

SZAKDOLGOZAT-FELADAT

Barta Gábor Kevin (G40RDH)
szigorló villamosmérnök hallgató részére

AUTOSAR I-PDU Multiplexer szoftvermodul tesztelése

A modern gépjárművek biztonságtechnikai és kényelmi funkcióinak megvalósításában,
környezetvédelmi jellemzőinek javításában stb. egyre jelentősebb szerepet kapnak a
számítástechnikai megoldások. Ma egy prémium személyautó gyártójának közel száz
elektronikus vezérlőegységből (ECU) és számos fedélzeti kommunikációs sínből kell
kialakítani egy megbízhatóan működő elosztott rendszert, amely komoly algoritmus- és
kommunikációtervezési, illetve munkaszervezési kihívást jelent. Az így adódó komplexitás
uralására alakultak ki különféle szabványok, pl. a megbízható kommunikáció biztosítására a
CAN és FlexRay sínek, a valós idejű feladatok futtatására az OSEK operációs rendszer vagy a
futási idejű monitorozást támogató XCP protokollcsalád. A vezető autógyártók által 2002-
ben életre hívott AUTOSAR konzorcium célja az, hogy ezen szakterületi szabványokra építve
specifikáljon egy (i) alapvető szolgáltatásstruktúrát amely eltakarja a hardver sajátosságait és
támogatja az alkalmazási szoftver hordozhatóságát (base software stack, BSW), (ii) egy
modellezési nyelvet az ECU-kon futó alkalmazási szoftver szabványos leírására (software
component template), és (iii) az alkalmazások és BSW-k ECU-n belüli és ECU-k közti
transzparens kommunikációját lehetővé tevő elosztott runtime szolgáltatást (RTE):

• A base software stack magában foglalja az alacsony szintű eszközmeghajtókat (pl.
EEPROM és Flash driverek), az ezeket eltakaró absztrakciós rétegeket (pl. memória
absztrakciós felület) és az ezekre ültetett magas szintű funkciókat (pl. perzisztens
adattárolás).

• A modellezési nyelv lehetővé teszi, hogy precízen specifikáljuk az adattípusokat, illetve
az alkalmazást alkotó komponensek interface-eit és belső felépítését.

• Az RTE egy generált glue kód réteg, amely eltakarja az alkalmazáskomponensek elől,
hogy az általuk fogadott vagy küldött információ pontosan hogyan jut el a forrástól a
célig, potenciálisan ECU-k közötti kommunikációs buszok igénybevételével.

A konzorcium jelentős hangsúlyt fektet az API-k szabványosítására, de kifejezetten támogatja
a versengést az egyes szolgáltatások megvalósításában („Cooperate on standards, compete on
implementation”).

A jelölt feladata az AUTOSAR base software stack egy moduljának tesztelése a kapcsolódó
feladatok elvégzésével az alábbiak szerint:

• A szabvány kapcsolódó részeinek megismerése: (i) ismertesse az AUTOSAR rétegzett
BSW struktúráján belül a kommunikációért felelős modulok szerepét és (ii) vázolja ezek
együttműködését egy olyan forgatókönyv bemutatásával, amelyben két, különböző ECU-
n futó alkalmazáskomponens vált üzenetet az I-PDU Multiplexer modul
igénybevételével.

• Tesztelés alapfogalmainak bemutatása: (i) ismertesse a modulteszt szerepét a
szoftverfejlesztésben, (ii) a fekete doboz tesztelés sajátosságait, (iii) a tesztesetek
tervezését határérték analízis alapján, illetve (iv) mutassa be, hogyan ellenőrizhető
fedettségi mérésekkel az, hogy a lehetséges lefutások tesztek által megvizsgált
részhalmaza várhatóan jól reprezentálja a modult.

• Modulteszt implementálása: végezze el az I-PDU Multiplexer modul tesztelését, ehhez
(i) állítsa össze a tesztelő környezetet, (ii) hozzon létre különböző konfigurációs
modelleket, (iii) tervezze meg és implementálja a teszteseteket és (iv) futtassa ezeket a
különböző konfigurációk mellett. Ezután (v) elemezze a tesztek eredményét, majd
tekintse át, hogy (vi) vannak-e olyan aspektusai az elvárt működésnek, amelynek való
megfelelőséget a tesztkészlet vagy akár a módszer hiányosságai miatt nem lehet
ellenőrizni.

Tanszéki konzulens: Dr. Sujbert László, docens
Külső konzulens: Szikszay László (ThyssenKrupp Presta Hungary Kft.)

Budapest, 2015. október 7.

……………………
Dr. Jobbágy Ákos

tanszékvezető

 6

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Méréstechnika és Információs Rendszerek Tanszék

