unique identifier based on the information it 

carries. Recievers can then individually decide if they want to process the given 

message based on the ID. 

Data protection 

Ensuring the authenticity of information is crucial during communication, 

especially in safety critical systems. Factors that influence data safety can be reflections 

that arise at the end of cables and electromagnetic noises caused by nearby electronic 

components (electric motors for example), that can result in capacitive and inductive 

coupling. Increased protection can be gained with shielding, or by using differential 

signal transmission. This is done through unshielded twisted pair cables (UTP) where 

information is encoded in the difference between voltage levels on the cables. 

Bus access 

All participants on a single bus share a singular input/output to the bus (meaning 

at any given time components write to the same resource, and all read operations result 

in the same data). This demands the presence of a rule set that controls data traffic along 

the bus, to prevent concurrent transmissions, and manage transmissions in general. 

1.2.2 Control Area Network (CAN) 

Development of the CAN protocol started in 1983 at Robert Bosch GmbH. It’s a 

protocol specially designed for automotive usage [4]. It was standardized by the ISO 

(International Standardization Organization) in 1993 and has seen several revisions 

since then. CAN remains the most used protocol to this day, and is mainly used in the 

drive and chassis areas for handling the operation of the car. 

CAN uses an unshielded twisted two-wire (UTP) line as a physical medium for 

symmetrical signal transmission, and has bus termination resistors to prevent reflection. 

It has a maximum data rate of 1 Mbit/s. The dominant bus level (a typical differential 

voltage of 2V on the wires) corresponds to a logical „0”, and the recessive bus level (a 

differential voltage of 0V) corresponds to logical „1”. When different nodes attempt to 

write different logic values to the bus, the dominant bus level alway overrides the 
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recessive level. This means the logic „0” always enjoys priority above the logic value 

„1”.  

CAN is an event-driven protocol that uses receiver-selective addressing, 

meaning all nodes have access to the bus at all times. Messages are equipped with a 11 

bit (29 bit in case of extended IDs) long identifier. CAN guarantees non destructive data 

transmission with the CSMA/CA (Carrier Sense Multiple Acces with Collision 

Avoidance) method. When simultaneous transmission occurs, all transmitting nodes 

begin transmitting the identifier field. When difference is detected between the bit 

written and read back from the bus by a node, it detects the collision and terminates 

transmission. Difference occurs when a node sends a dominant bit, whereas a recessive 

bit was sent by another. This is called bitwise bus arbitration, and it implicitly assigns a 

priority to messages by way of their identifiers (the smaller the ID is the higher its 

priority). 

1.2.3 FlexRay 

FlexRay was developed by the FlexRay consortium made up by several of the 

largest automotive manufacturers. It was designed to be used in safety- and time-critical 

applications, where it is necessary to be both faster and more reliable than what the 

CAN protocol is able to offer [3]. 

The protocol provides a redundant channel of transmission to increase safety. 

Both communication channels can operate with a maximum datarate of 10 Mbit/s. The 

second channel can be used as independent communication channel as an alternative to 

boost the datarate up to 20 Mbit/s. 

FlexRay is a time-triggered communication architecture, meaning nodes are 

only allowed to transfer data in their dedicated time slots. A FlexRay communication is 

periodical, made up by a fixed number of communication cycles. Each cycle is made up 

by a static segment, network idle time (NIT) segment, and optionally a dynamic time 

segment and symbol window. 

The NIT segment is upheld for synchronization of local clocks, no 

communication occurs during this time. Each cycle length is specified by its number of 

macroticks assigned to individual segments. Macroticks are composed of microticks, 

the smallest time unit of local clocks. Differences in hardware may result in microticks 
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of different lengths, hence macroticks can be made up by a different number of 

microticks on different nodes. 

The static segment is implemented with the TDMA (Time Division Multiple 

Access) method, assuring deterministic transmission of data. Static segments are 

organized into a number of static slots, with a maximum number of 1023 slots. Static 

messages can be assigned to the individual slots, which are transmitted by their nodes in 

their alloted time segment. A counter shared between all nodes is employed to keep 

track of the schedule. The counter’s value corresponds directly to the current slot ID 

availible for transmission. A minimum of two slots assigned to FlexRay nodes in the 

static segment must be upheld to generate the global time base. 

Since the TDMA method is unsuited for sporadic and asynchronous 

communication, FlexRay allows for transmission of data in an event-driven manner, 

with the use of the dynamic segment. The dynamic segment is based on the FTDMA 

(Flexible Time Division Multiple Access) method. To preserve the determenistic nature 

of the static segment, the dynamic segment is always of the same length. It is made up 

by a fixed number of minislots, to which dynamic messages can be assigned to. 

Similarly to the static segment a separate shared counter is used for the dynamic 

segment. In the case a minislot has no message assigned to it, the counter is incremented 

without transmission. Cases may arise where not all messages can fit into a dynamic 

segment, in which case they get delayed a whole cycle. It is the responsibility of the 

system engineer to avoid such complications. 

1.2.4 Standardization 

It is imperative that common technology standards be set for developing 

independent products that will ultimately be part of the same distributed system. It also 

helps manufacturers set requirements that are familiar to developers and are easy to 

review. These technologies are described by ISO (International Standardization 

Organization) standards.  

1.2.5 AUTOSAR 

AUTOSAR (Automotive Open System Architecture) is a software architecture 

standard for developing ECU software. Its aim is to structure software functionalities 

into independent software components. Software components communicate with each 
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other and with the hardware through standardized interfaces. Since the Gateway will be 

communicating with ECUs running with AUTOSAR based softwares, it is important to 

conform to the communication interface set by the standard. The detailed description 

about the rest of the architecture is outside the scope of this thesis. 

Frame Structures 

AUTOSAR defines how data is transmitted through communication protocols 

by using frame structures [1]. Software components in the application layer deal with 

external informations in the form of signals. Signal represent real-world information 

(e.g. temperature or speed). A transformation can be specified between the raw data 

carried by the signal and the application relevant information by assigning computation 

methods to signals. Linear compumethods have an offset and a factor, Text table 

compumethods assign strings to specific values and Rational function methods have a 

polynom to calculate the information. Some of the advantages of Compumethods are 

readability, and the ability to transfer non-integer values as integer values to avoid the 

need to deal with floating point numbers. 

 Groups of signals are wrapped into PDUs (protocol data units). Information in 

AUTOSAR travels through layers in the form of PDUs. PDUs in addition to its carried 

data, can contain protocol relevant information in its PCI segment (protocol control 

information). PDUs travel upward through layers by processing the PCI and forwarding 

the data segment (called service data segments, SDUs), and downwards by wrapping 

the SDUs with PCIs. 

 PDUs are transmitted between ECUs by assigning them to frames. Messages 

(the protocol a given message uses is irrelevant) transmit singular frames as their 

payloads. Frames abstract the transmitted data from the transmitting resource, the 

messages. 

1.3 Task description 

My work is separated into four individual parts. A brief description of each 

fundamental part is given below. 
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1.3.1 Research 

First, it is necessary to have a solid background in language theory and language 

design to create a well structured language. The chosen technologies and frameworks 

for implementation have to be learnt to be able to use them correctly and efficiently. 

1.3.2 Use case analysis 

The second part requires the gathering and research of common use cases and 

required features with the aim to design a well defined DSL with a simple learning 

curve. Knowledge of standard automotive network communication protocols used in 

ECU development is crucial in correctly defining the language features. The DSL 

borrows both semantic and syntactic features from the Vector CAPL language, since it 

is an established tool with a similar functionality. Due to this design choice, users of 

CAPL should be able to easily switch to the GatewayScript (GWS) testing framework 

1.3.3 Language design 

The third part is the design and implementation of the GWS language coupled 

with a code generator with the purpose to transform code written in our DSL into a 

working application. Xtext is the tool used to achieve this. Xtext is a framework for 

development of programming languages and domain-specific languages. It offers an 

extensive infrastructure including parser, linker, typchecker, compiler as well as editing 

support for the Eclipse IDE. 

1.3.4 Embedded software development 

The final part consists of the embedded software running on the gateway 

hardware. The software can be visualized as a layered structure with three central 

layers. The lowermost layer incorporates the existing interface drivers and RTOS 

functionalities. The middle layer is the static part of the test software module written in 

C++. It includes the interface to the C part of the source code, C++ specific utility 

classes, and the common parts of testing software uniform through all configurations. 

The top layer is the script specific, generated test configuration. Xtext provides the 

necessary tools for the parsing of the script and generation of the embedded source 

code. Compilation and downloading to hardware will be integrated into an Eclipse 

based application created to use the Gateway from a PC. 
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1.4 Chapters overview 

A brief description of the following thesis chapters are given below. 

The second chapter gives a detailed description about language design by 

providing a theoretical background. The branch of science dealing with this is called 

programming language theory. After a general introduction formal definitions are 

introduced. The chapter ends with details regarding the implementation of languages. 

In the third chapter I demonstrate both the frameworks used to create the whole 

language infrastructure, and the existing frameworks from the gateway upon which the 

generated code will run. In the first part I present the technologies used for language 

design, namely EMF, Xtext and Xtend. The second part describes both the existing 

Gateway software and its desktop framework. 

In the fourth chapter I go over my design choices and give a detailed 

commentary about the implementation. I consider and compare several possible 

solutions to the conversion of the language into code executable by the embedded 

system. I present the GWS and illustrate its grammar meta-model. The different layers 

of the language implementations are explained and demonstrated with examples.  

The fifth chapter contains a complete documentation of the language and its 

features. It serves as a learning material for future users. It details its language structure, 

keywords and use cases. It ends with two examples showcasing offer features, one of 

which was created for a real Electric Power Steering unit developed at the company. 

