
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Implementation of a webserver on a DSP
processor

BSc Thesis

Author Supervisors

Bálint Csengeri Károly Molnár

György Orosz

December 14, 2012

Contents

1 Introduction 10

2 Technologies 13

2.1 Embedded webservers . 13

2.1.1 GoAhead webserver . 14

2.2 Server side technologies . 14

2.2.1 C/C++ . 14

2.2.2 CGI . 15

2.3 Client side technologies . 15

2.3.1 HTML . 15

2.3.2 CSS . 16

2.3.3 XML . 17

2.3.4 JavaScript . 18

2.3.5 AJAX . 18

3 Design 20

3.1 Hardware components . 20

3.1.1 ADSP-BF527C processor . 20

3.1.2 ADSP-BF527 EZ-KIT LITE evaluation board 21

3.2 System overview . 22

3.3 Embedded software resources . 23

3.3.1 System Services . 23

3.3.2 VDK . 23

3.3.3 lwIP . 24

3.4 Client resources . 25

3.4.1 jQuery . 25

3.4.2 Plotting charts . 25

3.5 Embedded software design . 27

3.5.1 System structure . 27

3.5.2 Webserver . 28

3.5.3 Audio . 29

3.5.4 UART . 31

3.5.5 LEDs . 33

3

3.5.6 Buttons . 34

3.6 Client side design . 35

3.6.1 Client webpage design . 35

3.6.2 Script design . 35

3.7 Client - server communication process . 36

4 Implementation 37

4.1 Guidelines . 37

4.1.1 Reusable coding with layers . 37

4.1.2 Comments . 38

4.2 Embedded coding . 39

4.2.1 Audio driver . 39

4.2.2 LED driver . 40

4.2.3 Button driver . 40

4.2.4 Communication between threads . 40

4.3 Web programming . 40

4.3.1 HTML . 40

4.3.2 Javascript . 42

4.4 Webcomp module . 42

5 Performance 44

5.1 Speed of the service . 45

5.1.1 Client side . 45

5.1.2 Server side . 45

5.2 Bottleneck . 46

5.3 Stability . 46

5.3.1 Client side stability . 46

5.3.2 Server side stability . 46

5.4 ADC voltage parameters . 47

5.4.1 ADC voltage range . 47

5.4.2 ADC voltage calibration . 47

5.5 Frequency parameters . 47

5.5.1 Frequency range . 47

5.5.2 Frequency measurement accuracy . 47

6 Future improvements 48

6.1 The potential of technology . 48

6.2 Further possibilities . 48

6.2.1 EJscript investigation . 48

6.2.2 User authentication . 48

6.2.3 Con�guration by several users . 49

6.2.4 More recent GoAhead . 49

6.2.5 Jsocket . 49

4

6.2.6 Frequency estimation . 49

6.3 Porting to di�erent hardware . 50

7 Summary 51

List of �gures 53

Bibliography 55

5

HALLGATÓI NYILATKOZAT

Alulírott Csengeri Bálint, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg

nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (sza-

kirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy

azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelm¶en, a forrás megadásá-

val megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerz®(k), cím, angol és magyar nyelv¶

tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhet®

elektronikus formában, a munka teljes szövegét pedig az egyetem bels® hálózatán keresztül

(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka

és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek

esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhet®vé.

Budapest, December 14, 2012

Csengeri Bálint

hallgató

Acknowledgements

First of all, I would like to express my appreciation to ProDSP Ltd. for making it

available for me to work on this project. I am much beholden to my exterior supervisors,

Károly Molnár and László Balogh for their time, expertise and patience answering my

questions and for their encouragement. In addition, I am specially grateful to Gergely

Molnár for his help of building the client website with his great ideas, experience and

helpfulness.

Abstract

The purpose of this project is to implement a portable solution for con�guring and real-

time monitoring an embedded control system, by a simple webpage interface. The reader

of this thesis is going to get a review of the used technologies, programming guidelines,

the architecture of the system, the performance of the application and the communication

process. Furthermore, some implementation tricks, and future development opportunities

are discussed.

The example application was created as desired, and its proper functioning has been

veri�ed.

The frame of the application is the communication �ow of Javascript with a custom

embedded HTTP-server that runs on the DSP. The client starts the communication peri-

odically with an AJAX query. The server parses the request, initiates the con�guration of

itself based on the data received. Afterwards, the server sends the requested data or status

information. In addition, the measurement of the parameters of an analog audio signal and

other con�guration processes were added to demonstrate the capabilities of the system.

Moreover, a direct data (spectrum of the audio signal) visualization module was added to

the client webpage.

This solution could be part of any medium-high performance industrial embedded project

due to its fairly low resource need. The user can access the hardware and software resources

of the system by a very easy-to-use webpage, which is a much more convenient way than

using a separate program, because only a web browser is needed with a Javascript engine

on the client machine.

8

Kivonat

A szakdolgozatom célja, hogy egy beágyazott irányító rendszerekben alkalmazható modult

megtervezzek és megvalósítsak, ami lehet®séget biztosít arra, hogy a beágyazott rendszer

kon�gurálható és meg�gyelhet® legyen egy egyszer¶ weboldalon keresztül.

Az olvasó áttekintést kap a használt technológiákról, a programozási irányelvekr®l, a

megvalósított rendszer felépítésér®l és a használt kommunikációs csatornáról. Továbbá

bemutatunk néhány trükkös megoldást a megvalósítás részleteib®l és néhány ötletet a

továbbfejlesztés lehet®ségeir®l.

A kezdeti kit¶zött célt sikerült elérni, egy ténylegesen m¶köd® alkalmazás született.

A rendszer alapja egy kommunikációs csatorna létrehozása a kliens oldali Javascript

program és a beágyazott, jelprocesszoron futó HTTP-szerver között. A kliens a kommu-

nikációs csatornán aszinkron periodikus kéréseket (AJAX) küld. A szerver feldolgozza a

kéréseket, végrehajtja a rendszeren a kérés által speci�kált változtatásokat. Ezt követ®en

visszaküldi a kliensnek a kért adatokat vagy státusz információt. A jelprocesszoron ezen

funkción felül egy analóg jel mérése és feldolgozása, valamint további kon�gurációs folyama-

tok is megvalósításra kerültek, annak érdekében, hogy demonstráljuk a rendszer lehet®ségeit

és képességeit. Továbbá a mért jelb®l el®állított amplitúdóspektrum vizuális megjelenítését

is elértük a kliens oldalon.

Az alacsony er®forrásigénye miatt, a létrehozott rendszer ipari projektekben is alkal-

mazható. A felhasználó tetsz®leges hardver- és szoftverer®forrásokat érhet el egy nagyon

egyszer¶en használható weboldalon keresztül. Ez egy sokkal kényelmesebb megoldás, mint

egy külön futtatandó program a számítógépen, mert nincs hozzá másra szükség, mint egy

böngész®re, ami Javascript támogatással rendelkezik.

9

Chapter 1

Introduction

In this chapter, I shortly explain the tasks needed to create the working example appli-

cation. Additionally, I list the motivation and the technologies that were covered. Finally,

the basic structure of the document is introduced.

It is a common industrial need to monitor and con�gure embedded control systems in

real-time. This can be done by implementing a simple webserver application on the control

system which can monitor numerous signal and hardware parameters and con�gure the

algorithms running or the hardware itself. The most important speci�cation of the system

is to implement a monitoring and con�guration utility to provide the easiest interface pos-

sible for the management of an embedded system, where no special programs or runtime

libaries are needed on the client side, just a common web browser. The embedded system

provides a simple-to-use webpage which is managed dynamically depending on the cur-

rent state of the control system. During this task, I could acquire knowledge from many

di�erent areas that was needed to solve the problems arised. It was essential to learn the

development hardware board and its programming technologies, the use of an embedded

real-time operating system, the TCP/IP protocol stack, web programming and some signal

processing techniques. According to the knowledge requirements of the task, it is on the

very edge of the embedded and the non-embedded �elds, where technologies nowadays are

not so standardized yet. The solutions for the problems that arise in this area are some-

times quite custom and special therefore they are not reusable e�ciently. Thus I was trying

to implement a technology that could be reused in di�erent platforms. Additionally, I tried

not to utilize the special properties of the system to avoid the probable extra di�culties

of porting the solution to a di�erent environment.

The example application contains some signal measurement features: frequency esti-

mation, Root Mean Square (RMS) estimation, peak detection and real-time spectrum

representation. Additionally, the project yields some hardware and algorithm con�gura-

tion features from the webpage: frequency estimation method, FFT resolution and direct

change of the state of the LEDs. In addition, a simple event detector module has been im-

plemented, which counts the button push events. A simple character based UART console

was added to the project as well, mainly for debugging purposes, but it could be used for

direct changing and monitoring the state of the system by avoiding the Ethernet link and

10

the client side. All the speci�ed functionalities were successfully created, the system was

calibrated and the proper operation was veri�ed.