Barta Gábor Kevin

TESTING OF AUTOSAR I-PDU

MULTIPLEXER SOFTWARE

MODULE

BELSŐ KONZULENS

Dr. Sujbert László
BME MIT

KÜLSŐ KONZULENS

Szikszay László
ThyssenKrupp Presta AG

BUDAPEST, 2015

Table of Contents

Összefoglaló ... 6

Abstract .. 7

1 Introduction ... 8

1.1 Background ... 8

1.2 Purpose .. 8

1.3 Objective ... 9

2 Automotive Industry Standards .. 10

2.1 AUTOSAR .. 10

2.1.1 Introduction ... 10

2.1.2 Initiative .. 10

2.1.3 Layer Model .. 10

2.1.4 Interface Types ... 13

2.2 ISO 26262: Road vehicles – Functional safety ... 14

2.2.1 Overview ... 14

2.2.2 Development Cycle of Products ... 15

2.2.3 Automotive Safety Integrity Level (ASIL) ... 15

2.3 MISRA C .. 15

2.3.1 Purpose.. 15

2.3.2 History .. 16

2.3.3 Guidelines ... 16

3 Software Testing ... 18

3.1 Introduction ... 18

3.1.1 The V-Model... 18

3.1.2 Complexity of Software Testing ... 19

3.2 Methods of Testing ... 19

3.2.1 Correctness Testing... 20

3.2.2 Black-box Testing ... 20

3.2.3 White-box Testing .. 21

3.3 Code Coverage .. 21

3.3.1 Code Coverage Metrics .. 21

3.4 CUnit Testing Framework .. 23

3.4.1 Introduction ... 23

3.4.2 Header Files .. 23

3.4.3 Assertions.. 24

3.4.4 Test Registry ... 24

3.4.5 Test Suites ... 25

3.4.6 Test Cases ... 25

4 AUTOSAR Communication Stack .. 26

4.1 Introduction ... 26

4.1.1 Communication Services .. 26

4.1.2 Communication Hardware Abstraction .. 26

4.1.3 Communication Drivers .. 26

4.2 Data Exchange .. 26

4.2.1 I-PDU .. 27

4.2.2 N-PDU .. 28

4.2.3 L-PDU ... 28

4.2.4 Signals ... 28

5 I-PDU Multiplexer Module .. 29

5.1 Introduction ... 29

5.2 Reliance on Other Modules .. 29

5.2.1 BSW Scheduler ... 30

5.2.2 PDU Router... 30

5.2.3 COM ... 31

5.3 Multiplexing of I-PDUs .. 32

5.3.1 Static and Dynamic Parts .. 32

5.3.2 Selector Field .. 33

5.4 Data Types .. 34

5.4.1 Type Definitions ... 34

5.4.2 Structures .. 35

5.5 Functions of the Module ... 36

5.5.1 Initialize .. 36

5.5.2 GetVersionInfo ... 36

5.5.3 Transmit .. 36

5.5.4 RxIndication.. 37

5.5.5 TxConfirmation .. 37

5.5.6 TriggerTransmit .. 37

5.5.7 MainFunction .. 38

5.6 Initialization .. 38

5.7 Transmission ... 38

5.8 Reception .. 39

5.9 Development Errors .. 39

6 Testing of the Module ... 40

6.1 Prerequisites .. 40

6.1.1 Tools ... 40

6.1.2 Requirements .. 42

6.1.3 Testing Procedure ... 43

6.2 Testing Environment ... 44

6.2.1 Framework Setup .. 44

6.2.2 Test Utilities .. 45

6.2.3 Configuration .. 48

6.3 Stubs .. 48

6.3.1 Stub Structures .. 49

6.3.2 COM ... 49

6.3.3 PduR.. 50

6.3.4 Det ... 50

6.3.5 Mutual Exclusion .. 50

6.4 Test Suites ... 51

6.4.1 Development Test Suite .. 51

6.4.2 Reception Test Suite ... 56

6.4.3 Transmission Test Suite .. 58

6.5 Generally Tested Requirements .. 65

7 Conclusion ... 67

7.1 Contribution .. 67

7.2 Aftermath .. 67

List of Abbreviations .. 68

Table of Figures .. 70

Bibliography .. 71

HALLGATÓI NYILATKOZAT

Alulírott Barta Gábor Kevin, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot

meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat

(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,

vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a

forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű

tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan

hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső

hálózatán keresztül (vagy hitelesített felhasználók számára) közzétegye. Kijelentem,

hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni

engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után

válik hozzáférhetővé.

Kelt: Budapest, 2015. 12. 12.

 ...…………………………………………….

 Barta Gábor Kevin

 6

Összefoglaló

A szigorú autóipari elvárások miatt az ECU szoftverek intenzív fejlesztési és

tesztelési folyamatokon mennek át. Az én feladatom az I-PDU Multiplexer modul

tesztelése volt, ami az AUTOSAR kommunikációs verem egyik Basic Software

modulja.

A feladatomhoz hozzátartozott az AUTOSAR szabvány megismerése, főként a

kommunikációért felelős modulokra koncentrálva. A munkám során megismerkedtem a

szoftvertesztelés alapfogalmaival, mint például a fekete doboz tesztelés és

kódlefedettség vizsgálat. Az I-PDU Multiplexer interfészeinek leírását és a modulhoz

tartozó követelményeket is meg kellett ismernem. Elsajátítottam egy modellező eszköz

használatát, melynek segítségével többféle konfigurációt lehet létrehozni a tesztelés alatt

álló modulhoz. Ezzel a tudással kezdtem el a teszt környezet felépítését és a tesztesetek

implementálását.

A tesztelt funkcionalitás alapján összetartozó teszteseteket külön

tesztkészletekben helyeztem el. Így készült el három tesztkészlet számos tesztesettel,

melyek megvizsgálják a modulhoz előírt tesztelhető követelményeket. A tesztesetek

pontos dokumentálása és az egyes követelmények tesztjének forráskódhoz rendelése is

szerves része volt a feladatomnak.

Az összes tesztelhető követelményt sikerült ellenőrizni a megírt széleskörű

tesztesetekkel. Több konfigurációt alkalmaztam annak érdekében, hogy

megbizonyosodjak a tesztelt modul viselkedésének helyességében. A tesztelés során a

modul elérte a száz százalékos elágazás lefedettségét. Az előbb felsoroltak alapján a

modul tesztelését befejezettnek lehet tekinteni.