The final chapter concludes my work and details possible features to be 

implemented in the language in the futures. 
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2 Language design 

2.1 Domain specific languages 

Language theory – also known as programming language theory or PLT – is the 

general study of programming languages. It is a well established branch of computer 

science dealing with the design, implementation, analysis and classification of 

languages. I will approach the matter from the subject of designing and implementing 

so called Domain Specific Languages or DSLs [6]. 

2.1.1 Language types 

Programming languages can be split into two major categories. 

General purpose languages 

General purpose languages or GPLs are equipped to deal with problems ranging 

across all application domains, but generally takes longer to develop solutions, due to its 

tools being more general. They are a tool for programmers to instruct computers. They 

are turing complete meaning it can solve any problem a Turing machine can.  

Popular general purpose languages today are for example C, Python and 

JavaScript. The reason for having multple GPLs is that their offered features and tools 

are optimized for different problems. In a sense these are also domains, but much larger 

than the ones targeted by domain specific languages. For example C offers pointers and 

bitwise operators to manipulate data directly in the memory. This makes it appropriate 

for embedded environments where low level programming is necessary. In Python the 

language has many built-in containers and utility functions making it ideal for solving 

small scale script tasks. In a sense this makes all languages domain specific. Smaller 

domains with more specific tasks drive people to design more specialized languages, 

leading to DSLs. 

Domain specific languages 

Domain specific languages are specialized to a particular application domain. A 

domain is an area of expertise or collection of problems. When discussing a particular 

domain of problems, subjects outside of it are irrelevant. The languages’ built-in 

abstractions are aligned with the abstractions used by the domain. Their syntax is 
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customarily tailored to express these abstractions effectively and concisely. Textual 

notations might be replaced by tables, symbols, graphical notations or a combination of 

the above. Having been highly specialized to a particular goal, DSLs usually lack the 

tools to solve problems outside their domain, and thus their use is limited to their target 

domains.  

Popular DSLs include for example HTML for specifying the appearance of 

websites, Matlab for solving engineering and scientific problems and MySql for writing 

database queries for accessing databases. Optimalization comes in the form of execution 

as well as syntactic appearance, e.g. Matlab is equipped with highly efficient ways to 

operate on matrices. 

2.1.2 Benefits of using DSLs 

Once a DSL is built, development in the domain becomes significantly more 

effective. Concepts can be expressed concisely in the language of the domain, while 

hiding away implementational details. Libraries are similar in this manner, since they 

also encapsulate functionality relevant to a single domain. However, DSLs can rely on 

domain specific semantic and syntax checking, while libraries are committed to their 

native languages’ features. Since a DSL works with domain specific concepts, semantic 

analysises can have straightforward high level implementations, also making more 

meaningful error messages available. 

A good DSL guides its users to effective code by language structure. Since 

implementation is of no concern to the users, the execution engine is free to generate 

optimized code by removing overheads resulting from using abstractions. 

Possibly the biggest benefit of DSLs is that non-programmer domain experts can 

develop programs independently from software developers, further increasing 

productivity. 

2.2 Formal definitions 

In the following section I introduce formal definitons for programs, languages 

and domains.  

When speaking about programs we mean algorithms or computations that are 

executable on a Turing machine. Let 𝑃 be the set of all conceivable programs. A 

program 𝑝 in 𝑃 is a conceptual representation of a computation. A language 𝑙 defines a 



 17 

syntactic notational structure for expressing and encoding programs. A program 𝑝 

expressed in the language 𝑙 is denoted as 𝑝𝑙. A program can be expressed in multiple 

languages, and sometimes multiple ways in the same language (a factorial can be 

computed with loops or recursion in many GPLs). A transformation 𝑇 can be defined 

between languages l1 and l2, which maps programs from their 𝑙1 representation to their 

𝑙2 representation, i.e. 𝑇(𝑝𝑙1) = 𝑝𝑙2 . A language may not be able to express the whole of 

𝑃. Let 𝑃𝑙 be the subset of 𝑃 that can be expressed in 𝑙. Some languages might be better 

at expressing given subsets of 𝑃, evidenced by being for example more concise, or 

analyzable. 

A domain 𝐷 can be defined as a subset of 𝑃 denoted as 𝑃𝑑. There are two 

general approaches for defining a given domain.  

In the inductive (bottom-up) approach we analyze existing software – a subset of 

𝑃 – aimed at the same set of problems. By inspecting common characteristics and 

similarities we can outline our domain 𝑃𝑑. It is noted that the language used to express 

these problems are irrelevant. In the special case where the language is uniform – a 

specific language 𝑃𝑙 –, domain specific patterns may arise. This makes the design 

process simpler, since abstractions can be clearly identified. 

The deductive (top-down) approach views the domain as a body of knowledge 

outside the realm of software. The typical motivation for this approach is in order to 

provide (maybe previously non-existent) software support for the given field. Defining 

a domain this way requires thorough understanding of the area to be contained.  

With these definitions we can now formally define Domain Specific Languages. 

A DSL denoted as 𝑙𝑑 is a language specialized at expressing problems that encompasses 

the target domain 𝑃𝑑. It has abstractions similar to the target domain, and hides the 

irrelevant details from the user. 
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2-1. Image – Language under- and over-approximation 

Since neither the domain definition and the language design is an exact process, 

it is up to the language designer to approximate a language that more or less covers the 

desired domain. Since even the domain interpretation is subjective to a certain extent, an 

exact coverage is generally impossible to achieve. It is best to aim for an under- or over-

approximation first, and later evolve the language in iterative steps as the language 

purpose becomes progressively clearer. 

2.2.1 Language purpose 

Designing a language around a domain is not a straightforward process. There 

can be multiple language designed for the same domain, differing in the abstractions 

they make use of. Determining how to choose which abstractions to shape into the 

grammar depends on the language purpose. The way a language portrays a domain 

should be decided based on a specific purpose. Having a well defined purpose 

influences all stages of the language design process, and hence should be carefully 

planned out beforehand. 

2.2.2 Language structure 

So far we have defined languages as tools to express and encode programs. The 

following chapter elaborates upon the way languages accomplish their tasks. Programs 

are represented in two ways, both of which are part of a given language: the concrete 

syntax and the abstract syntax. 

Concrete syntax is the interface (the concrete notation) with which the user 

interacts with the language. The notation can be textual, symbolic, graphical, or any 
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combination thereof. Programs are created, edited and persisted in their concrete syntax 

forms.  

The abstract syntax is the semantic representation of a program. It does not 

contain notational details like whitespaces, commas and keywords. Abstract syntax is 

used for analysis and further processing of the program. 

A language can be defined in this manner by specifying its concrete syntax, 

abstract syntax and a mapping between the two often called a grammar.  

A language is constructed with either of the two folloing types of editors. Parser 

based editors lets users edit the concrete syntax. The abstract syntax is then derived 

with the help of the grammar rules. Projectional editors on the other hand gives users 

access to the abstract syntax. Altough still performed through the concrete syntax, it 

directly manipulates the abstract syntax. The concrete syntax is a projection, no 

notational parsing takes place. Ultimately the concrete syntax is used to edit and 

visualize the abstract syntax. 

Abstract syntaxes are usually stored as trees, otherwise called as Abstract syntax 

trees, or ASTs. The individual tree nodes are elements of the language, which are 

instances of so-called language concepts, or simply concepts. By concepts we refer to 

both the syntactic and semantic meaning of the element. Nesting in the concrete syntax 

results in a parent child relation in the AST. Cross references between the branches are 

possible. A program can be made up of multiple ASTs called fragments connected by 

cross-references, resolved during linking phase.  

A language 𝑙 is made up of a set of concepts 𝐶𝑙. 𝐸𝑓 is the set of program 

elements in a fragment 𝑓. Each e element of 𝐸𝑓 is an instance of a concept 𝑐 of 𝐶𝑙 of the 

language l. 
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2-2. Image – Fragments, Elements and Concepts 

2.3 Implementation 

2.3.1 Separation of concerns 

Every DSL has to be separated into three individual parts (based on the concerns 

populating the domain), taking on different roles when executing a program defined in 

the language. Concerns are specific elements that make up individual problems.  

A DSL has three ways of dealing with these concerns. The user interacts with 

the language by creating programs. The execution engine transforms the program into a 

form runnable on the target platform. 
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2-3. Image – Separation of concerns 

 Variable concerns (white circles) that regularly differ in applications can be 

specified in the language by the user, these usually being the abstractions or concepts 

found in the domain. 

 Derivable concerns (grey circles) can be implicitly derived from a given 

program. These are handled by the execution engine. Execution engines can remove the 

overhead that comes with expressing abstractions and generate efficient code. 

 Fixed domain concerns uniform through all programs are placed in the platform. 

2.3.2 Interpretation versus Translation 

Two main strategies exist for building an execution engine: translation and 

interpretation. In the case of translation, DSL code is first transformed into the language 

of an existing execution engine, which then generates the runnable object for the target 

platform. Interpretation means we generate the code directly for the target platform. 

Translation is usually achieved by way of a suitable GPL. These come with 

optimized compilers or virtual machines that can execute code very effectively. If GPLs 

are not suitable to process the semantics of the language (its abstractions differ greatly), 

using an interpreter might be justified. However, designing compilers and interpreters 

require great proficiency and it is a field of expertise in itself. 
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2.3.3 Parsing 

The language parser is the entity responsible for transforming plain text (the 

concrete syntax) into a processable form (the abstract syntax), as well as for taking up 

roles such as verifying syntactic correctness. In modern IDEs this is frequently done in 

real-time, keeping the abstract syntactic structure up to date with the textual 

representation. This makes it possible to provide live feedback to the user (e.g. outline, 

validation, semantic errors). 