The motivation for the project was primarily a potentially real industrial need, but it was

also a very e�ective way of learning about embedded systems and about the very border

of the embedded and the PC worlds. Speci�cally, all the following areas were covered:

• a HTTP server

� basic structure,

� operation,

� con�guration,

• the embedded system

� software development,

� reusable code implementation by using layers,

� con�guration,

� performance,

� limits,

• a certain embedded real-time operating system (RTOS)

• advanced driver development for the embedded system

� Ethernet,

� UART,

� Audio Codec,

• some signal processing methods

• basics of advanced web programming

� CGI,

� Javascript,

� AJAX.

In chapter 2, a review is given about programming and scripting technologies that could

be used on the client and the server side, the webservers are introduced in general and the

chosen one in detail.

In chapter 3, the questions related to the embedded and the client design of the example

system are discussed. I expound the available hardware and software resources, the audio

signal measurement layout, the software schematic and the �owcharts and their explana-

tion of the processes at the embedded system, the client page and script design and the

communication channel between the server and the client.

11

In chapter 4, a review of the coding policies and techniques is given, which were used for

making the code easily readable, maintainable and understandable. Moreover, the tricks

learned along the way are explained, too.

In chapter 5, the performance output of the application is discussed. Additionally, the

global capabilites, the stability, the measured bottleneck of the system and the attributes

of the measurement are presented.

In chapter 6, some suggestions are given about the usability of the solution and the

possible enhancements. Some areas of the industry are also listed where it can be uti-

lized successfully. I also demonstrate the shortcomings of the implemented application.

Furthermore, the porting possibilities are covered.

Finally, in chapter 7, the work and the results are summarized.

12

Chapter 2

Technologies

In this chapter, the programming and scripting technologies are introduced that were used

for client and server side development.

2.1 Embedded webservers

Webservers establish and control the information �ow between the client and the server.

This is achieved by generating and sending webpages to clients.

Embedded webservers try to provide similar functionality as normal webservers, but due

to their embedded nature, they are obviously more di�cult to con�gure, less dynamic and

less advanced due to the lack of computing power and system resources. Using brute force

algorithms are not possible, and it is a common need to achieve as low resource usage as

possible.

On embedded servers, no real server-side high abstraction level script interpreters are

available for server side programming (such as PHP, PERL, Python, etc.), everything has

to be parsed and put together in the lower abstraction level language of the embedded

system (typically C/C++).

Embedded systems tend to have a single controller (microcontroller or digital signal

processor), which is responsible for multiple di�erent tasks, for example real-time control

of an embedded system. Hence, the monitoring and con�guring interface that is realized by

a webserver is preferred to run in the background when there is nothing more important

to do, typically considered as low priority task.

Embeddable webservers have great variety, some of them are open source, and directly

compilable only on Linux/Windows based systems, but not in the real-time operating

system that we use, the VisualDSP++ Kernel. Analog Devices ported a quite lightweight

and usable webserver (GoAhead) onto their own devices, but later they removed it from the

usable modules1 for commercial reasons, altough the old source code remained available.

Hence, the GoAhead webserver was chosen, mainly because it was already ported to some

similar devices (DSPs) and it was considered to be the fastest way to make progress.

1from VisualDSP++ 5.0 Update 9

13

2.1.1 GoAhead webserver

The GoAhead webserver [10] is lightweight enough to be used on a Black�n project (even

on lesser processors). It supports more functionalities than needed in this project. The

basic functionalities of the GoAhead webserver are:

• Active Server Page Support,

• EJscript Support,

• EMF database compatability,

• form processing,

• URL requests from memory,

• basic security (User Management),

• Digest Access Authentication,

• SSL,

some of which need an active �le system (SSL, User Management), however most of the

features are able to run purely from memory.

As the usage of a �le system is completely optional, we decided not to use it, as the server

can run even faster, when it is running completely from fast access memory. Moreover, the

presence of a �le system is a great dependency, which might not be a�ordable on every

embedded system. While not having a �le system, it is emulated for the client (webpage

at the browser), meaning information is accessed via standard URL requests and forms.

The GoAhead implementation (last modi�ed in 2007) proved to be stable, altough the

used source code contains several types of warnings, some of which could result in a runtime

error. For example, a stack over�ow error is able to occur quite easily when the server faces

a relatively large amount of requests2. Other than this I did not experience any systematic

error.

By now, some more recent GoAhead implementations exist, which have slightly dif-

ferent code structure, hence the already ported old revision was used to avoid possible

incompatibities.

2.2 Server side technologies

2.2.1 C/C++

The project requires C/C++ as development languages as it runs on a DSP. The devel-

opment environment of Analog Devices is called VisualDSP++. Under VisualDSP++ C,

C++ and assembly languages are allowed to be mixed, every module should be written on

2This "large amount of requests" would be negligible load for a standard internet webserver, but we
must never forget that the whole performance of the system is incomparably lower, and the intened use is
not the public internet.

14

its most suitable abstraction level to best ful�l its purpose. VisualDSP++ contains a com-

piler that supports the features described just before, which is a quite common expectation

in embedded systems.

VisualDSP++ lacks some important features, which could speed up the debugging pro-

cess, therefore some algorithms and code blocks that will be platform independent or can

easily be emulated by exterior software such as signal processing methods should be im-

plemented in a more convenient environment, for example in Microsoft Visual Studio. The

greatest advantage of Visual Studio is that some common coding errors (e.g. array indexing,

memory violation, etc.) can be discovered and �xed incomparably easier.

2.2.2 CGI

Common Gateway Interface (CGI) is a standard in web programming. It is a common

practice that server side processing programs are CGI scripts which are called by URL

request with parameters from the client. The source code of CGI scripts are not reachable

from the client, the server interprets the URL speci�ed script by its interpreter engine

with the parameters of the request. Common server side scripting languages are PHP, Perl,

Python, etc. all of which are very high abstraction level and robust interpreted languages

with high resource need. Thus, in our case, running any script interpreters are not possible,

particularly due to the lack of resources. Fortunately, from the point of view of the client

it is completely transparent how the results are created, the only thing that matters is the

proper format of the output. This transparency allows the webserver to receive and parse

the information and answer to the requests using a quite custom non-script based CGI

interface. The consequence of this custom solution is that everytime a new functionality3

is to be added, a new embedded side service function written in C/C++ has to be added

instead of writing a separate �le that contains a server side script.

GoAhead server has a module that provides a server side EJscript C interpreter engine

which could have been used, but the custom solution was considered to be easier to use

and to have much rapid runtime.

2.3 Client side technologies

In this section, the standards, languages and techniques available for client side develop-

ment are introduce.

2.3.1 HTML

HyperText Markup Language (HTML) [9] is a markup language with which we can create

webpages that are displayed by web browsers.

Switches, named tags con�gure the behavior of the text that is surrounded by them.

HTML �les contain HTML objects (e.g. tables, paragraphs, etc.) all of which is possible

to be assigned with a unique ID or name.

3meaning a new type of request

15

Two main ways exist for the creation of HTML pages: What You See is What You Get

(WYSIWYG) method (e.g. MS Frontpage), or writing direct HTML code in a text editor

manually. Both methods have advatages but if an optimal and stable webpage is to be

created, manual editing should be chosen. WYSIWYG HTML editors tend to put a high

amount of unneccessary generated code fragments in the output HTML code, which can

result in instability and unreasonably big code size, which rarely matters due the common

speed requirement of webpages. The most e�cient and frequent way of creating HTML

pages is manual editing in a text editor. We can �nd great text editors (e.g. Notepad++),

that can identify the language used, and provide numerous ways to aid our coding process:

• coloring code segments (data types, comments, etc.),

• highlighting language keywords,

• adjusting code structure automatically (text tabulation),

• basic syntax check.

Moreover, online editors4 are available too on the internet, which tend to contain an editor

panel and a viewer window, where the changes in the HTML code are displayed auto-

matically. In addition, these online editors often provide a support for script (Javascript)

editing, which is found to be very useful.

HTML pages can be made more dynamic by client-side scripts (such as JavaScript).

There are tags and attributes in the HTML language that in�uence the style of the text,

however webpage styling is frequently performed by Cascaded Style Sheets (CSS). HTML

language primitives are considered to be easy to learn, many good and complex examples

and copy-pastable templates are available on the internet on di�erent HTML explanatory

sites [17].

There are obvious problems with HTML. It is a quite unpleasant behavior of HTML

(and generally of markup languages) is that no "debugging" opportunity is available, just

basic sytax check. The HTML viewers (web browsers) are able to be considered as the

debuggers as well. This is caused by the very nature of markup languages, as they just

set how the structure of text and objects would appear. Consequently, in a rather massive

project, complexity reduction techniques (CSS, embedding HTML pages into each other,

etc.) should be used to make it easy to �nd errors.

2.3.2 CSS

Cascading Style Sheets (CSS) [9] is a style description language supported by all browsers.

CSS is suitable for con�guring the visual appearance of objects of the HTML/XHTML

documents in detail.

CSS insertions could be put in the HTML document itself, but according to a more

common practice, it takes place in a separate �le (.css) accompanied with the HTML �le.