 7

Abstract

Due to the rigorous requirements dictated by the automotive industry, ECU

software must undergo intensive development and testing procedures. The AUTOSAR

standard dictates the requirements that ECU software modules must fulfill. The

assignment was the software testing of the I-PDU Multiplexer module, which is a Basic

Software module located in the AUTOSAR communication stack.

To successfully test the I-PDU Multiplexer module, an understanding of the

AUTOSAR standard was necessary, with special emphasis on modules responsible for

communication. Utilizing software testing principles, such as black box testing and code

coverage analysis, and becoming familiar with the interfaces of the I-PDU Multiplexer

was essential for testing of the module. To be able run extensive tests, a ThyssenKrupp

Presta AG developed modeling tool was used to create several configurations in order to

assemble diverse and distinct parameters for the module. Using the above mention

knowledge, the construction of the testing environment and the implementation of the

test cases could begin.

The test cases were categorized into separate test suites according to the tested

functionality. Three distinct test suites with several test cases, were used to effectively

examine the testable requirements of the module. The documentation of the test cases

and the tagging of the requirements were also an essential part of the assignment.

All the testable requirements were successfully inspected, owing to the

comprehensive test cases. Consequently, 100% branch coverage was reached and all the

testable requirements were met. The module is deemed fully tested by requirements set

by AUTOSAR and the Quality Management constraints set by ISO 26262.

 8

1 Introduction

1.1 Background

Over the first decade of the new millennium, the rise of embedded systems in

the automobile industry grew rapidly. With increasingly more complex electrical

systems, such as autonomous cruise control (ACC), and safety-critical components,

such as power steering systems, being installed into vehicles, the ECUs that control

such systems, must undergo an extensive development cycle.

The development cycle of an ECU follows the V-model with many phases of

verification and validation. The V-model will be discussed in more detail later. To

guarantee the upmost quality, Tier 1 suppliers started to devote more time for the testing

of both the hardware and software of ECUs, especially ones dealing with safety-critical

systems. Following standards such as ISO 26262 and AUTOSAR, have also became a

priority for manufacturers of the automotive industry.

1.2 Purpose

The main purpose of the AUTOSAR standard is to create a common foundation

of ECU development, yet still promote competitions between manufacturers. The layer

model of AUTOSAR promotes the idea of hardware independent implementation, thus

attaining software transferability. Entire basic software stacks can be relocated onto

different hardware platforms due to the AUTOSAR standard. To achieve this software

transferability, AUTOSAR releases detailed specifications and precise requirements that

ECU software developers carefully follow to implement in their software modules.

After implementation, the next stage is module testing. Modules are thoroughly

tested to examine if the requirements are reached. Testing is done by using a

framework, such as CUnit, that provides a well structured environment in order to test

the modules. After proper documentation, a requirement analyzing tool runs through the

software to check the location of each tested requirement. Aspects such code coverage

are also benchmarked to measure if every functionality of the module was executed

during testing. The entire testing process is to ensure software quality and to guarantee

that the module lives up to the AUTOSAR standard.

 9

1.3 Objective

My objective in the development process of ECUs, here at

ThyssenKrupp Presta AG, was to test the Interface Layer Protocol Data Unit

Multiplexer (IpduM) module, a BSW module of the AUTOSAR communication stack.

The requirements were specified by AUTOSAR 4.0, and amended by ThyssenKrupp

Presta AG. My job was to write test cases, with the help of the CUnit testing

framework, to examine the functionality of the module and check if the requirements

are met.

First step I had to take, was to understand the IpduM module by reading the

specification released by AUTOSAR 4.0. The 4.0 is the release number of the

AUTOSAR standard. After acquiring thorough knowledge of the module, I started to

write test cases assessing the boundary values of the functions. Afterwards, I wrote test

examining simple development error requirements, such as invalid parameters and

uninitialized module.

In the next step, I tested the reception side of the IpduM module to examine if

the I-PDUs are received and processed properly.

Afterwards I examined the transmission side of the module, to test the module

for proper transmission of I-PDUs. The testing of transmission side was more difficult,

because of miscellaneous requirements such as Just-In-Time updates and timed

transmission confirmations.

Tagging the requirements and documenting the code according to Doxygen was

also part of my work. This stage is probably the most important because proper

documentation is essential for the requirement analyzing tool to process the tested

requirements and to demonstrate the thought process of the test cases.

After finishing my work, the testing environment I prepared will go into code

review for examination to check if it meets company standards. Afterwards it will be

sent back to me if any corrections must be made.

 10

2 Automotive Industry Standards

2.1 AUTOSAR

2.1.1 Introduction

AUTOSAR is a standardized software architecture developed by automotive

original equipment manufacturers (OEM) and suppliers. The name AUTOSAR is

derived from the first few letters of the words AUTmotive Open Systems ARchitecture.

The goal of AUTOSAR is to create a reference architecture for automotive software

development, due to the increasing complexity of software in modern automobiles.

2.1.2 Initiative

AUTOSAR was developed in 2003 by leading automobile companies, original

equipment manufacturers (OEM), supplier, and various companies in electronics

industry. The main driving force behind developing the AUTOSAR standard, was to

create a foundation of basic functions, while offering a platform to encourage

competition in the industry. This mentality is conveyed in the slogan, “Cooperate on

Standards, Compete on Implementation.” The goals of AUTOSAR are the following:

[12]

 “Definition a reference architecture for ECU software”

 “Standardization interfaces between functions of the application

software”

 “Transferability of software”

 “Collaboration between various partners”

 “Differentiate between hardware and non-hardware specific

components”

2.1.3 Layer Model

The aim of AUTOSAR is to have the functions of the ECU be hardware

independent and divided into atomic software components (SW-C). On an abstract

level, the communication between software components is represented by the

 11

Virtual Function Bus (VFB). The purpose of representing the communication with the

VFB, is to indicate that the software components are independent of the ECU hardware.