Parsing can be broken down into several phases. 

Lexical analysis 

Lexical analysis is the process of breaking down the program into a string of 

tokens. This is performed by the lexical analyzer, or simply, lexer. A token is an atomic 

element of a language. Types of tokens include syntactic keyword, (e.g. class in C++, or 

the arithmetic operators +, -, etc.), identifiers (e.g. a concrete C++ class name), or 

symbols (an instance of that class name). Lexers are usually implemented by using 

regular expressions.  

Syntactic analysis 

We must also determine if our string of tokens form valid sentence in our 

language. The validity of a given statement can be determined with the help of the so-

called language grammar. A grammar is a rule set that describes the general syntactic 

structure of the sentences that compromise the language. This process is called syntactic 

analysis, or parsing. Parsing requires complex algorithms capable of dealing with 

recursions and solving ambiguities in the statements. 

Semantic analysis 

After the validity of our statements are established, parsers transform the 

concrete syntax into an AST for further processing.  

Semantic checks about the validity of certain aspects of the program that are 

unavailible for checking during previous phases can be performed. These are language 

specific, but typical properties to check during semantic analysis can be type checking 

and scoping. Type checking ensures that assignments and various operations are 

performed with the correct types. Scoping deals with the lifetime and visibility of 

variables (managing a symbol table can help when dealing with scoping). For example 
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variables should not be used before initialization, or access to variables are restricted 

when declared in a function. 

Execution 

When we determined that our statements are completely valid in our language, it 

can be run through an interpreter or compiler to be transformed into machine readable 

form.  

2.3.4 Grammars 

Different parser implementations are intended for different language grammars. 

Grammars specify the formal definitions for the concrete syntax, as well as the mapping 

between the concrete syntax and the abstract syntax. Failing to use the correct parser for 

a given language may result in unnecessarily convoluted grammars, or the language 

may even turn out to be impossible to parse. 

Grammars are sets of grammar or production rules that define how valid 

sentences look like, or from a different point of view they implicitly declare all the valid 

sentences of a language. 

Grammars can be classified into context-free and context-sensitive grammars. 

Languages using context-free grammars can be processed character by character 

without any awareness of the environment (the environment being everything not 

currently being processed). Context-sensitive grammars on the other hand require 

information found in the context of the parsed sentence, thus requiring the parser to be 

aware of a lot more than the actual syntax, making it more complicated. 

Context-free subclasses 

A particularly important subclass of context free grammars are LL(k) grammars, 

since ANTLR only supports generating parsers for these grammar classes. The first L in 

LL(k) stands for left-to-right scanning, and the second L stands for leftmost derivation. 

Both L letters can be replaced by Rs to mean right-to-left scanning and rightmost 

derivation, respectively. The constant k determines how many tokens the parser will 

look ahead to decide which production rule to use. A special case LL(*) means the 

parser can look ahead any number of tokens to find the correct parser rules. Higher k 

constants mean more possible syntactic forms, but typically reduces performance. 
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2.3.5 Programming paradigms 

Programming paradigms describe convential behavioural structures employed 

by most programming language. Choosing a behaviour similar to the domains natural 

behaviour can greatly enchance the clarity of the language. Adopting an existing, or a 

combination of existing paradigms when designing a DSL can be hugely beneficial for a 

multitude of reasons. Firstly it saves effort that has to be invested in creating a coherent 

well structured behaviour. Secondly, existing paradigms have well established 

advantages and drawback, and can it be easier to tweak them to the language at hand, 

due to having personal experience with using them. Most programmers are also familiar 

with them, making the learning curve easier. Maybe most importantly it can make 

generating code considerably simpler for a language with the same behavioural 

structure, since its behavioural abstractions are closely aligned. 

The following programming paradigms are widely used by todays programming 

languages. 

Imperative 

 Imperative languages use a sequence of statements to influence the state of the 

program. It is the oldest known paradigm and the one most natural to computers. Both 

procedural (e.g. step by step algorithms) and object oriented programming are 

imperative, their main difference being in the structural organization of the statements. 

Due to their straightforward nature it is generally easier to understand imperative 

programs than their alternatives.  

Functional 

 Functional programming uses functions as its base unit of abstraction to 

structure programs. A functions return value is based purely on its arguments. Calls 

with the same arguments result in the same results at all times, meaning functional 

programs are inherently stateless. Its main utilization is for computations, since it 

cannot affect its environment (being stateless, it can not alter the state of the 

environment either). Arithmetic expressions are often resolved in a functional manner. 

Declarative 

Declarative programs use rules and constraints instead of specifying a sequence 

of instructions. The rules define the logic of computation but not how to perform the 
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computation. An evaluation engine is responsible for finding solutions in ways defined 

by the declarations. HTML is a famous declarative language, since it has no control 

flow. It describles the visuals of a webpage, but does not specify how to achieve that 

look.  

Event-based 

 In event-based programming behaviour is triggered by events. Events may come 

from an external source or triggered indirectly by other events. It is often used when 

interaction with an external source (e.g. real world) is necessary. Changes to state can 

be easily expressed and processed by events. 

Dataflow 

In dataflow, variables refer other variables as dependencies along with a 

mapping between the two. A variable updates itself when one of its dependencies 

change, hence an external input change causes all variables to update that depend on it 

(either directly or indirectly). Dataflows are often visualized as blockdiagrams, since 

they convey information about the dependencies effectively. Hardware description 

languages (HDLs) often use dataflow because its parallel nature closely resembles the 

operation of digital hardwares. 

2.3.6 IDE support 

In ideal DSLs, IDE (integrated development environment) support should 

always be provided to the users. Programmers are much more inclined (and their work 

is made much more easier) to use a language if they are not required to code in a pure 

text editor. 

Having an IDE as a framework offers multiple benefits: 

 Syntax highlighting gives the programmer better understanding of the 

structure of the code through visual effects (e.g. colouring). 

 Auto complete helps with automatically inserting cross referenced 

variables or existing functions for the user. 

 Error markers point out syntactic (or possibly semantic) mistakes while 

editing the code, providing feedback while coding. 

 Quickfixes offer typical solutions to arising errors. 
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 Reference navigation allows the user to move through the code through 

references. 

 Background parsing provides real-time feedback about semantic 

information 

 Refactoring lets users edit program elements and all their references 

simultaneously 

 Outline of the current state of the AST can be provided to the user in a 

separate window with the help of background parsing 

 Custom features can be supported, like visualization or graphical editing 
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3 Frameworks 

3.1 Eclipse technologies for language design 

Eclipse is an open-source integrated development environment (IDE). It is the 

most popular Java based IDE, due to having a plug-in (plug-ins are components that 

build up an Eclipse applicaiton) system allowing Eclipse users to highly customize the 

IDE, or create their own applications. Many softwares have been created over the years 

ranging from adapting Eclipse to be used for developing applications in different 

languages to various frameworks for a great number of application domains. The 

following technologies were used in conjunction to develop my DSL. 

3.1.1 Eclipse Modeling Framework 

EMF is a modeling framework for creating structured data models with code 

generating facilities [2]. It lets users specify a meta model described in XMI by way of a 

graphical or tree based editor and generates a set of Java classes derived from the model 

along with a set of adapter classes that enable viewing and command-based editing. 

At EMFs core is the Ecore model which serves as the meta meta model for the 

framework. A meta model is essentially a template for creating model instances (a 

model to a meta model is like an object to a class), meaning the Ecore acts as the 

template for creating meta models. 

Ecore consists of the following core concepts: 

 EClass: a class containing an arbitrary number of EAttributes and 

EReferences. 

 EAttribute: an attribute with a name and a EDataType. 

 EReference: a reference to an EClass. Can be either containing or non-

containing (meaning either a has-a or a refers-to-a relationship). 

 EDataType: represent the type of an EAttribute (e.g. EInt, EString). 



 28 

3.1.2 Xtext 

DSL development is a time consuming and complex task, sometimes making it 

an undesirable endeavor. However there are various technologies available today that 

offer developers complete frameworks for quick development of DSLs, Xtext being 

such a technology [10]. It is an Eclipse based product, which is preferred at the 

company, since most existing softwares rely on Eclipse technologies. Xtext offers a 

complete toolkit that generates the whole infrastructure to create a complete custom 

made language. Xtext itself is a DSL that allows its users to define languages using a 

powerful grammar language. It automatically generates an ANTLR based parser. 

ANTLR (ANother Tool for Language Recognition) is a parser generator for reading, 

processing, executing, or translating structured text or binary files. It also generates a 

customizable IDE support complete with the most essential features. Xtext allows users 

to generate their own code from the AST, with any JVM2 based language.  

Xtext Grammar 

Xtexts grammar language was designed for description of textual languages. The 

users describe the concrete syntax along with a mapping to the abstract syntax. To store 

the abstract syntax, an EMF meta-model is generated, along with the grammar specific 

parser. As such, languages created with Xtext are parser based editors. The parser 

transforms plain text into a semantic model (abstract syntax tree) according to the 

grammar, which can in turn be freely processed by the user. Understanding how the 

Ecore meta-model is built from a grammar is crucial in writing an effective language. 

Terminal Rules 

 Terminal rules define data types for grammar. Terminals are handled as tokens 

by the parser, and are the concrete syntax representations of variables types in the 

abstract syntax. They usually return existing EDataTypes from the Ecore meta-model. 