4for example: http://jsfiddle.net/

16

http://jsfiddle.net/

The browser queries the speci�ed CSS �le after �nding its include directive in the HTML

source, just like a picture.

The main advantage of CSS is that the complexity of the HTML documents become

greatly reduced by not containing any style setting information, consequently the mainte-

nance of the style and the whole webpage become much easier as core objects and style

description become disunited. Another signi�cant advantage of using CSS is that certain

style �les are accessible from multiple HTML sources, hence the maintenance of the style

become concentrated in one �le instead of multiple complex attributes of HTML objects.

2.3.3 XML

Extensible Markup Language (XML) is a markup language as well as HTML, but it is not

standardized or prede�ned at all, every data format is completely user speci�ed. XML has

a completely di�erent goal than HTML.

The very purpose of creating XML is to store information in text based format. XML

�les can be put together or parsed at both client and server side. Tags may be de�ned for

searchability or other purposes, but they are not obligatory.

The advantage of XML based information storage is that data is visible, meaning that

it is readable for both humans and computers. Data structures and objects are de�ned

manually, this results in logical and easily parsable data structures.

At this project I only use an alternative of XML when sending data to the client, in a

simple no-tagged format. The exact format was originated from Java (JSON).

The use of a completely text based data structure may sound strange as it takes part

in an embedded project where saving of resources is the biggest deal. In the PC world it

is widespread because its robustness, easy processability and standardized and viewable

appearance compared to a list of complex binary C-like data structs. At the embedded

side, we must adapt to the client standards to provide an interface which is viewable from

browsers.

Some examples for data storage format (these are the content of XML �les):

Example 1 - XML file with tags:

<?xml version ="1.0"? >

<email >

<from >sender@domain1.com </from >

<to>addressee@domain2.com </to >

<subject >greeting </subject >

<text >Hello World!</text >

</email >

Example 2 - Alternative of XML , used in this project with no tags:

[[0 ,12] ,[1 , -2.3] ,[2 ,41.3] ,[3 , -2] ,[4 ,32.1] ,[5 ,6.7]]\n

17

2.3.4 JavaScript

Javascript [11] is the most popular scripting language of client side web programming. Its

syntax is similar to Java or C, but they are completely separate languages.

Javascript is considered to be an easy-to-learn language due to its simple syntax, high-

level automatism and robustness.

Javascript is a very high abstraction level scripting language, many already implemented

modules are created and hosted by di�erent servers, all of which can be included directly

from these hosts via internet.

It is rare that self-written functions are needed where no other libaries are used, just

basic Javascript commands. Thus, before attempting to write a speci�c algorithm, a web

search should be initiated in the commonly included Javascript modules for the function

that might be suitable for the speci�c task. Searching is truely worth the time, because the

commonly used modules tend to be more robust and probably faster than the self-written

ones.

At the client side, Javascript runs in the background on the script interpreter engine of

the web browser. The interaction to the user is realized by con�guring and reading data

in HTML objects. Javascripts start running on a speci�c event on the HTML page such

as pushing a button, hovering over a box or �nished loading the page.

Javascript is used for server side programming too, but not as widespread and e�cient

as PHP.

Browsers provide some e�ective ways for JavaScript debugging. In developer mode break-

points can be added, stepping and running to the next breakpoint, monitoring the values

of variables value in stepping mode, even in runtime, etc.

Sometimes browsers block the running of Javascript for security reasons, as countless

malicious actions can be performed from JavaScript by highly elaborate tricks.

2.3.5 AJAX

Asyncronous Javascript and XML technique [18] (AJAX) is not a programming language,

just a new way of using already created technologies and standards.

The greatest advantage of using AJAX is that it makes possible to change the content

of webpages without reloading the whole webpage, or receiving a full HTML object (e.g.

a HTML table), the reply of the server only contains the relevant data in XML or similar

text format (e.g. a value to write in the cell of a table), and in the background Javascript

parses and refreshes the already present objects of the HTML pages. This results in an

increase in the speed of the service and the client itself, and it causes less internet tra�c,

therefore it results in additional rapidity.

In �gure 2.1, we can see the basic idea for communication �ow used by AJAX technique.

AJAX functions typically post a request (as an URL) to the server and pend on the

XML (or similar) answer for inde�nite time. AJAX requests can be pending paralelly or

sequentially, if more of them are present. If the response from the server has arrived, the

AJAX functions tend to call another function which parses the received XML then execute

18

Figure 2.1: AJAX information �ow [16]

the neccessary modi�cations in the webpage. The easiest way of using AJAX is including

the Javascript libary that supports AJAX (e.g. jQuery), altough it is possible to write our

own AJAX Javascript functions.

Common AJAX webpages are Gmail, Facebook or Google Earth, and others.

19

Chapter 3

Design

In this chapter, the design procedure is introduced, and the realized structure of the em-

bedded and the client side is also presented in detail. The available hardware and software

resources are considered as well.

3.1 Hardware components

3.1.1 ADSP-BF527C processor

Analog Devices Black�n DSPs are medium-high performance, low cost, power e�cient and

widely usable DSPs that are highly popular along industrial applications for a wide range

of purposes. Black�n DSPs are designed to be the very fusion of digital signal processors

and microcontrollers, because they have the typical peripherial set of microcontrollers, and

the performance output of DSPs. Black�n DSPs contain numerous peripherials, many of

which are used in this project. Some examples could be found in the VisualDSP++ install

directory for their basic con�guration among the example codes. However, almost every

peripherial driver needs to be rewritten by its user for the speci�c needs in order to reach

the desired complexity and proper con�guration of the application.

Black�n processors tend to use quite high core clock frequencies (400-600 MHz). Their

architecture allows a throughput of 2 MMAC1/1 MHz. According to the 32-bit address

bus that Black�n DSPs use, 4 GB of address space is available. Some models contain

an embedded Ethernet Media Access Controller (MAC), that is needed by an Ethernet

application. In this case, no external circuitry is needed for using the Ethernet.

The Black�n DSP family has a wide range of DSPs, that have signi�cantly di�erent

performance, peripherials and price. Therefore, developers can �nd a proper performance-

price e�cient DSP for the need of their applications.

ADSP-BF52xC cores [4] are designed for advanced connectivity and even lower power

consumption than other family members. The letter C in their names refers to that they

contain an integrated audio codec2, meaning that a simple and complete audio hardware

can be built from it with minimal external circuitry.

1Mega Multiply And Accumulate
2AD, DA and their con�guration registers

20

3.1.2 ADSP-BF527 EZ-KIT LITE evaluation board

Evaluation boards are development boards provided by IC manufacturers to give their

customers the possibility to try the capabilities of certain products. EZ-KITs are Evaluation

boards from Analog Devices, which contain DSPs with many external peripherials (such

as LEDs, buttons, memories, etc.).

EZ-KITs can be used for developing whole and complete applications too, but the usage

of their peripherials is restricted due to the general purpose architecture of the boards. The

most common usage of EZ-KITs are developing platform independent or easily portable

applications or technologies, which are going to be put on a speci�cally designed hardware

board later.

In order to use many con�gurable peripherials on a single EZ-KIT board, a very high

amount of hardware con�guration switches were added onto it. This causes the unpleasant

and inevitable fact, that some peripherials are not able to operate simultaneously such as

Ethernet and the DAC of the Audio Codec in our case. At this task, the situation was

fortunate, all needed peripherials could work together, altough in the future, a speci�c

board and control system may be developed for the webserver project. The peripherial and

hardware con�guration is not going to raise any questions due to the knowledge of the

hardware engineer about the exact speci�cation.

The hardware architecture of EZ-KITs are well documented, all the information for

hardware con�guration and programming can be found in the relevant Evaluation System

Manual [3]. Many complex examples are provided with the EZ-KITs, therefore understand-

ing the basic behavior and con�guration of the DSPs is easy for a beginner. The con�gura-

tion of some peripherials use the System Services libary described in section 3.3.1. System

Services can be a bit di�cult to comprehend at �rst. In addition, there are many weakly

commented open-source driver examples (inside a certain dummy application) provided as

well for EZ-KITs. These dummy applications can run standalone without the use of System

Services, altough the core of these drivers must be extracted.

ADSP-BF527 EZ-KIT LITE provides a microphone in, a headphone out, a Line in and

a Line out connectors for audio band signal measurement and generation.

Used hardware resources in our case (peripherials):

• SDRAM (64 MB),

• GPIOs (connected to LEDs and buttons),

• UART0,

• Audio Codec and its external circuitry,

• Ethernet MAC,

• SPI.

21

3.2 System overview

Figure 3.1 shows the physical layout of the whole system. The router was used to provide

a local network to establish an Ethernet connection between the EZ-KIT and the PC.

Applications are developed on the PC, and are downloaded to the EZ-KIT. There are

two additional connections between the PC and the EZ-KIT. JTAG connection is used

for development and debugging the application, UART-LINE is used for debugging, and

additionally, a direct console is implemented via UART. The function generator is used for

generating several signals for the measurement. The EZ-KIT has an audio channel input,

where the analog signal is received. We use the digital multimeter to check the RMS voltage

of the signal to ensure that it is not too high for the audio line.