The reason for the layer model is that it simplifies the porting of software to different

hardware. Due to AUTOSAR, all that needs to be done for example, when using a

different microcontroller, is substitute the old microcontroller specific modules with the

new ones. AUTOSAR divides the software architecture of an ECU into three abstract

layers. [1] [12]

Figure 2.1 AUTOSAR Layer Model (Top View) [1]

2.1.3.1 Application Layer

At the top of the AUTOSAR layer model is the application layer. Located in this

layer are the entirely hardware independent software components of the ECU.

AUTOSAR does not specify the function of the software components, it only specifies

the communication between the components through their interfaces. The application

layer only communicates with the Run Time Environment (RTE), the layer underneath

it. [1]

2.1.3.2 Run Time Environment (RTE)

The Run Time Environment embodies the communication between the

Application Layer and the Basic Software Layer. The RTE is generated by the

description file of the ECU, therefore it is dependent on the hardware. But by creating

the RTE hardware dependent, its top interfaces linking to the Application Layer can be

made hardware independent. [1]

 12

2.1.3.3 Basic Software

The Basic Software is made up of atomic software modules that fulfill specific

functions. The Basic Software can also subcategorized into different layers, depending

on their purposes in the architecture. Starting from the upper layers of the Basic

Software and heading down to the lower layers, the layers are more integrated into the

hardware of the ECU. [1]

 Services Layer: The operating system and other services such as

memory management, network services, and bus communication

services are handled by this layer.

 ECU Abstraction Layer (ECUAL): Provides an interface for the

functions of the ECU. This is independent of whether or not the

functions are operated by drivers of the microcontroller or external

devices. This layer does not depend on the microcontroller in use,

however it depends on the ECU’s inner structural design.

 Microcontroller Abstraction Layer (MCAL): The peripherals, such as

memory, communication, I/O of the microcontroller are accessible by the

drivers provided by this layer. The MCAL is highly dependent on the

microcontroller in use.

 Complex Drivers: Complex functions not found in other layers are

implemented here. This layers has direct access to the microcontroller,

and is dependent on both the ECU and the microcontroller.

 13

Figure 2.2 AUTOSAR Layer Model (Coarse View) [1]

2.1.4 Interface Types

In general, an interface is the boundary between two entities, where they can

communicate with one another and exchange data. AUTOSAR categorizes three

different types of interfaces. [1]

2.1.4.1 AUTOSAR Interface

An AUTOSAR Interface is an interface that enables communication through the

Run Time Environment, between SWCs or between Basic Software Modules. An

AUTOSAR Interface is specific to the application it is used by, and is generated with

the Run Time Environment. Because of this, one side of an AUTOSAR Interface

always connected to the RTE, and the other side communicates with the SWC or BSW

module.

2.1.4.2 Standardized AUTOSAR Interface

A Standardized AUTOSAR Interface is a specific AUTOSAR Interface that the

AUTOSAR standard defines. Through the Standardized AUTOSAR Interface, the

SWCs reach AUTOSAR services, such as the Diagnostic Event Manager.

2.1.4.3 Standardized Interface

A Standardized Interface is an Application Programming Interface (API) defined

in a programming language, usually C. This interface is also standardized within

AUTOSAR, however it behaves differently as the AUTOSAR Interface, as it is not

 14

generated with the RTE. Basic Software modules communicate with one another using

the Standardized Interface. Communication between BSW modules and the RTE is can

be provided through the Standardized Interface, but in this case the communication

must be limited within the ECU.

Figure 2.3 AUTOSAR Components and Interfaces View (Simplified) [1]

2.2 ISO 26262: Road vehicles – Functional safety

2.2.1 Overview

The automotive industry is increasingly becoming more dependent on electrical

and digital systems. Due to the dependency of these systems, a standard had to be

created regarding safety critical components. With this in mind, ISO 26262 was

published in 2011. By applying these standards during the design and production of

electrical systems, the safety aspect of products have improved.

The parent standard of the ISO 26262 is IEC 61508, which is a basic functional

safety standard that can be applied to every industry. Whereas ISO 26262 is a standard

specifically pertaining to automotive electrical and electronic (E/E) systems. [8] [11]

 15

2.2.2 Development Cycle of Products

ISO 26262 specifies recommendations on developing safety-compliant products,

through every stage of its development. The standard can be applied starting from the

early conceptual design, and through phases such as, development, production,

operation, service and even the final decommission of the product. At every stage of the

product, numerous safety measures and audits are done to assure the proper utilization

of the standard. [8]

2.2.3 Automotive Safety Integrity Level (ASIL)

ISO 26262 defines a system of classifying the product by the necessity and

strictness of applying the safety standard. ASIL is calculated using three factors;

severity, exposure, and controllability. [11]

 Severity: The severity of the failure, is the harshness of the outcome if it

occurs. In other words, how much loss the failure can cause, to the user

or the product itself.

 Exposure: The exposure is the probability of the failure happening.

 Controllability: The controllability of the outcome, is how much

influence the user has on preventing damage or loss after the failure has

occurred.

𝐴𝑆𝐼𝐿 = 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 + 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦

There are five levels of ASIL ranging from ASIL-D, where the highest degree of

assurance is needed because these are applications with high level of risk if failure

occurs, to Quality Management (QM), which are applications where there are no

automotive hazards involved. The five levels of ASIL are, in increasing order of safety

requirements; QM, ASIL-A, ASIL-B, ASIL-C, and ASIL-D.