Terminals are declared using regular expressions. The following terminal rule defines a 

syntax for the type int: 

Terminal INT returns ecore::EInt: 
(’0’..’9’)+; 

  

                                                 

2 Java virtual machine 
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Parser Rules 

 Parser rules process a sequence a terminals, and produce a tree of terminal and 

non-terminal tokens. While terminal rules define the valid tokens, parser rules also 

define the valid sentences of the language. Feeding a sequence of tokens into a set of 

parser rules produces parse trees, represented as EMF models in Xtext. Parser rules are 

represented as EClasses in the grammar meta-model. Parser rules, similar to EClasses 

can contain or reference other parser rules (EClasses) or terminal (EDataTypes). 

The name of the EClass can be explicity declared or implicity inferred from the 

rule’s name. Assignments add features to the EClass, its type inferred from the assigned 

value. 

Person: 
’Person’ name = ID; 

The above code creates an EClass named Person, and creates an EAttribute 

name with the type EString (the terminal ID returns an EString). A valid sentence in this 

language would be ’Person John’, creating a Person object with the name John. There 

are three assignment operators: 

 Simple assignment =, used on features to contain singular elements. 

 Add operator +=, for storing multiple values in a list type feature. 

 Boolean assignment ?=, returns true if a given token is consumed, 

otherwise returns false. 

Features can also contain other parser rules, in which case the containing reference 

points to another EClass.  

Cross references (non containing references) to existing EObjects can be assigned to 

features by square brackets. Cross references use the ID attribute to identify possible 

references. 

A single parser rule can parse multiple sentences with different concrete syntax by 

employing the ’|’ logical or operator in the rule. We modify our example rule to the 

following: 

Person: 
’Person’ name = ID (’{’ 
((’child:’ new_children += Person) | 
(’child:’existing_children+= [Person]))+ 
’}’)? 
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The above changes the grammar to allow other people to be optionally assigned to a 

person in the feature children. The following cardinality operators can be used when 

defining rules: 

 + operator: one or more 

 * operator: zero or more 

 ? operator: zero or one 

A valid program with the modified rule would be: 

Person Martha 
 
Person Thomas { 
 child: Person Bruce 
 child: Martha 
} 

Actions 

Simple actions can explicitly set the EClass of the EObject returned by the 

parser. With simple actions a single rule can create multiple types of EObjects without 

using delegation to other rules, improving the clarity of the grammar. 

Person: 
 ({Adult} ’adult’ name = ID) | 
 ({Child} ’child’ name = ID); 

The parser creates the correct object of either type Adult or type Child depending on the 

token it encounters (either ’adult’ or ’child’). 

 Assigned actions can assign the current object to a feature of a newly created 

object. This is primarily used when left-factoring grammars. Xtext relies on the ANTRL 

technology when generating parsers. ANTLR implements its generated parsers with 

LL(*) algorithm which does not allow left-recursive grammars. 

Expression: 
 (Expression ’+’ Expression) | INT; 

The above code creates a parse tree for creating simple addition trees. When it 

encounters a ’+’ operator it calls itself on either side of the operator, until it happens 

upon an integer, in which case it ends the recursion with that terminal value. This 

implementation is left-recursive, since the first rule it encounters (on the left) is itself, 

and hence can not be parsed by LL(k) parsers. Left-recursion is commonly solved by 
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left-factoring the grammar. We introduce new rules to eliminate the recursion element 

of the parser rule. 

Add returns Expression: 
 Primary ({left = current} ’+’ right = Primary)*; 
 
Primary returns Expression: 
 Value = INT; 

The above left-factored grammar rule enters the Add rule when encountering an 

Expression (Expression is the abstract base class of both Add and Primary). It calls the 

primary and returns with an INT type if the current token is a terminal token. Otherwise, 

an assigned action happens. It creates a new Add EObject, and assigns the current 

Expression (which can only be Primary to it), and the other operand Primary to the 

feature right. This can go on indefinitely (as signified by the * operator), meaning 

everytime the parser encounters a ’+’ token, it assigns the current tree to the feature left, 

and assigns the right hand side operand to the feature right.  

Unassigned rule call 

 Unassigned rule calls delegate to other rules without instantiating an EObject for 

the AST. The rule call will act as an abstract base class for the delegated rules in the 

grammar model. 

Animal: 
 Mammal | Bird; 

Enum rules 

Enum rules create user-defined enumeration types, which can be assigned to 

features in the grammar model. 

Enum Direction: 
NORTH = ’north’ | EAST = ’east’ | SOUTH = ’south’ | WEST = ’west’; 

Validation 

Xtext provides custom abstract syntax tree validation in the form of constraints. 

Constraints are checked against the AST and evaluated to be either true or false. 

Constraints can be added separately to each EClass of the language grammar, checked 

each time an EObject of the given EClass is created. 
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Scoping 

Custom scoping can be provided for cross-references in the grammar. For 

example, users can introduce namespaces and restricted access to variables with self-

defined scoping mechanisms. 

3.1.3 Xtend 

Xtend is a flexible and expressive dialect of Java that seeks to improve on many 

aspects of the Java language [9]. It compiles into readable Java code, but provides its 

users with several modern language features missing from Java (i.e. type inference, 

operator overloading, closures). Additionally it adds syntactic sugar (template 

expressions, extension and dispatch methods), and removes some of Java’s syntactic 

noise. The following features make Xtend an exceptional tool for code generation. 

Template Expressions 

When it comes to code generation, Xtend offers an extremely beneficial feature: 

Template Expressions. Templates in Xtend allow for readable string concatenation. An 

example template expression for generating an empty C function with a custom name 

could look like this 

/* Function declarations start with the def keyword. 
 Return type in the function declaration is optional, 
 it is inferred from the function definition */ 
def generateCfunc(String cFuncName, String cStatement) ’’’ 
 void «cFuncName»() { 
  return // A semicolon is optional in Xtend 
 } 
’’’ 

Characters enclosed by the triple single quotes (’’’) are outputted as plain text by 

the Xtend function. Xtend expressions can be evaluated by encasing them into so-called 

guillemets («»). This also allows loops and if statements with special keywords. 

The following Xtend function outputs C code where an array is initialized with its 

Xtend function arguments given the actual element is bigger than zero. 

def initCArray(Integer[] initValues) ’’’ 
 int cArray[«initValues.size»] = { 
 «FOR intValue : initValue» 
  «IF intValue > 0» 
   «intValue», 
  «ENDIF» 
 «ENDFOR» 
 }; 
’’’ 



 33 

This feature makes Xtend an ideal language for directly processing ASTs into 

C++ source code. 

Extension methods 

Extensions methods make it possible to expand the interface of a class (it’s 

collection of public methods) in a non-invasive way. This is especially valuable when 

handling generated data structures. Since generated classes offer no functional interface, 

programmers usually create helper classes to encapsulate methods that work with the 

generated structure. By creating extension classes instead, the data structure and its 

operations will be indistinguishable from the viewpoint of the client3. 

Any method in Xtend automatically becomes the extension method of its first 

parameter4. It can be called through that classes objects (given the method declaration is 

in an accessible scope). An example extension method definition with its subsequent 

call: 

// This acts as an extension method 
def printInt(Foo aFoo, Integer aInt) { 
 println(aInt) 
} 
 
def testFunction() { 
 Foo foo = new Foo() 
 
 // Call printInt as an extension of Foo 
 foo.printInt(5) 
} 

It is worth noting that extension methods can only access the public interface of 

a class, since in reality it is not part of the class definition. Extension classes are 

specially created to collect the extension methods of a given target class. Clients use 

extension classes by injecting it to their scope. Injection is an Eclipse-based concept, 

where users simply declare dependencies on classes without specifying their origin. A 

framework then resolves the dependency in the background autonomously. 

  

                                                 

3 Code segments that use a given class are defined as its clients. 

4 Given that parameter is a class  
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Dispatch methods 

Dispatch methods are created in sets, made apparent by each having the same 

name and the same number of arguments. When calling on a dispatch method set, the 

actual method invocation is determined at runtime based on polymorphic type check 

performed on the arguments. Coupled with extension methods, it supplies polymorphic 

behaviour to inheritance trees while adhering to encapsulation. 

A dispatch is declared using the dispatch keyword. An example dispatch 

extension method on an inheritance tree in which Dog and Cat classes inherit from an 

abstract Animal base class.  

def dispatch makeSound(Animal animal) { 
 println(„Called on abstract base class, error”) 
} 
 
def dispatch makeSound(Cat animal) { 
 println(„Meow meow”) 
} 
 
def dispatch makeSound(Dog animal) { 
 println(„Bark bark”) 
} 
 
def testFunction() { 
 Animal cat = new Cat() 
 Animal dog = new Dog() 
 

 /* Methods with zero arguments can be accessed as a property, and 
called without parenthesis */ 

 cat.makeSound // outputs „Meow meow” 
 dog.makeSound // outputs „Bark bark” 
} 

3.2 Gateway 

The „Gateway” is a hardware developed at our company for testing Electronic 

Control Units through communication interfaces, mainly CAN and FlexRay. It is 

equipped with the following hardware peripherals: 

 3 CAN channels 

 1 FlexRay channel 

 1 LIN channel 

 GPIO and ADC ports 

 Ethernet port 
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The hardware is equipped with two safety-critical TMS570 processors and an 

STM32 to act as an independent watchdog in case of runtime system failure. Since a 

FlexRay communication requires a minimum a two nodes for clock synchronization to 

operate, a separate processor is necessary to be able to cold start a FlexRay 

communication independently of other participating nodes. The GPIO/ADC port can be 

used to emulate the ignition signal, or check the voltage supply. The ethernet port is 

used to communicate with a PC when controlled by desktop applications. 