FUNCTION GENERATOR

ROUTER

POWER SUPPLY

ADSP-BF527 EZ-KIT LITE PC

[AUDIO SIGNAL]

[7 VDC]

[ETHERNET LINK]

[JTAG]

MULTIMETER

[UART LINE]

[ETHERNET LINK]

Figure 3.1: System overview

External equipment summary and their purpose in the measurement:

• Function generator: generating the analog audio signal,

• BNC-jack cable: function generator-board signal transfer,

• DC power supply: providing energy for the board,

• DHCP server (router): LAN connection,

• Ethernet cable: physical layer between the router and the board,

• UART Serial Cable: RS232-USB converter for server direct console,

• USB cable: development/debug via JTAG,

• PC for development: environment for development/debug,

• Multimeter: calibration and voltage level check.

In �gure 3.2, we can see the physical system in the midst of a signal measurement

procedure.

22

Figure 3.2: System overview in reality

3.3 Embedded software resources

3.3.1 System Services

Analog Devices provides a pre-written libary called System Services, where commonly

used embedded system modules can be found which are already ported to all Analog

Devices DSPs. These System Services can be con�gured for di�erent DSPs by speci�c

de�ne statements and data structures.

System Services are quite complex and capable of implementing many di�erent func-

tionalities. Additionally, System Services has separate documentation [6].

System Services try to provide a platform independent initialization and control func-

tionality to di�erent DSP peripherials. This gives an additional higher abstraction level

layer to the embedded application, but its usage can be too complicated.

System Services are sometimes very useful and result highly rapid application develop-

ment, but in some cases understanding their usage is much more complicated than creating

a self-written driver with the same functionality. Hence, it is worth to evaluate the com-

plexity of each problem and consider whether to use the System Services. I considered

using it at the initialization of the Ethernet MAC.

3.3.2 VDK

Before the introduction of VisualDSP++ Kernel (VDK), VisualDSP++ (VDSP) should

be discussed shortly. VDSP is a good-old DSP development environment, it is quite easy

23

to use, and it has all the important and some extra features needed for embedded software

development for Analog Devices DSPs. It lacks some serious comfort features (e.g. Intel-

liSense, function hyperlinks, etc.). However, the application development under VDSP is

fairly satisfying, if someone can get used to the lack of these "luxurious" features, besides

many workaround tricks exist for making the coding procedure easier.

Using an embedded operating system (kernel) at this project is inevitable, due to the

need of a scheduler mechanism in order to run multiple di�erent tasks described in section

3.3.

Choosing a speci�c kernel is often a complicated decision because of their wide variety,

furthermore commercial, �nancial, experimental, modi�ability and performance require-

ments should also be considered. For this project, VDK is the rational choice for the

real-time operating system, because it is developed speci�cly for Analog Devices DSPs.

More importantly, VDK can be used instantly, there is no porting procedure needed at all.

VDK [7] is a quite advanced real-time operating system, designed and implemented

by Analog Devices. The design environment provided by Analog Devices (VisualDSP++)

supports many VDK status and con�guration modules (such as history, load, etc.), there-

fore implementation and debugging is easy and rapid while using VisualDSP++ and VDK

combined. Altough, VDK is not open-source, it could be fully utilized by Analog Devices

EZ-KIT owners. Additionally, a proper and well-commented skeleton code is provided for

every VDK �le created (thread, driver, interrupt service routine), which makes the coding

procedure faster.

In the past (few years ago), there were neither really good, complex and usable working

examples nor appropriate documentation given for VDK, but by now these de�ciencies do

not exist any more, and VDK became a reasonably competitive real-time operating system.

3.3.3 lwIP

The TCP/IP stack is a protocol stack, that realizes the di�erent communication software

layers for Ethernet based operations. Layers rely on the ones below them. According to the

TCP/IP model3, there are multiple layers with speci�c purpose:

• physical or link layer: contains communication technologies, e.g.: Media Access Con-

trol (Ethernet MAC)

• network layer: connects local networks, e.g.: Internet Protocol (IP)

• transport layer: handles host-to-host communication, e.g.: Transmission Control Pro-

tocol (TCP), User Datagram Protocol (UDP)

• application layer: process-to-process level communication, e.g.: Secure Shell (SSH),

Telnet, Hypertext Transfer Protocol (HTTP)

3More models exist. Other models divide the roles of layers di�erently, or they may even contain
additional layers for speci�c functionalities.

24

It is known, that applications based on Ethernet require a working TCP/IP stack.

Fortunately, VisualDSP++ gives an option to embed a free and open-source TCP/IP

stack in the application called lightweight IP (LwIP) [1].

LwIP focuses on low system resource consumption while providing full TCP/IP func-

tionality. LwIP is a platform independent module, which has to be ported (speci�c driver

needs to be written) to the speci�c system that it will be used on. This procedure has done

for ADI DSPs by Analog Devices already, therefore LwIP is an includable and working

module to the project.

There would have been other (commercial and open-source) implementations for a work-

ing TCP/IP stack. However, LwIP is considered to be the best alternative due to its

stability, wide user support, moreover it has been ported to Black�ns already.

3.4 Client resources

In this section, the availabe modules are introduced that could be used for client side

development.

3.4.1 jQuery

JQuery is an advanced libary based on Javascript. JQuery supports many commonly used

features and methods of advanced web programming.

In this project, we have to refresh the client webpage asynchronously without reloading

whole HTML objects. AJAX technique is exactly usable for this purpose, as introduced

in section 2.3.5. The easiest way to use AJAX is including the jQuery Javascript libary,

which has some functions that support AJAX. However, jQuery is usable for a wide range

of functionalities, just a small fraction of the libary was used at this project.

The description of jQuery by its developers: "jQuery is a fast and concise JavaScript

Library that simpli�es HTML document traversing, event handling, animating, and Ajax

interactions for rapid web development. jQuery is designed to change the way that you

write JavaScript." [14]. JQuery is considered to be very easy to use, its functions and

methods tend to be robust and documented properly. The source code is available for

including or downloading from numerous internet hosts.

As it is includable, its source code is accessible, moreover according to its license terms

[15], it is allowed to use anywhere even commercially without restriction.

3.4.2 Plotting charts

It was intended to visualize the real-time amplitude spectrum of a certain audio signal

(array of direct data) on the client webpage in this project to prove the proper operation

of the system. The amplitude spectrum is the absolute value of the result of the Fourier

transform of the signal. Fourier transform can be realized with Discrete Fourier Transform

(DFT) in digital systems, and Fast Fourier Transform (FFT) is a computation algorithm

of the DFT.

25

An additional external libary should be included, if we would like to implement a direct

data visualization module to the webpage for which there are two basic alternatives:

• Flot [13],

• Highcharts [12].

Flot is a basic and simple way of realizing the direct data visualization feature. It is

very fast at refreshing the curves in runtime. According to its easy usage and simplicity, its

appearance is quite modest. Highcharts is noticeably slower than �ot, but it has far more

con�guration options, and also a much more attractive appearance. However, the speed

of Highcharts on a recent PC con�guration is satisfying. Flot is usable completely free

of charge for any purpose. However, Highcharts is allowed to use freely only for personal

purposes, a commercial licence has to be purchased for mercantile usage. I decided to use

Highcharts, because it has a zoom feature by default, moreover it makes the webpage to

look far more advanced, altough no commercial attitude has been considered yet.

26

3.5 Embedded software design

In this section, the questions about the design of the embedded software are discussed.

3.5.1 System structure

GoAhead Webserver Thread

Button Handling Thread

Audio/Signal Processing Thread

LED Handling Thread

UART Handling Thread

[REQ{ Data Struct }

POST{ FFT Size }] [POST{ Data Struct }]

Audio Codec
[Raw audio data]

[Audio Measurement Data Array]

Audio Codec Driver

[POST{ States }]

[POST{ ACK }]

LED Driver

Button Driver

[GET{ States }]
[POST{ States }]

[GET{ Push Counters }] [POST{ Push Counters }]

BROWSER CLIENT

[Ethernet Connection]

Webpage

[Config] [Data]

HyperTerminal Console

[Selection Command] [Answer]

[SET{ LEDs }]

[Query]

[Reply]

[Query]
[Reply]

[Query]

[Reply]

Figure 3.3: System architecture

In �gure 3.3, we can see the block diagram of the system. Bubbles represent processes or

abstract entities4 and arrows show communication or control �ow between them. Arrows

have guard expressions, which specify the purpose or content of the arrows. The very center

of the system is the webserver thread. The webserver thread establishes the connection

between the webpage and the embedded control system. The webserver thread queries

other threads for data in the embedded application. The implemented system contains real-

time control and observation features, that are realized by hardware peripherial interrupts

and periodic queries of hardware states based on timer interrupts. These functionalities

4such as external programs that take part of the project, drivers, etc.