2.3 MISRA C

2.3.1 Purpose

The C language has become the dominant programming language used in

embedded systems, due to run-time efficiency, low-resource requirements, and

hardware flexibility. However the C language has its drawback, including loose syntax

 16

requirements and restricted run-time checking. Due to the likelihood of inexperienced

programmers making mistakes, which stem from the disadvantages of the C language, a

standard was established when programming embedded systems. [5]

2.3.2 History

Motor Industry Software Reliability Association was established by automobile

manufacturers to set guidelines for developing automotive embedded systems in the

C language. These guidelines, named MISRA C were first published in 1998. Since

then, two other editions were released in 2004 and 2012, named MISRA-C:2004 and

MISRA-C:2012 respectively. [5]

2.3.3 Guidelines

The newest edition of the MISRA C guidelines include a total of 143 rules and

16 directives. The rules are accurately defined requirements, and are grouped into three

categories; advisory, required, and mandatory. Two concepts differentiate between the

three types of rules, compliance and deviation.

 Compliance is the degree of how intensely the rule must be followed or

obeyed. In another words the obligation to the rule.

 Deviation is to what degree the rule can be strayed from.

The requirement of the above mentioned traits, decide which out of the three

categories does a rule fall in.

 An advisory rule is one that both compliance and deviation is optional.

Meaning it is not required to follow advisory rules, but it is

recommended by the MISRA C guidelines.

 A required rule is one that compliance is required, unless it is justified by

a deviation. Meaning if due to a reasonable justification stemming from

the application of the software, it is acceptable not to obey the rule.

 A mandatory rule is one that compliance is required, and under no

circumstances can the rule be omitted.

Directives are not as easily defined as rules, but are procedures that should be

obeyed the same way as rules. The main difference between them is rules are well

defined, while directives are subject to interpretation. Due to sometimes unclear

 17

distinction between rules and directives, an example is given. “Precautions shall be

taken in order to prevent the contents of a header file being included more than once,” is

a directive while, “All object and function identifiers shall be declared before use,” is a

rule. [3]

 18

3 Software Testing

3.1 Introduction

In general, software testing is the act of evaluating if a software component or an

entire system, meets the predefined requirements. The software undergoing testing has

to meet certain requirements, in order ensure the proper behavior of the software. Even

after extensive testing it cannot be guaranteed that the software works properly hundred

percent of the time. So the purpose of testing is to increase the software quality of the

modules. [10]

Another reason why software testing is important, is to locate errors and bugs in

the software. These abnormalities usually originate from design errors during the

development of the software, and they only surface during testing.

3.1.1 The V-Model

The V-model is a model representing the development process of software. The

left branch, called the verification phases, of the V-model shows the steps the developer

must take to create the software. While the right branch, called the validation phases,

shows the steps of the tester must take to confirm the proper behavior of the software.

[10]

Figure 3.1 V Model of Software Development

 19

Each verification stage must corresponds to a validation stage. Verification is

the process of reviewing and analyzing the code without executing it. Validation is

testing the software by executing the code.

The four stages of validation are explained in more detail.

3.1.1.1 Component Test

At this stage, the smallest individually testable components or modules are

tested. The functionality of the component is being tested.

3.1.1.2 Integration Test

After the individual component testing, the components are combined and tested

as a group. The goal of integration test, is to examine the behavior of the interface and

the communication between the components.

3.1.1.3 System Test

After the integration test, the entire software undergoes testing. At this stage, the

goal is to examine if the system fulfills the requirements.

3.1.1.4 Acceptance Test

The acceptance test is conducted by the end-user of the product, to check if the

software qualifies and fulfills their expectations.

3.1.2 Complexity of Software Testing

Due to the complexity of the software it is difficult to run extensive and

comprehensive test. For example, even taking a simple program, such as one that shall

add two 16 bit integers together, has 232 test cases, which can take ample amount of

time. For actual software components in the industry, which are far more complex than

the example given above, testing for all the possible outcomes is near impossible.

Because of this, usually only boundary value analysis test are done to test outcomes,

which will be explained in more detail when discussing Black-box testing.

3.2 Methods of Testing

There are several different techniques and methods of software testing. These

testing methods can be classified into different categories depending on the purpose of

 20

the test. Such classifications are correctness testing, performance testing, reliability

testing, and security testing. Only correctness testing is explained in detail below. [10]

3.2.1 Correctness Testing

Testing for correctness of a software is the minimum requirement. This is

usually the main purpose of testing. Essentially it is testing the software for a correct

input given a correct output is produced. To test for correctness, a knowledge of some

type of specification is needed, in order to tell correct responses from incorrect

responses. This does not necessarily require the knowledge of the inner workings of the

software. When the test is conducted with the understanding of the inner structure of a

software it is called white-box testing, if the test is conducted with only the knowledge

of the interface of the software, it is called black-box testing.

3.2.2 Black-box Testing

When testing a software with the black-box testing method, only the input,

outputs, and specifications are known. It is called black-box testing, because the

component is seen as a black box. The inner structure of the software is not seen from

the outside. The tester only has knowledge of the interfaces of the software component,

and not its inner structure. The main reason for using this technique, is to test the

functionality of the component. Functional testing refers to performing the functions of

the software and examining the input and output data. During testing, numerous inputs

are processed, and the outputs are compared with the proposed results indicated in the

specification. Only the specification is used to check for the correctness of the

component.

The further we test different input values of the input space, the more we can

assure ourselves of the quality of the software. However, conducting test with the entire

input space is not feasible. Therefore a method called partitioning is used. Partitioning is

assuming that the input values of a particular partition are equal. Meaning only one case

from each partition is sufficient to test the entire input space. Correctly choosing one,

usually more cases, from a partition, to represent the entire domain, is the basis of

boundary value analysis. Boundary value analysis is a technique using boundary values

as inputs for test cases, to test the entire partition. The boundary values are values on the

on the border of the partition, usually the minimum and maximum values.