3.2.1 Embedded software 

The software provides the basis of functionality for both the desktop application 

(see 3.2.2) and the DSL. It uses FreeRTOS5 as its operating system to introduce multi 

threaded processing. 

Modules 

The software is organized into into modules according to funcionality. Each 

module has a distinct role in the system, usually encompassing a peripheral or a more 

advanced feature. The following notable modules can be found the software 

 Can Driver: Clients can configure the three Can hardware channels, and create 

transmit and receive message objects on them. Transmit messages can transmit 

data on its assigned channel, while data received on Receive messages can be 

processed by events (see below).  

 CanTransportLayer: Clients can communicate on the Can Transport Layer 

protocol defined by the AUTOSAR standard. Transport layers support 

transmission of data unable to fit into single messages. 

 FlexRay Driver: Clients can configure FlexRay channels. An independent 

optional second channel can be configured to use the Gateway as a coldstart or 

sync node. No data transmit is allowed on the second channel. Transmit and 

Receive objects can be created analogously to the Can Driver. 

                                                 

5 FreeRTOS is an open source real time operating system targeted at embedded 

environments.  
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 FlexRayTransportLayer: Clients can communicate on the FlexRay Transport 

Layer defined by the AUTOSAR standard. 

 Restbus: Restbus provides a data structure for creating frame structures identical 

to the one specified by AUTOSAR. Clients can construct Frame, Pdu, Signal 

objects and map them to each other. A transmit resource (either CAN or 

FlexRay messages) and a time period is assigned to each frame. The restbus 

transmits all configured frames and its contained signals periodically. Users can 

influence the transmitted data by setting individual signal values. Signals 

represent real-world information (e.g. wheel speeds, steering angle). In this way, 

the Restbus hides the underlying communication interface and lets users deal 

with information relevant in the application layer. 

 FrameDisassembler: Similarly to the Restbus, the FrameDisassembler expects a 

frame structure configuration. Instead of transmit resources, it expect Receive 

resources (CAN receive messages, FlexRay receive messages). Users interact 

with signals, but the values are read from incoming messages instead of setting 

them for transmission. The Disassembler allows the observation and processing 

of a communication from the application layer. 

 GPIO Driver: Clients can configure pins to input/output. Configured pins can be 

read from or written to. 

 EventManager: Listeners can register to events through the EventManager (see 

the section of events below). The Event manager is responsible for notifying all 

listeners when an event happens. 

 Ethernet/UDP Driver: Handles communication with desktop applications. 

 Commander: The commander interprets and executes the commands coming 

from a PC on the ethernet connection. 

A clear hierarchy between modules can be observed, where more advanced 

features depend upon driver modules.  
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3-1. Image – Module hierarchies 

 

Events 

Events are a way for modules to distribute information to clients. Modules can 

register to events they want to listen to, and in the case of events the modules broadcast 

the event to all listeners. Registrations happen dynamically during runtime, to prevent 

static coupling to all listeners6. Listeners can register for the following events: 

 Can Events  

 FlexRay Event 

 Can Transport Layer Event 

 FlexRay Transport Layer Event 

3.2.2 Java API 

While the embedded software provides the means to configure and use the 

Gateway, The Java API is the user interface throgh which actual configuration happens. 

For every embedded module there is a corresponding Java package. 

                                                 

6 This is also known as the Observer design pattern in the OOP community. 
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Connections 

Communication between the Desktop and the Gateway is done through 

UDP7over Ethernet. Gateways can be connected to by way of an assigned Ip address. 

After a connection is established a dedicated alive keeper oversees to its lifetime.  

Commander protocol 

 The commander serves as an adapter between the desktop and the embedded 

API. Individual function calls to the embedded modules are wrapped in commands at 

the desktop level. Commands store overhead information about their destination and 

identity. Commands received on the hardware get interpreted by the Commander 

module. A command response gives assurance that the command was executed, and if 

required, a return value or structure. 

Java events 

Users can register listeners implented in Java through Java interfaces. Events are 

sent through the connection and can be freely processed. The API offers most of the 

events availible in the embedded software for listening by implementing the desired 

interfaces. 

3.3 Gateway2Hell 

Gateway2Hell is a standalone Eclipse based application also known as an RCP8 

application. It offers GUI9s for Restbus simulation and Tracing.  

Configuration 

A communication bus, its participating nodes, and its defined messages, frames, 

pdus, signals and their mapping to each other are collectively called communication 

networks. There are established file formats to store these networks, for persistence and 

distribution. The most common are CanDB for CAN protocol and Fibex for FlexRay. 

 Configuration is done automatically by the application, based on gateway 

specific configuration files. The Eclipse Modeling Framework was used to create the 

                                                 

7 User Datagram Protocol 

8 Rich Client Platform 

9 Graphical User Interface 
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configuration models. Two separate meta-models were created for reasons of 

modularization and reuse. The Communication Configuration (ComCfg) model is a 

network description file similar to CanDB or Fibex (it stores both CAN and FlexRay 

configurations), whereas Gateway Configuration (FbgwCfg) maps the abstract 

resourses found in a ComCfg to a concrete realization of the stored communication 

network to be used by the hardware.  

Gateway2Hell offers parsers for both Fibex and CanDb for converting these into 

communication configurations. FieldbusGateway configurations can then be created 

from Comcfgs with a wizard. The wizard simply prompts the user to choose the frames 

(present in the referenced ComCfg) to be used by the Restbus or the Trace module. 

Based on the decision a transmit or receive message will be created from the abstract 

message in the ComCfg. 

Restbus 

Creates a GUI for changing the individual signals described in configuration 

files. 

Trace 

Users can trace the incoming and transmitted messages in a log window with 

various features to customize the view. 
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4 GatewayScript 

In following chapter, I am going to give a detailed explanation about the design 

and implementation process that led to the completed language. The process can be 

broken down into the following stages:  

4.1 Use case analysis 

My task was to create a language with the ability to effectively and concisely 

describe automotive communications and assign dynamic behaviour to them. Since 

softwares already exist targeted at the same domain it was a relatively straightforward 

process to translate it into a list of essential features to be provided by the language. 

CAPL10 is a script language with a similar purpose created by Vector Informatik 

GmbH11 to be run on their hardware products. Additionally our own existing software 

framework (Gateway2Hell) already provides a subset of the required functionality. 

 I collected several common applications (used at the company), that the 

language should be able to handle. 

Restbus simulation 

 Restbus (remaning bus) simulation is when we provide a simulated 

communication environment to a target ECU. This is usually done by the sending of 

periodic messages. The simulating node might be required to process incoming 

messages from the ECU. The transmitted data is either set by the test engineer or 

computed from received messages. 

Signal conversion 

 Signal conversion treats signals as its basic unit of operands. Operations are 

defined between signals, where the actual computation defined by the operations are 

performed on signal values. For example we can define a given signals value to be the 

sum of two other signal. Transmission of the signals can be handled by a Restbus. 

                                                 

10 Communication Application Programming Language 

11 Vector develops software tools and components for networking of electronic systems 
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Network adapter 

Adapters are used to connect incompatible communication networks. Signals 

might be in different messages, or missing. Adapters can transform and move signals to 

their correct message and position, or complement the communication with missig 

frames. 

Diagnostics/Flashing 

 Diagnostic and flashing (the downloading of binary files to the ECU) protocols 

are customarily implemented over transport layer protocols. 

Domain definition 

I collected the following list of domain concepts deemed to be important in such a 

language based on CAPL, Gateway2Hell and the use case analysis: 

 Transmit and Recieve data on CAN protocol 

 Transmit and Recieve data on FlexRay protocol 

 Communication configuration loading/persisting mechanism 

 Give access to the GPIO/ADC driver 

 Allow versatile low level data manipulation 

 CRC and checksum support 

 A language structure that allows periodic and triggered events 

 Support for transport layers and optionally for diagnostic protocols 

Gateway2Hell vs GWS 

 While Gate2Hell shares a lot of its core features with the DSL, one does not 

make the other obsolete, since both are targeted at differing situations. The DSL 

generates a standalone embedded software capable of running independently making it 

possible for it to operate autonomously without human supervision. On the other hand 

Gateway2Hell requires a constant live connection to a computer to function. In return it 

presents the communication in human readable form with the Trace feature. Trace 

makes it possible to both log and observe the communication in real time.  The DSL is 

designed to be able to express much more complicated communication behaviours, 
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which the desktop version is incapable of expressing. This makes the DSL the more 

versatile tool, while Gateway2Hell can be mainly used to verify the communication. 

In the end, the IDE and the whole infrastructure for the DSL will be integrated 

into the desktop application. Users will use the Gateway2Hell to code, compile and 

download the scripts to the Gateway. 

4.2 Planning phase 

As previously noted in the language purpose section, mapping a domain to a 

language should be thought through in advance. 

For behavioural structure I adapted a combination of event-based and procedural 

paradigms similar to what CAPL uses. Users define events with trigger conditions, and 

assign a sequence of statements to execute. 

Events 

There are three subtypes of events. Start events are triggered only once, at the 

start of the program. It can be used to initialize global resources and configuration. 

Timing events offer periodic triggering of events. In the case the period is zero seconds, 

execution happens once. This is a special case since it effectively takes up the role of a 

function allowing code reuse for other events. Communication events are triggered 

when receiving particular messages from the communication channels (CAN, FlexRay). 

It also provides the following code the information found in the message, most 

importantly the payload. It is also possible to listen to all events collectively. Events 

listening to specific messages enjoy priority when receiving, when a receive all event is 

present. 