27

are examples to demonstrate the capabilities of the implemented system, but any real-time

control or observation (e.g. switched current control) feature could be realized instead.

3.5.2 Webserver

Pend on Client Request

Send Homepage

Parse Form Data

[Config and Data Req Form]

[Homepage/Empty url]

Post Config Data to LED Handling Thread

Pend Answer

Post Config Data to BTN Handling Thread

Pend Answer

Post Config Data to AUDIO Handling Thread

Pend Answer

Refresh Local Data Struct for AJAX Response

Post Answer To Client

Init Webserver

Parse Local Data Struct into String

[Plot Data Req Form]

Post Answer To Client

Figure 3.4: Webserver thread process �ow

The main purpose of the webserver thread is to handle URL requests from clients. As

we can see on �gure 3.4, there are three basic types of requests that clients are planned to

perform:

• Request for �le: Typically the homepage HTML �le, that is commonly requested by

empty string or index.html, but this branch is performed in case of any �le requests.

This module is implemented by the server itself, no additional actions needed but

putting �les in the memory beforehand with the webcomp module, that is described

in section 4.4.

28

• Parameter set form: Contains hardware (desired LED states by client) and algorithm

con�guration (FFT size, frequency estimation method) data, that was put together

in Javascript at the client side. The running application should adjust its state as the

request speci�es. In this case, the server thread has to query each thread one-by-one

for their speci�c data, afterwards it has to parse the responses of threads, then it has

to send the answer to the client.

• Direct data request form: Indicates a request for the spectrum of the signal (DFT

result). The server has to query the Audio handle thread for the data needed, then

send it to the client.

3.5.3 Audio

The �owchart of the audio thread is shown in �gure 3.5. The �owchart begins with the

initialization of the audio codec. The communication between the thread and the audio

driver is designed as follows:

• global FLAG: This indicates whether a new bu�er has just become ready.

• global POINTER: This points to the most recent bu�er that has been �lled already.

The basic structure of the audio thread consists of two branches:

• Executing signal processing: The signal processing branch has to be performed if the

FLAG indicates that new bu�er has become �lled.

• Pending on a possible webserver request: The audio thread pends on a possible query

message from the webserver thread with a timeout5 if the FLAG indicates that no

new bu�er has become �lled yet. No action is performed if timeout of the pending

has occured, the control goes back to check the FLAG. An answer with the most

recent data has to be sent to the webserver thread if the query message from the

webserver thread has arrived.

The signal processing branch of audio thread calculates numerous signal parameters as

we can see in �gure 3.5. First of all, the twiddle stride6 must be adjusted for Fast Fourier

Transform (FFT) size speci�ed by the user. Afterwards, a FFT operation is done, from

which we get the complex spectrum of the audio signal, then the absolute value of the

spectrum is calculated. The next steps are to calculate the di�erent frequency estimations,

the RMS value of the signal, its peak value. Afterwards an averaging should be done to

increase accuracy of some results (estimated frequencies by methods Simple Null Cross

Detection and Interpolated Null Cross Detection as explained later). At the end of the

branch, the communication struct needs to be updated with the most recent results, then

5Pending on a message also realizes the thread sleep.
6Twiddle stride is the leap distance between twiddle table indexes: if the twiddle table has a length of

1024, but the user speci�ed a FFT of 256, the twiddle stride must be set to 4. The twiddle table consists
of the values along the complex unit-circle, which are multiplied with the time function of the signal while
calculating FFT.

29

Init Audio Codec

Sleep for 10ms

Create twiddle table for FFT

Pend Message - channel2 (5 ms Timeout)

Clear Variables

NOP

Get Message Payload

[Timeout] [No Timeout]

[No Buffer Ready - MSG Handling]

Set New FFT Resolution

Set New FFT Calibration Values

Set Message Payload (newest data)

Forward Message Back

Clear Averaging Variables

[Valid FFT Size & Webs Query]

[Invalid FFT size

OR

UART Query]

Get Message Receive Info

Set Twiddle Stride

FFT

Abs(FFT)

Freq Estimation NCD Adv.

Freq Estimation FFT

Update Communication Struct

Freq Estimation NCD

Post ready flag to AD driver

[New Buffer Ready]

RMS

Peak Detection

Averaging Results

Figure 3.5: Audio thread process �ow

a FLAG has to be posted to the AD driver to indicate that the signal processing has just

�nished.

The algorithms of di�erent frequency estimation methods should be explained in detail:

• DFT estimation (FFT): The frequency is calculated from the index of the maximum

value of the amplitude spectrum.

• Simple null-cross detection (NCD): This method measures the distances of the null-

30

crosses of the signal in integer index (signal period), averages them along the bu�er,

and calculates the frequency from it.

• Interpolated null-cross detection (NCD Adv.): The interpolated null-cross detection

is almost the same as the simple null-cross detection, nevertheless it interpolates the

null-crosses exact spot (in �oating point context) with a linear curve, therefore a

more accurate distance between them is estimated on each cross. Averaging is also

done along the bu�er.

No methods of these provide appropriate frequency estimation in case of a signal with

non-harmonic components (such as a signal that contains 50 and 60 Hz components).

Suggestions for solving this problem is explained in section 6.2.6. The accuracies of the

estimations are expounded in section 5.5.

The pending action will not result in a timeout if the webserver thread sends a message

to the audio thread. In this case, the No Timeout branch will be executed, in which the

extraction of the con�guration data (FFT size) from the webserver message is performed,

then the local variables become updated, then the message is forwarded back to its original

sender with the most recent data.

3.5.4 UART

The �owchart of the UART thread is shown in �gure 3.6. The UART thread provides a

diagnostic interface of the state of the system without the Ethernet link. Multiple com-

mands can be sent on the serial line, each thread is allowed to be queried about its state

by sending a character:

• 'A': Queries the Audio thread, and sends back some signal parameters on the UART

line.

• 'B': Queries the Button thread, and sends back the current state of the buttons on

the UART line.

• 'L': Queries the LED thread, and sends back the current state of LEDs on the UART

line.

• 'W': Does nothing, just sends back a constant message (detection of possible fatal

state of Kernel Panic occurrance).

The UART thread queries each thread the same way as the webserver does, altough two

exceptions exist: the state of LEDs and the methods of the Audio thread are not allowed

to be changed by UART console. The full and complete VDK device driver of the UART

peripherial was given. It would be quick to implement the UART driver from scratch, but

it was already written to the DSP.

31

Init UART

Waiting for Command Character

Send Received Chars Back

Getting Audio Data

Send Information via UART

Getting BTN Data

Getting LED Data

Getting Webs Data

Invalid message

["A"]

["B"]

["L"]

["W"]

Figure 3.6: UART thread process �ow

32

3.5.5 LEDs

Init LEDs

PendMessage - channel4

GetMessageInfo

Set LEDs Reads LED states

Set Message Payload

Forward Message Back

[UART TH. MSG] [WEBS TH. MSG]

Figure 3.7: LED thread process �ow

The �owchart of the LED handling thread is speci�ed in �gure 3.7. The structure of the

LED handling thread is quite simple, it mainly pends on a message, and it sets the state

of the LEDS based on the content of the message. As it is already mentioned in section

3.5.4, the reason of the two branches detached by the message sender is that it should not

be possible to set any hardware con�gurations from multiple interfaces, only from the web

browser.

33

3.5.6 Buttons

Init Buttons

Pend Message - channel3

GetMessageInfo

Get Button Counters

Set Message Payload

Forward Message Back

Figure 3.8: Button thread process �ow

The �owchart of the button handle thread is shown in �gure 3.8. The button handle

thread is not very complicated either, it starts with an initialization of the driver. The

driver performs the neccessary initialization steps of the buttons, furthermore it handles

a timer interrupt, with which the push events are counted for both buttons. The driver

realizes debouncing feature.

34

3.6 Client side design

3.6.1 Client webpage design

The design of the webpage of the client side was quite simple. It was mainly copied and set

from di�erent given templates, and it was modi�ed following examples found at di�erent

explanatory websites [17]. There were no real design tasks for creating the webpage as it

was given in a template accompanied with the CSS �les, altough it has interesting structure

described in section 4.3.1.

3.6.2 Script design

The design of scripts did not require any special design methods. A basic functionality is

needed to detect the changes in HTML objects, and based on a timer interrupt the script

has to send data periodically to the server with the freshest set of parameters, �rstly the

Parameter request, then the direct data visualization request. We can see the �owchart of

the script in �gure 3.9.