 21

3.2.3 White-box Testing

During white-box testing, the component under testing is viewed as glass-box,

meaning the entire inner architecture is seen by the tester. Using this technique, the test

cases are constructed, with the structure of the component in mind. Aspects such as

programming language, logical structure, and data flow are considered for the test cases.

Since the code of the module is known, it is entirely feasible to be able to fully

traverse the code space, including executing every line of code (statement coverage),

entering every branch (branch coverage), and covering all possible logical combinations

(multiple condition coverage). Because of the extensive code coverage, “dead” code,

code that is never executed, can easily be located.

There are times when testing methods, cannot clearly be classified as either

black-box or white-box testing. The reason being, it is not always clear to what extent of

looking under the hood of the software is considered white-box testing, rather than

black-box testing. For example, the knowledge of the programming language used or

the structure of the code might already infringe on the definition of the black-box

testing method. Since the boundary between black-box and white-box testing is

sometimes blurred, a combination of using testing tactics from both methods is called

gray-box testing.

3.3 Code Coverage

Code coverage is the percentage of code that is effectively being executed

during testing of the program. It shows the software tester how much of the code is

being traversed when the test is conducted.

Code coverage is a white-box testing procedure, since the program code needs to

be accessible to calculate the code coverage of a software component. During the

module testing phase of software development is usually where code coverage is most

essential. [4]

3.3.1 Code Coverage Metrics

There are several different types of code coverage that demonstrate how well the

code is navigated. Each code coverage metric shows a different way of looking at the

manner at which the code can be traversed.

 22

3.3.1.1 Statement coverage (SC)

Statement coverage indicates the percentage of code statements executed. In

order to reach 100% statement coverage, every statement, every line of code, must be

executed, at least once, during the duration of the test.

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑣𝑒𝑎𝑔𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
 𝑥 100%

3.3.1.2 Branch coverage (BC)

Branch coverage indicates the percentage of branches entered. In order to reach

100% branch coverage, all branches, every possibility of IF, IF/ELSE, and

SWITHC/CASE statements must be entered, at least once, during the duration of the

test.

3.3.1.3 Decision Coverage (DC)

Decision coverage indicates the percentage of decision outcomes occurred out of

all the decisions possible. In order to reach 100% decision coverage, all the outcomes of

each decision in the code must have occurred during the duration of the test.

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
 𝑥 100 %

3.3.1.4 Condition Coverage (CC)

Condition coverage indicates the percentage of condition outcomes out of all the

conditions possible. In order to reach 100% condition coverage, all conditional

variables, typically Boolean variables, must have occurred with every possible outcome,

usually TRUE and FALSE, of that condition.

3.3.1.5 Condition Decision Coverage (C/DC)

Condition decision coverage is a combination of condition coverage and

decision coverage. In order to reach 100% condition decision coverage, every possible

decision outcome has to have occurred, while the conditions, that made these decisions,

must have taken up every possible value.

3.3.1.6 Modified Condition Decision Coverage (MC/DC)

Modified condition decision coverage is the most complex code coverage. In

order to reach 100% modified condition decision coverage all the decision outcomes

 23

have to occur. While all the conditions, that made the decisions, must have taken up

every possible value. And each variable that was part of such a condition, must have

been dominant in influencing the outcome of that condition.

3.4 CUnit Testing Framework

3.4.1 Introduction

CUnit is a testing framework for software programs implemented in C. Its main

application is to provide software testers a way to write, administer, and run unit tests.

Through numerous flexible user interfaces, it offers programmers a basic testing

functionality to test their program code.

CUnit is actually a static library that is linked together with the program code

that is to be tested. With the help of its simple framework and broad set of assertions, it

allows the testers to construct test structures and to test similar data types. Through the

many interfaces CUnit provides, running tests and viewing results can be done

dynamically. [6]

3.4.2 Header Files

Functions and data types provide by CUnit can be reached by the user by

including the following header files. [6]

 CUnit/CUnit.h: ASSERT macros for use in test cases, and includes

other framework headers.

 CUnit/TestDB.h: Data type definitions and manipulation functions for

the test registry, suites, and tests. Included automatically by CUnit.h.

 CUnit/TestRun.h: Data type definitions and functions for running

tests and retrieving results. Included automatically by CUnit.h.

 CUnit/Basic.h: Basic interface with non-interactive output to stdout.

 CUnit/Automated.h: Automated interface with xml output.

 CUnit/Console.h: Interactive console interface.

http://cunit.sourceforge.net/doc/headers/CUnit.h
http://cunit.sourceforge.net/doc/headers/CUnit.h
http://cunit.sourceforge.net/doc/headers/CUnit.h

 24

3.4.3 Assertions

In software testing, an assertion is a statement on a logical expression that

should be true at the location in the code where the assertion is implemented. If at the

location of the assertion, the logical expression is false, then the assertion fails. An

assertion failing can lead to the program crashing, an assert exception being thrown, or

it can be logged in the testing scenarios.

CUnit provides numerous assertions to test different kinds of logical conditions.

The framework logs the success and failures of the assertions, and after the test is

complete, it is possible to view the results. If an assertion fails, the test continues, except

if the assertion is of the “FATAL” type, in which case the test function is aborted and

returns instantly. [6]

3.4.3.1 Assert Example:

CU_ASSERT_EQUAL(actual, expected);

CUnit asserts that the value of actual equals the value of expected. Both actual

and expected can be an arbitrary variable (integer, unsigned 8 bit integer, etc.) as long as

they are the same type.