Statements 

Statements can be separated into two interlocking components. An expression 

language modelled on the C language makes up the core part.  

A list of features implemented in the expression language: 

 Variable declarations and references 

 Type support for numeric, array and boolean types 

 Arithmetic and boolean operators 



 43 

 If-else statements 

 For, While, Do-While loops 

The other component gives access to the low level Gateway driver modules. The 

full API of the modules are ported into the languages abstraction set. The currently 

implemented modules are the following: 

 GPIO 

 CAN 

 Restbus 

 FrameDisassembler 

FlexRay Protocol and Transport Layers are omitted in the initial version of the 

language, and will later be included in subsequent iterations. 

Configuration 

 Since a well defined communication descripting structure already exists, I 

decided to reuse the EMF meta-models (FbgwCfg and ComCfg) to load configurations 

onto the Gateway from the script, instead of defining a separate structure or letting the 

users configure dynamically at run-time. 

Importing configurations shall be global, run-time independent and static, which 

is why they are declared independently of events. An arbitrary number of 

FieldbusgatewayConfigurations can be imported, with an option to add identifiers to 

each. This is to prevent name clashing by qualifying references to model elements with 

model identifiers. 

Code generation vs Interpreting 

 When comparing the advantages and disadvantages of interpretation versus 

translation in terms of implementational benefits and complexity, it became abundantly 

clear that implementing an interpreter for the GatewayScript introduces overwhelmingly 

more complexity than its counterpart. 

 Allowing variables and loops in the language requires the interpreter to keep a 

symbol table and a stack. With code generation it is enough to translate these concepts 

into the textual representation for the chosen GPL (C++).  
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Symbol tables keep track of existing objects (in our case, only variables) and 

resolves references between them. It usually handles lifetime and accessibility (related 

to scopes) checks.  

Stacks are traditionally used when dealing with nested scopes and function calls 

to manage the lifetime and visibility of local variables 

Additionally since interpretation would have to be done on the gateway (we 

want to avoid runtime dependency to a desktop environment), an intermediate byte code 

would have to be defined to be downloaded to the gateway for execution. Interpretation 

itself takes up runtime resources, which are critical to an embedded system, especially 

in one that has to keep up with strict real time communication protocols. 

Since it became evident early in the research that interpreting introduces 

significant complexities both to the development phase and the to the runtime 

behaviour, I decided to use translation into GPL (C++) code without further 

investigating the matter. Letting the compiler take care of the lowest level of code 

generation, significant optimialization can be achieved. 

Separation of concerns 

The three parts of a DSL implementation (talked about in section 2.1.2.), are the 

language, the execution engine and the target platform. In the case of the GatewayScript 

DSL Xtext will be used to create the language, Xtend for C/C++ code generation and 

the Gateway hardware acts as the target platform. Concerns, their type and 

implementations will be noted during the chapter. 

4.3 Grammar 

I am going to illustrate the GatewayScripts grammar by introducing the different 

parts of its meta-model inferred from the parser rules by Xtext. It should be noted that 

the semantic meaning of these grammar concepts are irrelevant from the viewpoint of 

the grammar. The represented functionality of these concepts are attached by the code 

generator and executed by the target platform.  

The language meta-model can be separated into five distinct categories. These 

are events, gateway configuration references, statements, expressions and function calls. 
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Events 

 

4-1. Image - Events 

The root element of a program, model can contain an arbitrary number of 

FieldbusGateway configurations, and AbstractEvents. AbstractEvents have five derived 

classes, three of which are also derived from an abstract RxEvent class. Events are 

defined in the following way in Xtext: 

AbstractEvent: 
 InitEvent | TimingEvent | CanRxEvent; 
  
InitEvent: {InitEvent} 
  'On' 'start' '{' 
  (lines += Statement)*  
 '}'; 
  
TimingEvent: 
    'On' 'timer' name=ID '{' 
     (lines += Statement)* 
    '}'; 
 
CanRxEvent: 
 ('On''Message'{CanRxEventOnId} canId = INT | 
 'On''Message'{CanRxEventOnMessage} gatewayRxMessageReference = 
GatewayRxMessageReference | 
 'On''Message''*'{CanRxEventAll})  
 '{' 
  (lines += Statement)* 
 '}' 
; 
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Depending on the keywords and arguments, the correct event type can be 

identified in all cases. 

FieldbusGatewayReferences 

References to the imported configurations are done indirectly through mapping 

classes. 

 

4-2. Image – Gateway references 

These classes have hidden references to elements in the actual FbgwCfg Ecore 

model. Using separate classes for mapping means, that extra information can be added, 

like storing a qualified attribute, to allow for model specific scoping. The import rule 

and an example reference rule: 

FbgwConf: 
 'import' path=STRING 'as' name=ID  
; 
 
GatewayTxMessageReference: 
 (modelName=[FbgwConf] Qualified ?='::')? namedElement = 
[FbgwCfg::CanTransmitMessage] 
; 

GatewayTxMessageReferenceRules can cross-reference existing FbgwConfg 

instances with an obligatory scoping keyword ’::’, setting the Qualifier flag to true. 
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Statements 

 

4-3. Image - Statements 

Statements represent both individiual lines and complete ifs, and 

for/while/dowhile loops. The derived classes of Statement are If, Loop, 

VariableDeclaration, Assignment and Expression. With the exception of expressions, all 

other concepts’ syntax are hardcoded into the grammar. 

Statement: 
 FunctionCall';' | VariableDeclaration';' | Assignment';' | Loop | If 
; 
 
VariableDeclaration: 
 (isStatic ?= 'static')? varType=VarType name=ID (initialized ?= '=' 
value = Expression)? 
; 

FunctionCalls return Expressions, so it is not part Ecore grammar (see the section 

about function calls). The VariableDeclaration rule has an optional isStatic flag, set if 

the keyword static is consumed. VarType is an enumeration containing the possible 

variable types. After the name of the variable, an optional expression can be added to 

initialize the variable. 

Expressions 

 The ruleset handling the parsing of arithmetic and boolean expressions can be 

viewed as a subgrammar of GatewayScript. The expression grammar should be able to 

process expressions like: 
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!(true && ( 3 + 2 * 4 > 12)) 

This is done by a modified version of the left-factoring introduced in section 

about the Xtext grammars (section 3.1.2.). We adopt the structure of the standard left-

factoring method, but introduce additional rules above it [5]. The lowermost four rules 

look like this: 

Comparison returns Expression: 
 AddSub ({Comparison.left=current} op = ComparisonOp right=AddSub)? 
; 
 
AddSub returns Expression: 
  MultDiv ({AddSub.left=current} op = AddSubOp right=MultDiv)*; 
 
MultDiv returns Expression: 
  Primary ({MultDiv.left=current} op = MultDivOp right=Primary)*; 
  
Primary returns Expression: 
 {Parenthized}'(' expr = Expression ')' | 
 {Not} '!' expr = Expression | 
 {BoolLiteral} value = BoolValue | 
 {IntLiteral} value=INT | 
 {VarRef} referencedVar = [VariableDeclaration] | 
 FunctionCall 
 ;  

Structuring the rule like this, introduces operator precedence into the parsing 

process (e.g. we want to parse 3 + 4 * 5, so that the four and five are part of the 

multiplication). The later a rule is inserted the bigger its precedence will be, since all 

rules start by delegating to the one below it, the lowermost rules are tested first for 

consumption. If the expected operator or value is not present, it jumps back to the caller 

trying to consume the actual operator of that rule. 

The complete list of operators and their relative precedent to each other, starting 

with the operator of the lowest priority: 

 Logical or: || 

 Logican and: && 

 Equality checks: ==, != 

 Comparison operators: >, >=, <, <= 

 Addition and substraction: +, - 

 Multiplication, divison, and modulo: *, /, % 

 Parenthesis, Negation (!), Literals, Variable references, Function calls 
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The meta model representation of the expression structure: 

 

4-4. Image - Expressions 

Function Calls 

Function calls are the individual API calls to the gateway wrapped inside 

language concepts. 

 

4-5. Image - Function calls 

Every function call is a derived class of the Expression base class, making it 

possible to embed calls into arithmetic and boolean expressions (so that their return 

values can be processed as part of an expression tree). Functions can also be called as 

standalone statements through the FunctionCall rule. Even though the rule returns an 

Expression the Statement rule delegates the FunctionCall rule specifically (the 



 50 

statement rule can be seen in the Statements section), to allow this behaviour (this is 

required since arithmetic expressions are not allowed as standalone statements).  

FunctionCall returns Expression: 
        'GPIO.' GpioModuleCall | 
        'CAN.' CanModuleCall | 
        'RESTBUS.' RestbusModuleCall | 
        'TRACE.' TraceModuleCall | 
        'Pdu' PduModuleCall | 
        {TimerModuleFunction} timer = [TimingEvent] '.' call = 
TimerModuleCall 
        ; 
GpioModuleCall returns Expression: 
 'toggleBit('{ToggleBit} gpioPin = GPIO_PIN')' | 
 'setDirection('{SetDirection} gpioPin = GPIO_PIN','gpioDirection = 
GPIO_DIRECTION')' 
; 
 

TimerModule calles are treated differently, because the start and stop timer functions 

must be called on existing objects. Thus the call itself is moved to a feature, so the 

parent object can contain the cross-reference.  

4.4 Validation and Scoping 

Two types of validations are used with the GWS. The first is model validation 

performing checks regarding events. A few example constraints: only one Receive All 

and Start event is allowed, multiple Receive events can not listen to the same CAN ID. 