Query HTML objects

AJAX reqest - Parameter

Creating URL

Parse reply

AJAX request - Plot

Parse reply

Update HTML objects

Update chart

Set timer

Set timer

Set timer

Wait for timer

Figure 3.9: Flowchart of the Javascript at the client

35

3.7 Client - server communication process

In this section, the cooperation of the server and the client is summarized, while focusing

on the client, to make the communication process clear. Requesting and receiving new

data consists of the sequence below. The user can change any con�guration parameter at

any time. On the event of �nished loading the webpage, a Javascript function is called to

initialize a countdown timer to a user speci�ed value (Data refresh period selection with a

default value of 1 second). When the timer expires, a function is called which reinitializes

the timer itself, in addition the following sequence is performed:

1. the Javascript reads all relevant con�guration parameters from HTML objects,

2. the Javascript parses con�guration parameters into a certain format (standard URL

request with parameters),

3. the Javascript calls an AJAX request (parameter request) and the script blocks the

running of parallel processes while the AJAX request has not �nished,

4. when the answer has arrived, the Javascript extracts the data from it (LED states,

BTN states, Audio signal parameters),

5. the Javascript refreshes all HTML objects with the latest data,

6. the Javascript sends another AJAX request (plot request), and the script blocks the

running of parallel processes while the AJAX request has not �nished,

7. when the answer has arrived, the Javascript reads and parses the spectrum data,

8. the Javascript updates the chart.

The server takes part in the two AJAX requests. The operation of the server is described

in section 3.5.2.

36

Chapter 4

Implementation

In this chapter, the questions, guidelines and ideas related to the coding and implementa-

tion procedure of the project on both the server and the client side are discussed.

4.1 Guidelines

4.1.1 Reusable coding with layers

Resusability

The most important guideline along the coding procedure was the reusability of the code,

which is a quite widespread attitude in system development. This view makes the coding

procedure increasingly faster along time, because developers face very similar coding prob-

lems in signi�cantly di�erent systems. The functionalities that are already implemented

should be reused in other projects as well, consequently this is going to decrease the time-

to-market parameter of future projects.

Software layers

Code layers should be evolved, which have increasing abstraction level, thus the higher

level layers give the possibility to reuse them, only the porting procedure of the lowest

level is needed to the chosen processor. This results a more �exible, dynamic, forseeable

and readable code at the cost of speed, because the di�erent layers give the information to

each other, and some more instructions get executed (function calls, returns, etc.) which

are irrelevant along the context of the functionalities.

It is a known fact that not all codes can be written platform independently due to the

speci�c system properties, architecture or development environment. These speci�c code

fragments are considered as the lowest abstraction level layer of code, which should be

adjusted to the system everytime.

All code that can be created in a higher abstraction level should be implemented platform

independently, separated from lower-level layers. Sometimes code fragments cannot be

separated into completely di�erent layers. At this case, a systematic, well documented and

commented format should be used, which is easily and quickly adjustable to any system.

37

If the coding procedure was done systematically and it was documented properly (see

section 4.1.2), then joining the di�erent level layers should not be a problem, but it is the

responsibility of the developer oneself.

When some additional features are going to be implemented, the best thing that could

be done is to modify or broaden the highest level layer that is possible to solve the problem

on, while trying to avoid the modi�cation of other layers.

4.1.2 Comments

Commenting in general

Commenting properly is one of the most important action while coding, comments are

created not only for other people but for the developer oneself too. Creation of systematic

and easily understandable comments are expected at software development companies.

Software code is considered to exist, only if it is known how it works, how to use, maintain

or improve it, all of which requires proper and up-to-date documentation.

Problems about commenting

Developers do not commonly like writing documentation or comments in their code, more-

over they tend to put minimal e�ort in it to save time. Consequently the usage of docu-

mentation and comments of codes are not always adequate at all, altough it is essential

for e�cient system development. Another serious problem is a consequence of this, which

is known as the code-comment-documentation inconsistency. The comments or the docu-

mentation often do not become updated, if additional features are added to or modi�ed at

a certain code.

Doxygen

A very useful tool called Doxygen [8] is available for creating automatic code-consistent

documentation generation directly from the comments extracted from the code itself. There

are some easy-to-learn commenting rules and conventions which must be used in order to

use Doxygen. The developers just need to keep their code commented properly, afterwards

the consistent, up-to-date and proper documentation becomes created by a some clicks

with no real additional e�ort. Doxygen can generate PDF, RTF, HTML and LaTeX for-

mats directly as output. Doxygen is available for several coding languages, altough the

most important and widespread languages are supported (C/C++ in our case). Using

Doxygen is a free and widespread solution for the common problems of commenting and

documentation.

38

4.2 Embedded coding

4.2.1 Audio driver

Device drivers implement an interface to give the higher abstraction level software layers the

possibility to use certain hardware resources by certain functions. Typical driver interface

functions are the following:

• Open the device,

• Read data from the device,

• Write data to the device,

• Close the device.

Implementing an audio driver was required to make the audio codec operational. I have

created a new audio driver based on a useful EZ-KIT example1. However, the example

driver could not work simultaneously with the hardware and software con�guration of the

webserver by default. Hence, the example driver had to be rewritten and adjusted for the

speci�c needs of the webserver application, because our measurement application does not

require all of the features and modules (e.g. timers, DAC usage) that the default driver

contains.

The modi�ed audio driver consists of an interrupt handler and its initialization, in

addition it contains the necessary initialization code of the audio codec. The driver �lls

a double bu�er structure. One bu�er is ready for higher level processing, while the other

is becoming �lled with audio data. The driver creates an interface for exterior functions

to directly access the measured data via a continously updated pointer and a �ag. The

interrupt becomes triggered by the send request of the audio codec. The audio codec sends

a packet of data, which is copied into a temporary bu�er with Direct Memory Access

(DMA). This packet contains two consequent measurement values from both LEFT and

RIGHT channels. At the interrupt handler, we simply copy the data from the temporary

bu�er into the double signal bu�er. The AD interrupt request causes an interrupt every
2×1
48000 s ≈ 42 µs. The occurrance of the interrupts could be rare�ed by more advanced DMA

utilization, but it was not neccessary, as the load caused by the frequent interrupts was low

enough to cause no problems. Additional administration functions had to be implemented

inside the driver:

• Handle the double bu�er structure: This is implemented by a simple if-else branch.

• Post the bu�er switch event and the pointer to the latest bu�er for higher level pro-

cesses: This is realized by a FLAG and a POINTER, the operations of which are

described at section 3.5.3.

1$VDSP/Black�n/Examples/ADSP-BF527 EZ-KIT Lite/Power_On_Self_Test/Parallel/Audio_test.c

39

There were two ways for the transmit of the initialization data for the audio codec:

• Serial Peripheral Interface (SPI),

• Two Wire Interface (TWI).

Finally, I used SPI, altough it has no signi�cant advantage above TWI in this project. SPI

seemed to be a little easier to implement than the other alternative.

4.2.2 LED driver

As the function of the LED handling thread is simple, it is easy to implement. There are

three LEDs connected to three GPIO pins of the DSP. These pins must be con�gured to

be GPIOs (not peripherial functions inside the DSP core) and outputs in order to use the

LEDs. Afterwards, the states of the LEDs are able to be changed by writing 1 or 0 to the

relevant bits of the GPIO control registers.

4.2.3 Button driver

The driver of the buttons is designed to detect each buttons push events by incrementing

a counter. This feature requires bounce elimination. The measured bouncing frequency of

the buttons is around 100 µs. In addition, a human being can push and release a button in

10 ms, therefore the event is present for at least 5 ms. The bounce elimination is realized

with a timer interrupt with a period of 5 ms. The interrupt handler reads the state of the

buttons, and detects their rising edge. The interrupt increments the timers in case of rising

edge occurrance. The rising edge detection is implemented by comparing the previous state

of the buttons with 0 and their current state with 1. A rising edge has just happened, if

the two conditions are true at the same time. The counters are local static variables, which

are able to be queried by a function that returns their values.

4.2.4 Communication between threads

The communication processes between threads are achieved by using VDK messages. VDK

messages are kernel communication objects between threads. The advantage of VDK mes-

sages above other communication methods (globals, etc.) is that any kind of data structure

is allowed to be sent by them safely. Therefore, they provide an uni�ed interface for the

data transfer between threads. The sending procedure is realized by casting a pointer to a

data structure into a void* pointer. The control �ow arrows are realized by VDK messages

between threads on the system schematic in �gure 3.3.

4.3 Web programming

4.3.1 HTML

Firstly, it is a necessary convention that all HTML objects (selections, buttons, checkboxes,

input �elds) have to have unique IDs or name via which they are able to be referenced

40

for Javascript actions. The main part is a table, that uses <iframe> tag which embeds an

additional HTML page (hereinafter inner-HTML). The inner-HTML document is divided

into vertical slices with tag <div>, this results in separate cells, where we can add di�erent

groups of cells of parameter con�guration and visualization. Parameter cells contain tables,

which have as many rows as many parameters we would like to visualize in the current cell.

Parameter tables have two table cells in each row: [parameter_name parameter_value].

Four division groups (<div> groups) are placed in the inner-HTML:

• MEASUREMENT SETUP AND CONTROL,

• COUNTERS,

• NUMERIC RESULTS - SIGNAL ATTRIBUTES,

• Container for Highcharts.

In �gure 4.1, the structure of the implemented webpage can be seen.