3.4.4 Test Registry

The test registry is the collection of the test suites. The user can update the test

registry by adding more test suites. The registry is actually data structure, which holds

the number of suites and tests that the registry contains, and also pointer to the head of

the registered test suites. [6]

 typedef struct CU_TestRegistry
 {
 unsigned int uiNumberOfSuites;
 unsigned int uiNumberOfTests;
 CU_pSuite pSuite;
 } CU_TestRegistry;

After testing is complete, the test registry should be cleaned up, by calling the

CU_cleanup_registry function. The reason is to avoid memory leaks.

 25

3.4.5 Test Suites

A test suite is a collection of test cases that usually examine similar

requirements. In order for CUnit to run the test suite, it must be registered in the test

registry. The following is the syntax for a collection of test suites. [6]

CU_SuiteInfo suites[] = {
 tSuite1,
 tSuite2,
 CU_SUITE_INFO_NULL,
};

3.4.6 Test Cases

A test case is a specific test that examines a precise functionality of a software. It

provides the expected output of the software in order to compare with the actual output.

This is what decides whether or not the test is successful. A test case provides

information on whether or not the software component passed the test or not. [6]

 26

4 AUTOSAR Communication Stack

4.1 Introduction

The main responsibility of the communication stack is to assure data

transmission between software components. The communication stack consists of a

services layer, hardware abstraction layer, and a drivers layer. [1]

4.1.1 Communication Services

The communication services layer is situated between the RTE and the

communication hardware abstraction layer. This layer is responsible for the tasks of

network management and data exchange, which is accomplished by the Communication

Manager (ComM) module and Communication (COM) module, respectively. This layer

is entirely independent of the hardware.

4.1.2 Communication Hardware Abstraction

This layer contains the interfaces of the communication bus protocols such as

Ethernet, FlexRay, CAN, and LIN. It is dependent of the hardware configuration of the

ECU, but independent from the microcontroller employed.

4.1.3 Communication Drivers

This layer contains the drivers of the vehicle communication bus protocols such

as CAN, LIN, and FlexRay, and also for onboard communication such as SPI. The

drivers are entirely dependent on the microcontroller utilized for the ECU.

4.2 Data Exchange

The data is transmitted between layers of the communication stack by data

packets called PDUs (Protocol Data Unit). Each layer has a corresponding protocol for

assembling PDUs. Information pertaining to the protocol is included in the PDU, in the

form of the Protocol Control Information (PCI) field of the PDU. The PCI consists of

information about the source and target layer. The PCI is added to the data packet by the

sending layer before transmission, and when the receiving layer obtains the PDU, the

PCI is then removed. The Service Data Unit (SDU) is the useful data part of the PDU.

 27

The SDU is the information the upper layer passes to the lower layer. An identifier

called the PDU ID is used to identify PDUs throughout the communication stack.

To clarify the process of data transmission the following example is given. A

upper layer desires to send data to a lower layer. The data is then assembled into a SDU

with a PCI attached. From this point it is called a PDU, and is transmitted to the lower

layer. The lower layer receives the PDU, removes the PCI, and obtains the useful data

that is contained in the SDU. The above explained process is shown in the figure below.

[1]

Figure 4.1 Flow of PDUs between Layers [1]

There are three classifications of PDUs, depending on which layer assembled

the PDU. The three PDU types are listed below and definition of a signal is explained.

4.2.1 I-PDU

The I-PDU is the PDU of the interaction layer, or the presentation layer of the

OSI model. It is assembled in the COM module, and contains signals received from the

RTE.

 28

4.2.2 N-PDU

The N-PDU is the PDU of the network layer of the OSI model. It is assembled

by the transport protocols, and its size is limited by the maximum size of the data the

particular transport protocol can transmit. For example, CAN is limited to 8 bytes.

4.2.3 L-PDU

The L-PDU is the PDU of the data link layer of the OSI model. It is assembled

by protocol interfaces of the hardware abstraction layer. In the drivers layer, the

L-PDUs are placed on the physical bus for transmission.

4.2.4 Signals

Signals are data packets exchanged between the COM module and the RTE.

They are another representation of data used in the automotive industry, it is equal to

that of a message in the OSEK standard. [9]

 29

5 I-PDU Multiplexer Module

5.1 Introduction

The IpduM module is an AUTOSAR Basic Software module located in the

services layer. It directly communicates with the PDU Router module, and in some

cases with the Communication module. As the name suggests, the modules main

purpose is handling multiplexed I-PDUs.

When discussing PDU multiplexing, it is meant that a PDU comprises of more

than one unique arrangement of its SDU, while using the same PCI. The selector field is

part of the SDU, and is responsible for indicating a specific arrangement of the PDU.

IpduM has to combine received I-PDUs from the COM module, and form

multiplexed I-PDUs, which are sent to the PDU Router. In this case, the IpduM acts as

the sender. When the IpduM module is receiving, it must comprehend the received

multiplex I-PDUs and, with the help of the selector field, deliver the corresponding

dismantled I-PDUs to the COM module.