The other, type checking is implemented for the expression language. The 

supported types are numeric and boolean, represented by an artificially created enum 

type Type. A type provider Xtend class assists in validation. ExpressionTypeProvider 

declares a getType dispatch method overloaded for all expression subclasses, returning 

their correct Type value. Additionally constraint checks are created for all subclasses. 

These constraints are static in nature, makig it easy to implement. For example, the < 

operator checks if both of its operands are numeric, and returns a boolean type when 

getType is called on it. One of its operands might be a multiplication which indeed 

returns the Type numeric, and in turn checks its own operands. This method results in a 

simple system for type checking, where subtypes provide their types to the containers, 

and checks contained expressions for type correctness against their own constraints. 

Consequently, in this approach complex expressions are validated recursively. 

Special scoping is implemented for referencing configuration resources found in 

the imported Ecore models. Imported FbgwModels are loaded real-time by a 
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background parser during editing. When attempting to create a cross-reference to a 

model element, the scoping mechanism automatically provides the valid possibilities to 

the user. It is possible to narrow down references to individual models by prefixing the 

reference with the model ID given in the import statement.  

4.5 Execution Engine 

Code generation is handled by Xtend template expressions and dispatch 

methods. Generation is organized into several classes with well defined responsibilities 

to keep a clear structure to the engine, and make introducing future features easier. 

When talking about class generation both the declaration and definition are included, 

meaning both the header and the cpp file is generated. 

The following Xtend classes make up the execution engine: 

GatewayScriptGenerator is the entry point of the generation process. It 

receives the AST for processing and distribution. It generates the derived action classes 

for the events, and the setup function instantiating events and actions. 

GeneratorHelper generates the modules concerning events. Its output are the 

TimerModule and NotificationProxy classes.  

FbgwConfigurator transforms the imported FbgwCfg models into code, by 

iterating through the tree model and processing the elements individually. It builds 

arrays and maps of the created objects to make later referencing possible.  

FbgwConfiguratorHelper contains the stateless methods (methods requiring no 

access to member or external variables) used by the as static methods to keep the 

generating class easier to understand. 

AbstractEventExtensions/ExpressionExtensions/StatementExtensions 

Extension classes are created for base classes with many subtypes. They consist 

of overloaded extension dispatch methods for all derived classes. They abstract the 

generation of the extended classes from the generator classes, making it significantly 

simpler to process them. The whole generation of the imperative behaviour (the actions) 

are handled by the Statement and Expression extension classes, as well as Event 

generation used by the GatewayScriptGenerator. 
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Derivable concerns are computed during code generation. These include 

specifying the size of array and maps, filling them dynamically (which translates to 

static assignments from the viewpoint of the generated code, being seemingly 

hardcoded), computing the common period of the timermodule. Cross references are 

also resolved during generation by translating the String or ID references to array 

indices. This is done by storing the created object (e.g. CAN message) in the C++ code 

in arrays to a known index. Said index is then assigned to the language reference (String 

or ID) in an Xtend map. Later cross-references can refer back to the map to find the 

referenced C++ object.   

4.6 Target Platform 

The target platform for the DSL is the embedded software, and can be split into 

three layers. The lowermost layer is made up by the the OS, driver modules and existing 

features providing functionality to the upper layers. 

The middle layer is the foundation upon which the generated code can be 

executed. It acts as an adapter between the lowermost layers native C code and the 

uppermost layers generated C++ code, and as the intermediary communication interface 

for the other layers. It delegates requests from upward, forwards events and abstracts 

OS features into pure C++ concepts. Besides acting as the bridge between layers, the 

constant part of the C++ software is also found here, along with base types for 

generation and utility classes. 

Utility classes include template arrays and maps to define type and size at 

compile time (making dynamic memory management obsolete), thread safe template 

variables for global resources (this is accomplished by using private FreeRTOS mutexes 

to protect write operations) and a mallocator class (to overload the new and delete 

operators provided by the compiler with our own mallocator algorithms written for the 

basic API.  

These are the fixed domain concerns, talked about in the Separation of Concerns 

section. This layer defines a structural skeleton, for the generated code to adhere to. 

This predefined structure makes it possible for the upper layer to fit into the consistent 

parts. 
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4-6. Image – Target platform UML diagramm 

There are four main classes to separate the core features of the language into 

independent units. The Gateway Configurator is responsible for configuring the 

gateway (generated accordingly to the imported EMF models). It also builds arrays and 

maps for the created object instances (e.g. CAN messages, frames, signals, etc.) for the 

run-time components to access. 

For event handling, two separate classes are responsible for the Timing and 

Receive events, respectively. The timing module is provided with a core function by the 

middle layer that is periodically called by a FreeRTOS task. The task period is specified 

by the code generator, computed based on the (this is a derivable concern) Timing 

events created in the script (it finds the greatest common divisor). The core function 

keeps a counter to keep track of time. Timing event sstore their period in ticks. In each 

tick, each event is checked for its triggering conditions. 

Receive event handling is managed by the NotificationProxy. The class registers 

itself as a CAN Event Listener to the CAN driver. Upon receiving a message, it 

delegates the information it carries to the correct event, and calls its statements. The 

class possesses a map, where CAN IDs are mapped to the concrete events. This makes 

delegation to the events simple, since events coming from the API carry this 

information. 

The imperative behaviour of events are assigned by way of Actions.  Action is 

an abstract base class with a single virtual function, perform. All events implement their 
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own derived Actions, overriding the perform function with code corresponding to the 

statements assigned to the event in the script. Perform has multiple declarations – a 

functions declaration (sometimes called signature) is its combination of its return type 

and the number and type of its arguments, since different events may need to pass down 

arguments to the action (receive events pass down the payload found in the CAN 

message, whereas Timing events have no need of arguments).  

All event types have an abstract base class as well, which has a pointer reference 

to an abstract action class. Derived events perform actions by calling the inherited 

Action pointers virtual perform function (separating behaviour from a class by hiding an 

implementation behind pointer is called the pimpl (pointer implementation) idiom [7], 

and is a well established concept). Structuring the relationship between event and action 

classes this way makes the implementation of events and actions fully independent to 

each other (meaning changes to one have no effect on the other). 

Event and action creation and assignment to each other and to the correct 

modules happen in a separate setup function called once at initialization. Cross 

references between resources (e.g. references to the communication configuration 

resources from actions), are done through the second layer. The central class 

ScriptManager is implemented with the Singleton design pattern [7] making it possible 

to organize all resources behind a single reference, thus making it accessible to all 

objects.  All modules found in the top layer can be accessed from the ScriptManager, 

Singleton classes restricts object count to a single instance of the class, and 

makes this instance globally accessible. This is commonly done by making the 

constructor private (forbidding clients of constructing objects), and by offering a public 

static reference to the singleton object. Singletons are considered dangerous in multi 

threaded environments since access can be gained uniformly from all threads 

simultaneously. 
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5 Documentation 

The following chapter is a standalone complete documentation of the 

GatewayScript. It details the present features along with instructions, guidelines and 

examples. 

5.1 Statements 

Statements are smallest element of the language, representing an action 

Types 

There are four supported types: byte, short, int and boolean. Byte is one byte in 

size, short is two bytes and an integer is four bytes. Boolean has two values: true and 

false. 

Variables 

Variables can be declared and optionally initialized in the following manner: 

byte b; 
short s = 42; 
static int i; 
boolean bo = true; 

Adding the static keyword in front of a variables type, persists the variable’s 

value between event triggerings. Static values are initialized on the first call of the 

event.  

Created variables can be read and written to in statements and expressions. 

i = s + 420; 

Expressions 

 The language is capable of evaluating arithmetic and boolean expressions. 

Evaluated expressions infer a type from their contents, whereupon they can be used in 

the appropriate context. 

int i = 3 + (4 * 5); // okay 
int j = 3 < 4; // not okay, evaluated to be boolean 
boolean b = 3 < 4; // okay 
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Comments 

Comments can be written anywhere. There are two ways to write comments in 

the code: 

// This is a line comment 
 
/* 
 This is a block comment 
*/ 

5.2 Loops and Ifs 

Loops 

There are three kinds of loops, taken from the C language. 

for(<assignment>; <boolExpression>; <statement>) { 
 <statements> 
} 
 
while(<boolExpression>) { 
 <statements> 
} 
 
do { 
 
} while(<boolExpression>) 

Ifs 

 If statements are executed if their boolean condition is evaluated to be true. An 

arbitrary number of else if statements can follow, and a single optonal else statement, 

executed when none of above the conditions were met 

if(<boolExpression >) { 
 <statements> 
} else if(<boolExpression >) { 
 <statements> 
} else { 
 <statements> 
} 

5.3 Configuration 

Configurations stored as FieldbusGatewayConfigurations can be imported into 

the code with the following formula: 

import <absolutepath\exampleCfg.fbgwcfg> as <modelId> 

An arbitrary number of configuration files can be imported. To prevent name 

clashing, references can be restricted to a given models scope, identified by its modelId. 
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For example if there is a model imported as ModelA, and one as ModelB, and in both 

models there is a Frame called WheelFrame, the two frames can be accessed this way: 

modelA::WheelFrame 
modelB::WheelFrame 

5.4 Events 

Statements are organized by assigning them to events. When an event occurs its 

statements are executed in order. There are three types of events: Start, Timing, 

Message. 

Events start with the on keyword followed by an event specific keyword and 

symbol. An event body follows, containing the statements enclosed by brackets. 

Start event 

 The start event is triggered by the beginning of the program and executes only 

once. There can only be one start event per program. 