Figure 4.1: The structure of the implemented webpage

41

4.3.2 Javascript

The Javascript is a very high abstraction level language. We rarely have to implement own

non-existent functions from scratch. I started searching for the functions that implement

the blocks in the designed �owchart in �gure 3.9 exactly. Default Javascript functions are

found to be su�cient for basic the Javascript maintenance code.

In addition, jQuery and Highcharts additional external libaries are used according to

section 3.4.

AJAX requests are implemented with the jQuery function

$.ajax(parameters.done(function()), where parameters specify the requested URL, besides

the function is executed on the arrival of the reply. For creating a valid Highcharts object,

we need to run new Highcharts.Chart(); constructor with a relevant parameter set which is

able to be found at its documentation [12]. Updating the chart is implemented by using the

chart.series[0].setData(NEW_SET_OF_DATA); chart.redraw(); sequence.

Google Chrome supports Javascript debugging, which provides possibility to step through

the code, while monitoring the actions. In addition, the function console.log() could be used

for monitoring the behavior of the code in runtime.

4.4 Webcomp module

There is an executable �le (webcomp.exe) provided with the source code of the GoAhead

webserver. The executable �le (webcomp.exe) converts the speci�ed �les into static stan-

dard C arrays of bytes before compile-time, which represent the �les in binary form. These

arrays can be included in the embedded project, and this feature allows to embed multiple

�les in the memory (RAM) for Ethernet service, without the use of a �le system. The input

of the webcomp module are the �les to be compiled and a list that contains the names of

the �les. If a request is performed for a certain �le, the webserver sends the elements of

these arrays sequentially one to another, as they were a kind of byte stream.

The �les.dat must specify the names and relative the paths of �les correctly. An example

is given for a �lelist (named �les.dat):

index.html

index2.html

router.css

style.css

/pictures/prodsp_header.gif

/pictures/prodsp_footer.gif

/scripts/jquery.js

/scripts/highcharts.js

The executable has to be run with these speci�c parameters from a command prompt:

webcomp.exe / files.dat > webrom.c

Afterwards, we must overwrite the webrom.c in the directory of the embedded project

42

with the one that we have just created. The content that we compiled become available

for service after rebuilding the embedded project.

43

Chapter 5

Performance

In this chapter, the performance of the system is investigated, the questions related to the

bottleneck and stability are discussed. In addition, the accurracy and range parameters of

the signal measurement are described.

Figure 5.1: Measurement on web interface

In �gure 5.1, we can see the �nal web interface while measuring a 2 kHz square wave

signal created with a function generator. As we can see in the box MEASUREMENT

44

SETUP AND CONTROL, LED1 is turned o�, LED2 and LED3 is turned on. The size

of the FFT calculation is set to 1024 and the refresh period of the Javascript refresh

timer is set to 500 ms. Additionally, the frequency is calculated with the Inperpolated Null

Cross Detection method. In the box NUMERIC RESULTS - SIGNAL ATTRIBUTES, the

frequency (2000 Hz) of the signal, its peak (0.53 V) and RMS value (0.472 V) could be seen.

In the box COUNTERS, we can see that the push event of BTN 1 occured 51 times and

BTN 2 was pushed 8 times. In the box Non-normalized spectrum of signal, the amplitude

spectrum of the square wave signal is shown.

5.1 Speed of the service

5.1.1 Client side

The performance of the implemented system proved to be far better than it was expected at

the beginning of the project. Moving some data parsing methods o� the server to the client

side JavaScript contributed an additional increase in the performance as JavaScript engine

runs on a high performance PC on which a lot more computing resources are available.

However, the throughput of the client was signi�cantly reduced after adding the Highcharts

data plot module. This problem could be resolved by running the client application on a

more recent PC con�guration, or changing the plot application to a more lightweight one

described in section 3.4.2.

The speed of the general Javascript code (not including the Highcharts) could not be

measured relevantly, because it was so rapid, that other much slower processes (AJAX,

Highcharts) dominated the response time of the system. However, �awless operation was

observed with a refresh time of 30 ms before adding the Highcharts module. After adding

Highcharts, a typical minimum refresh period was around 500 ms.

The implemented AJAX and Javascript functions have made to work above only Google

Chrome yet. This incompatibility is probably caused by the slightly di�erent structure of

the Javascript engine in di�erent browsers, and further research of the client side Javascript

functions has to be initiated. It is possible that the problem is not in the Javascript itself,

maybe the embedded application is not able to handle something, that other and more

robust server-side CGIs are able to.

5.1.2 Server side

On the embedded application, the signal processing algorithm has to be started periodi-

cally. The algorithm is running for 5 ms typically. The complete application utilizes 20% of

the total performance of the DSP. This 20% is dominated by the signal processing thread.

The Ethernet service of the application caused a negligibly small amount of the total

load of the DSP (2%) under normal operation which was achieved by choosing a quite

lightweight webserver and TCP/IP stack.

The embedded application was not able to handle the load by default, if I attempted

to send continous requests. Consequently, a fatal state of KernelPanic occured. This was

45

probably caused by some kind of stack or heap error, which caused an unhandled exception

in the kernel. This must be �xed at �rst anyway to reach safety critical stability. Three

ways have became possible to �x this problem:

• User Management login, and request limit from the inside of the server core,

• handling kernel exception (maybe by reseting hardware, or reinitializing the whole

webserver thread),

• decrease the reaction time (e.g. decreasing the tick period of the scheduler) of the

application to serve the requests properly.

5.2 Bottleneck

The rapidity of the client side Javascript depends on the performance of the PC that it

runs on, altough the PCs nowadays do not lack the computing power for handling this

amount of load properly. The absolute bottleneck of the implemented system is the speed

of the JavaScript engine of the client browser at normal operation. The Highcharts module

dominated the slowness of the client side based on speed measurement tests.

The embedded application is not intended to be reachable from the open Internet, it

can be placed in a local network where an unexpected request torrent will probably not

occur. Therefore, the speed of the DSP was satisfying by far.

5.3 Stability

5.3.1 Client side stability

The client webpage was found to be very robust because of its simplicity. While restarting

the embedded application, the client does not even need to be shut down or reloaded,

unless the client webpage itself has been modi�ed too.

5.3.2 Server side stability

The stability of the embedded server is currently not comparable to common webservers

such as Apache. According to the de�ciencies of the embedded server, this con�guration

is not suitable for safety-critical systems at this stage, but can be improved signi�cantly

by considering the suggestions given in chapter 6, however these do not a�ect the easy

overloadability, hence this should be handled on another way. Moreover, it is possible

that it is unsolvable by software and a custom and quite sophisticated solution should be

invented in order to guarantee that kind of stability. However, it is a known fact that stable

ordinary webservers can also be overloaded quite easily.

46

5.4 ADC voltage parameters

5.4.1 ADC voltage range

According to its documentation [5], the internal codec contains two (Left and Right chan-

nel) 16-bit wide S-D ADCs. The real ADC is 24-bit wide, but it is con�gured to use 16-bit

word length, as the DSP supports 16-bit wide calculations in arithmetic level. Its datasheet

states, that the maximal value of the ADC (32767) belongs to 1.4142 Vac.

5.4.2 ADC voltage calibration

ADC voltage calibration is realized by measuring and calculating the slope of the transfer

characteristics of the ADC, afterwards we calculate its reciprocal (R). The �nal results

could be calibrated by multiplicating the digital results with the calibration value of R.

According to the values mentioned in section 5.4.1, 1 LSB equals to 1.4142 V
32767 ≈ 43 µV.

5.5 Frequency parameters

5.5.1 Frequency range

As audio channels are AC coupled and the sampling frequency is 48 kHz, therefore the

theoretical frequency measurement range is 20 Hz - 24 kHz. However, the real frequency

range of the measurement is 46.875-24000 Hz, as the AD bu�er has a length of 1024 samples

(48000 Hz
1024 = 46.875 Hz).

5.5.2 Frequency measurement accuracy

As mentioned in section 3.5.3, I have implemented three di�erent frequency estimation

methods, all of which give estimations with di�erent accuracies. The accuracy of Interpo-

lated Null Cross Detection is the very best, altough it has quite big computation require-

ment as it uses �oating point variables1.

The accuracy of the DFT based frequency estimation is determined by the resolution of

the DFT calculation. Its maximal error is 48000 Hz
fft_resolution .

The Simple Null Cross Detection uses integer distances between the positive null-crosses

of the signal. Averaging is performed to a �oating point variable if more periods of the

signal �t in the AD bu�er. Averaging increases the accuracy along the increase of the

frequency. However, another e�ect decreases the accurracy at higher freqencies: the bigger

the frequency is, the more relative error is present at the freqency estimation because of

the integer nature of the time period. The measured typical relative accuracy was around

1000 ppm.

The accuracy of the Interpolated Null Cross Detection based estimation was found to

be up to 10 ppm. This accuracy is comparable to the accuracy of a function generator I

used.

1The Black�n DSPs do not support �oating point calculations in their basic aritmetic level.

47

Chapter 6

Future improvements

In this chapter, the additional improvement possibilities are discussed that arised during

the implementation of the example application.

6.1 The potential of technology

The results at the �nal stage of this project veri�ed that embedded systems are capable

of using modern and rather advanced technologies via Ethernet. The state of the system

is easily monitorable and con�gurable at unexpectedly low resource cost, though some

hardware (Ethernet MAC) and software resources (existing ported TCP/IP stack) are

essential in order to create the implementation. Based on the implemented features, any

system parameter (hardware or software) became available to adjust and observe at once

via a webpage. The web interface may be seen as an additional very high abstraction level

regulation and observation layer at the top of an embedded system.

6.2 Further possibilities

6.2.1 EJscript investigation

GoAhead webserver has a module that is suitable for running an Embedded JavaScript

(EJScript) interpreter, as mentioned at CGI description in section 2.2.2. EJScript has not

been studied at this project, but it could be an additional improvement to the service

procedure. It was considered to be slow beyond to use it appropriately for the �rst sight,

but further and more accurate inspection should be done.

6.2.2 User authentication

Some kind of User Management feature should be added either done by using the �le

system based database module or done by custom only-from-memory procedure, if the

application requires to provide safety critial stability. The user login data must be stored

in a non-volatile memory such as EEPROM or �ash, if no �le system is available. The

only-from-memory structure could to be speci�ed, designed and implemented properly.

48

6.2.3 Con�guration by several users

During the test and veri�cation phase of the application, I experienced that the connec-

tion to the webserver from more clients raises some speci�cation problems as hardware

con�guration is initiated from both clients. If two clients are present, and they set a state

of a LED1 di�erently, the LED will blink instead of staying still. There are more possible

solutions for this problem:

• Priorities should be assigned for users, the hardware con�guration must be declared

valid by the user who has the highest priority.

• Only the login of one user must be allowed, every other attempt has to be rejected

from the server core.

6.2.4 More recent GoAhead

I used an older revision of the server source code, it was considered to be proper for our

intentions, but it has many bugs and problems, that has been solved already in a more

recent revision. Therefore a newer version of the source code should be ported instead with

some additional e�ort. The additional e�ort is required because the code architecture of

the server changed along its revision history.

6.2.5 Jsocket

An alternative option was found to be available for data streaming at the beginning of

the project. There is a Javascript libary available called JSocket [2], which is suitable for

socket level communication directly from Javascript. The TCP/IP stack at the server side

has the same functionality2. Consequently, a socket level communication method may be

established between the server and the client side, which should result in a signi�cantly

faster data transmit channel than the implemented URL based commmunication link,

altough this statement has not been con�rmed yet.

6.2.6 Frequency estimation

An additional frequency estimation method could be added into the signal processing

thread, which calculates the frequency of the signal directly from the de�nition of period-

icity. This estimation method should be appriopriate to deal with complex signals that have

more non-harmonic components. The suggested autocorrelation algorithm is the following:

1. Copy the �rst half of the audio bu�er into another bu�er, higher indexed elements

should be zero.

2. Shift the content of the other bu�er by one to the increasing indexes (inside the

bu�er)

1LED state changing is just a dummy feature for demonstration purposes, hardware con�guration could
have a far more dangerous purpose too, for example switching a current of a motor drive.

2lwip/sockets.h

49

3. Calculate its correlation (inner product) to the original signal.

4. Register whether the correlation was maximum so far, moreover if the number of

shifts has reached the half of the length of the original bu�er, go to step 6.

5. Go back to step 2.

6. Calculate the frequency from the index (discrete period) at the maximal correlation.

6.3 Porting to di�erent hardware

The source code of the server consists of numerous standard C modules, all of which

has been available and ported to ADSP-BF537 and ADSP-BF527 platforms already. The

porting procedure is considered to be quick to similar Analog Devices DSPs, if VDK could

be used. Porting the system to a signi�cantly di�erent controller core (e.g. Cortex) or above

another kernel (e.g. uCLinux) would be much elaborate work due to the potential lack of

any ported TCP/IP stacks, but the porting procedure is possible and deterministic.

50

Chapter 7

Summary

In this chapter, the work, the results and the bene�ts of working on this project are

summarized.

I have achieved all the results that were desired, and even more:

• a suitable webserver was found,

• the chosen webserver was ported,

• a sample measurement application was implemented,

• the parameters of the application are con�gurable,

• in addition, a graphic module for direct data (signal spectrum) visualization was

added.

Many additional improvements should be performed on the project to be a real usable

industrial module. We can �nd some suggestions in section 6. However, the functionality

is quite satisfying already.

During the implementation of a whole and complete embedded application by myself, I

acquired much valuable experience about:

• embedded application development,

• use of an embedded real-time operating sytem,

• driver development,

• some signal processing algorithms,

• calibration of a measurement utility,

• basic understanding of socket programming,

• using a certain webserver,

• webpage editing,

• Javascript programming,

51

• AJAX technique.

This project with a few additional e�ort could take part in an industrial application,

where a simple interface on a web browser is needed to con�gure and monitor a whole

real-time control system.

52

List of Figures

2.1 AJAX information �ow [16] . 19

3.1 System overview . 22

3.2 System overview in reality . 23

3.3 System architecture . 27

3.4 Webserver thread process �ow . 28

3.5 Audio thread process �ow . 30

3.6 UART thread process �ow . 32

3.7 LED thread process �ow . 33

3.8 Button thread process �ow . 34

3.9 Flowchart of the Javascript at the client . 35

4.1 The structure of the implemented webpage 41

5.1 Measurement on web interface . 44

53

Bibliography

[1] Adam Dunkels. lwIP. http://savannah.nongnu.org/projects/lwip/.

[2] aidamina. jSocket libary. http://code.google.com/p/jsocket/.

[3] Analog Devices, Inc. ADSP-BF527 EZ-KIT Lite Evaluation System Manual.

"http://www.analog.com/".

[4] Analog Devices, Inc. ADSP-BF52x Black�n Processor Hardware Reference.

"http://www.analog.com/".

[5] Analog Devices, Inc. Black�n Embedded Processor with Codec.

"http://www.analog.com/".

[6] Analog Devices, Inc. Device Drivers and System Services Manual for Black�n Proces-

sors. "http://www.analog.com/".

[7] Analog Devices Inc. VisualDSP++ 5.0 Kernel (VDK) User's Guide.

"http://www.analog.com/".

[8] Dimitri van Heesch. Doxygen. http://www.stack.nl/ dimitri/doxygen/.

[9] Jon Duckett. HTML and CSS: Design and Build Websites. Wrox Press, 2011. ISBN-

10: 1118008189.

[10] Embedthis Inc. GoAheadWeb Server. http://embedthis.com/products/goahead/index.html.

[11] Dacid Flanagan. JavaScript: The De�nitive Guide: Activate Your Web Pages (De�ni-

tive Guides). O'Reilly Media, 2011. ISBN-10: 0596805527.

[12] Highsoft Solutions AS. Highcharts. http://www.highcharts.com/.

[13] IOLA and Ole Laursen. Flot charts. http://www.�otcharts.org/.

[14] jQuery Foundation and other contributors. jQuery. http://www.jquery.com.

[15] jQuery Foundation and other contributors. jQuery License Terms.

https://github.com/jquery/jquery/blob/master/MIT-LICENSE.txt.

[16] QuinStreet Inc. AJAX operation. http://www.developer.com/img/2005/08/Wei2.gif.

[17] Refsnes Data. Web programming resource. http://www.w3schools.com.

54

[18] Nicholas C. Zakas, Jeremy McPeak, and Joe Fawcett. Professional Ajax, 2nd Edition.

Wrox Press, 2007. ISBN-10: 0470109491.

55

	Introduction
	Technologies
	Embedded webservers
	GoAhead webserver

	Server side technologies
	C/C++
	CGI

	Client side technologies
	HTML
	CSS
	XML
	JavaScript
	AJAX

	Design
	Hardware components
	ADSP-BF527C processor
	ADSP-BF527 EZ-KIT LITE evaluation board

	System overview
	Embedded software resources
	System Services
	VDK
	lwIP

	Client resources
	jQuery
	Plotting charts

	Embedded software design
	System structure
	Webserver
	Audio
	UART
	LEDs
	Buttons

	Client side design
	Client webpage design
	Script design

	Client - server communication process

	Implementation
	Guidelines
	Reusable coding with layers
	Comments

	Embedded coding
	Audio driver
	LED driver
	Button driver
	Communication between threads

	Web programming
	HTML
	Javascript

	Webcomp module

	Performance
	Speed of the service
	Client side
	Server side

	Bottleneck
	Stability
	Client side stability
	Server side stability

	ADC voltage parameters
	ADC voltage range
	ADC voltage calibration

	Frequency parameters
	Frequency range
	Frequency measurement accuracy

	Future improvements
	The potential of technology
	Further possibilities
	EJscript investigation
	User authentication
	Configuration by several users
	More recent GoAhead
	Jsocket
	Frequency estimation

	Porting to different hardware

	Summary
	List of figures
	Bibliography