On start { 
 // Initial statements  
} 
 

Timer Event 

 Timer events are triggered periodically specified by a period assigned to them. 

Timer events are created with a name, and are inactive by default.  

on timer exampleTimer { 
 // Timer statements 
} 
 

The above code creates a timer object with the name exampleTimer. The 

following functions can be called by timer objects: 

void start(uint16 aPeriod); 
void start(uint16 aPeriod, uint16 aOffset); 
void stop(); 

The start function starts the timer with the given period. Optionally an offset can 

be specified to delay the start. The default value of the offset is zero. The period and 

offset shall be specified in milliseconds. Subsequent starts to a timer will reset both the 

period and the offset. The stop function halts the timer, returning it to an inactive state. 
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For example our example timer can be started at the beginning of the program to 

be called once every ten milliseconds with a second delay; 

On start { 
 exampleTimer.start(10, 1000); 
} 

Message Event 

 Message events are triggered when their respective messages are recieved on 

CAN communication. CAN messages can be assigned to events in one of three ways. 

Assignment to CAN ID: triggered when a CAN message with the given ID is 

received. 

On message 123 { 
 // Statements to execute when a message with the ID 123 is received 
} 

Assignment to CAN message: triggered when a CAN message referenced from 

the configuration model is received. Pressing ctrl+space after the message keyword will 

bring up all available Receive messages from the configuration. 

On message ExampleCanMsg { 
/* Statements to execute when a message with the ID of ExampleCanMsg 
is received */ 

} 
 

Assignment to all messages: it is possible to listen to all messages from a single 

event. There can only be one event listening to all messages per program. If a separate 

event is listening on a given ID, it will be prioritized over the listen to all event. 

On message * { 
// Statements to execute when a CAN message is received. 
} 

5.5 Built-in modules 

Gateway functions are organized into and acessed through modules. A modules 

functions can be called by prefixing the function call with its respective modules name. 

Objects enclosed by < > are references from imported configurations. Pressing 

ctrl+space will bring up all available options. 
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Gpio 

Calls to this module expect GPIO enums. The following enumerations exist in 

the module:  

For representing the individual pins on the hardware. 

GPIO_PIN values: GPIO_0, GPIO_1, GPIO_2, GPIO_3, GPIO_4, GPIO_5, GPIO_6, 

GPIO_7. 

GPIO_DIRECTION values: GPIO_INPUT, GPIO_OUTPUT. 

setDirection sets the specified pin to the specified direction. 

void GPIO.setDirection(GPIO_PIN aPin, GPIO_DIRECTION aDirection); 

toggleBit toggles the output value on the specified output pin. 

void GPIO.toggleBit(GPIO_PIN aPin); 

Can 

Transmit transmits a CAN message with the specified ID. Can be called by can 

messages referenced from imported configurations. 

void CAN.transmit(int aId); 
void CAN.transmit(<CanMessage>); 

Restbus 

Disabling a restbus element will result in all contained elements being disabled, halting 

the transmission of all the affected signals. 

RestbusStart 

void RESTBUS.start(); 

RestbusStop 

void RESTBUS.stop(); 

RestbusFrameDisable 

void RESTBUS.frame(<Frame>).enable(); 

RestbusFrameEnable 

void RESTBUS.frame(<Frame>).disable(); 

RestbusFrameTransmit 

void RESTBUS.frame(<Frame>).transmit(); 
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RestbusPduDisable 

void RESTBUS.pdu(<Pdu>).disable(); 

RestbusPduEnable 

void RESTBUS.pdu(<Pdu>).enable(); 

RestbusSignalDisable 

void RESTBUS.signal(<Signal>).enable(); 

RestbusSignalEnable 

void RESTBUS.signal(<Signal>).disable(); 

RestbusSignalSetValue 

void RESTBUS.signal(<Signal>).setValue(int aValue); 

Trace 

TraceStart 

void TRACE.start(); 

TraceStart 

void TRACE.stop(); 

TraceGetSignalValue 

int TRACE.signal(<Signal>).getValue(); 

5.6 Examples 

Example 1 

An example program demonstrating some features. 

import "C:\\docs\\CanRxNode.fbgwcfg" as config 
 
On timer OneSec { 
 GPIO.toggleBit(GPIO_0); 
 CAN.transmit(TpTxFlowControl); 
} 
 
On timer timer_500 { 
 GPIO.toggleBit(GPIO_1); 
 CAN.transmit(23); 
} 
 
On Message * { 
 GPIO.toggleBit(GPIO_2); 
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 boolean timerFlag = false; 
  
 if(timerFlag) { 
  OneSec.start(1000); 
  timer_500.start(500); 
 } else { 
  OneSec.stop(); 
  timer_500.stop(); 
 } 
  
 timerFlag = !timerFlag; 
} 
 
On Message Cluster_GeneralInformation_N1_Frame_MSG { 
 CAN.transmit(22); 
} 
 
On start { 
 GPIO.setDirection(GPIO_0,GPIO_OUTPUT); 
 GPIO.setDirection(GPIO_1,GPIO_OUTPUT); 
 GPIO.setDirection(GPIO_2,GPIO_OUTPUT); 
}  

Example 2 

An actual program created to be a signal converter in a car where the Steering 

unit and the rest of the car communicated with two incompatible CAN databases. The 

gateway served as the connection between the two systems, and forwarded the relevant 

signals in the expected frames to the Steering unit. When a message containing relevant 

signals arrives, we read its signals’ values and write it to the forwarded restbus signals’ 

values. 

import "C:\\Files\\EPAS_C1A.fbgwcfg" as EPAS_C1A  
import "C:\\Files\\VEH_C1R.fbgwcfg" as VEH_C1R 
 
// Rx from veh 
 
On Message BRAKE_FWHEEL_R1_Frame_MSG { 
 int FR; 
 int FL; 
 int speed; 
  
 FR = TRACE.signal(WheelSpeed_F_R).getValue(); 
 FL = TRACE.signal(WheelSpeed_F_L).getValue(); 
 speed = TRACE.signal(VehSpeed).getValue(); 
  
 RESTBUS.signal(VehicleSpeed).setValue(FR); 
 RESTBUS.signal(WheelSpeedFR).setValue(FL); 
 RESTBUS.signal(WheelSpeedFL).setValue(speed); 
} 
 
On Message BRAKE_RWHEEL_R1_Frame_MSG { 
 int RL; 
 int RR; 
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 RL = TRACE.signal(WheelSpeed_R_L).getValue(); 
 RR = TRACE.signal(WheelSpeed_R_R).getValue(); 
  
 RESTBUS.signal(WheelSpeedRL).setValue(RL); 
 RESTBUS.signal(WheelSpeedRR).setValue(RR); 
  
} 
 
On Message BRAKE_SWA_R1_Frame_MSG { 
 int wheelAngle; 
  
 wheelAngle = TRACE.signal(SteeringWheelAngle).getValue(); 
  
 // The read wheelAngle signal is larger than the one written to, 
 // so we cut off the ends of the interval 
 
 if(wheelAngle < 21966) { 
  wheelAngle = 0; 
 } else if (wheelAngle > 43566) { 
  wheelAngle = 21600; 
 } else { 
  wheelAngle = wheelAngle - 21966; 
 } 
  
 RESTBUS.signal(SteeringWheelAngleRaw).setValue(wheelAngle); 
 RESTBUS.signal(SteeringWheelAngleCorrected).setValue(wheelAngle); 
} 
 
On Message ECM_Control_RN1_Frame_MSG { 
  
 // It is not necessary to declare separate variables 
 RESTBUS.signal(PowerTrainStatus).setValue( 
 TRACE.signal(EngineStatus).getValue() 
 ); 
} 
 
// Rx from epas 
On Message DONGLE_EPS_A1_Frame_MSG { 
 int dongle1; 
 int dongle2; 
 int dongle3; 
  
 dongle1 = TRACE.signal(EPAS_C1A::DongleEPS1).getValue(); 
 dongle2 = TRACE.signal(EPAS_C1A::DongleEPS2).getValue(); 
 dongle3 = TRACE.signal(EPAS_C1A::DongleEPS3).getValue(); 
  
 RESTBUS.signal(VEH_C1R::DongleEPS1).setValue(dongle1); 
 RESTBUS.signal(VEH_C1R::DongleEPS2).setValue(dongle2); 
 RESTBUS.signal(VEH_C1R::DongleEPS3).setValue(dongle3); 
} 
 
 
On start { 
 RESTBUS.start(); 
 TRACE.start(); 
 RESTBUS.signal(SwaSensorInternalStatus).setValue(5); 
} 
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6 Summary 

The language in its current state is equipped with an editor (with validation and 

auto-complete), and generates valid executable C++ code. Compilation and 

downloading has to be done manually by the user. In the future both the editor and the 

compilation and downloading process will be integrated into Gateway2Hell.  

Debugging is currently not supported by the language. Since the generated 

software runs independently from the desktop, this is impossible to implement. An 

alternative solution would be to build a separate interpreter that transforms 

GatewayScript code into a Java-based software that emulates the gateway. Since Java 

code can be debugged, this eliminates the need to design a debugging module. In this 

scenario users can run and debug simulations in the IDE before downloading it to the 

hardware. 

Future features for the language to implement: FlexRay communication protocol 

and transport layers. Diagnostic and flashing protocols can be implemented on top of 

the language by the users. Optionally these can later be moved into the supported 

language features. 

The language with its currently implemented features can be used to create 

restbuses, signal converters and network adapters. 

Thanks to GatewayScript, applications of these types can be developed vastly 

faster, and require no gateway specific knowledge. Projects at the company can freely 

create software, without support from the Gateway development team. 
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