The IpduM module is implemented next to the PDU Router in the AUTOSAR

Communication Stack. If for some reason, a system does not require multiplexing of

PDUs, then the system can be built without the IpduM module. So far, I-PDU

multiplexing has only been used for CAN communication, however it is not limited to

it. Multiplexing of PDUs are possible on all other communication systems, which can

be handled by the PDU Router. Therefore it is technically possible on other bus systems

such as FlexRay and LIN. [2]

5.2 Reliance on Other Modules

The IpduM module is relatively isolated compared to other modules in the

AUTOSAR Communication Stack. It depends only on total of three other modules. The

IpduM module relies on the PDU Router and COM module for communication and

relies on the BSW Scheduler for time scheduling. [2]

 30

5.2.1 BSW Scheduler

The BSW Scheduler is generated with the RTE. Its main purpose is to dictate the

time intervals for all BSW modules, and correct any problem pertaining to timing

inconsistencies. The BSW Scheduler does this by calling the main function of BSW

modules. In case of the IpduM module, it periodically calls IpduM_MainFunction

according to the value configured in IpduMConfigurationTimeBase.

Figure 5.1 Location of I-PDU Multiplexer in AUTOSAR [1]

5.2.2 PDU Router

The main purpose of the PDU Router is to forward I-PDUs between the different

modules of the services layer. The PDU Router can also take up a role of a gateway,

meaning it must forward an incoming PDU from a lower level module to another lower

level module.

The IpduM module needs the following functionalities from the PDU Router.

The PDU Router must send an indication to IpduM of incoming multiplexed I-PDUs. It

must provide IpduM with a sending interface for outgoing I-PDUs. And must send

confirmations of I-PDUs that were successfully transmitted to the IpduM module.

The following functionalities are provided by the IpduM module for the

PDU Router. IpduM provides an indication interface for incoming I-PDUs, which are

 31

then de-multiplexed. It also provides a sending interface for I-PDUs, which will be

multiplexed. It provides a confirmation interface for transmitted I-PDUs.

The look-up tables and other configurations of the PDU Router, must include

I-PDUs which are routed to the IpduM module. These I-PDUs must also belong to

multiplexed I-PDUs and must represent a static or a dynamic part.

5.2.3 COM

The COM module communicates with the RTE, the upper layer, through a

signal based interface. Communication with lower layers are done through a PDU based

interface. This module is responsible for receiving signals from the RTE, and

converting the data into I-PDUs in order to forward them to the PDU Router. In the

other direction, it is capable of receiving I-PDUs from the PDU Router, convert them

into signals, and forward them to the upper layer, the Run Time Environment.

The configurations of both the IpduM module and COM module must be

compatible in such a way that for each multiplexed I-PDU, there needs to be other

I-PDUs configured in the COM module representing the static part and each

arrangement of the dynamic part. Since the COM module configuration contains

I-PDUs representing dynamic parts, the IpduM module assumes that it coincides with

the correct selector field values.

 32

Figure 5.2 Header File Structure [2]

5.3 Multiplexing of I-PDUs

5.3.1 Static and Dynamic Parts

I-PDUs that have been multiplexed contain a static part and a dynamic part. The

static part is not essential, and can be omitted. That static part can contain zero or more

signals. The dynamic part, however is necessarily, and it must contain the selector field.

Therefore, one or more signals are contained in the dynamic part.

The dynamic part of an I-PDU can be thought of as a union in the C language.

The value of the selector field decides which layout of the I-PDU is used. Each I-PDU

can be configured separately with the static and dynamic parts in different locations.

Both static and dynamic parts of the I-PDU can be further partitioned into smaller parts,

called segments. Each static or dynamic parts can contain numerous segments. It is

important to note however, that there can be several dynamic parts each with different

segments, but the area that the segments cover as a whole, must be the identical for each

dynamic part of a particular I-PDU. Segments are allowed to cross byte boundaries, and

therefore so are parts. [2]

 33

Figure 5.3 Conceptual Layout of an I-PDU

5.3.2 Selector Field

The selector field is located in the dynamic part of an I-PDU, and its size has to

be between 1 and 8 adjoining bits long. The selector field must be contained in one

single byte, implying that its bits cannot cross into another byte.

The purpose of the selector field is to indicate which dynamic part of the I-PDU

is arranged. The size of the selector field decides how many dynamic parts can be

configure for a particular I-PDU. For example, if the size of the selector field is 4 bits

long, then there can be a maximum of 24 = 16 different dynamic parts configured, with

each value of the selector field corresponding to one dynamic part. However, this does

not mean that each value of the selector field must correspond to a dynamic part. There

can be less dynamic parts than the maximum value of the selector field. [2]

 34

Figure 5.4 Possible layout of a multiplexed I PDU [2]

5.4 Data Types

5.4.1 Type Definitions

Type definitions are used to name data types to make the code more

comprehendible. Type definitions are solely for the purpose for helping the programmer

understand the code, since after the compiler interprets the type definition, it is

substituted by the actual data type. Type definitions are commonly used to name data

structures. The following type definitions are used by the IpduM module. [2]

 35

5.4.1.1 PduIdType

PduIdType is an unsigned 8-bit integer (in the case of the IpduM module). It is

used to identify a specific PDU.

5.4.1.2 PduLengthType

PduLengthType is an unsigned 8-bit integer (in the case of the IpduM module).

It states the length of a specific PDU.

5.4.1.3 Std_ReturnType

Std_ReturnType is an unsigned 8-bit integer. Even though it can take up 256

values, it only utilizes two. The two values are defines, E_OK which has a value of 0,

and E_NOT_OK which has a value of 1. Std_ReturnType is used to indicate the return

value of functions. E_OK indicates the function was executed successfully, and

E_NOT_OK indicates an unsuccessful function call.

5.4.2 Structures

A structure in C is a collection of different data types. It is frequently used to

encapsulate data that relate to one another, and together represent a new entity. The

IpduM module utilizes the following structures.

5.4.2.1 PduInfoType

The PduInfoType structure represent the PDU. It contains two members, a

pointer to a unsigned 8-bit integer, called SduDataPtr, and a PduLengthType, called

SduLength. The SduDataPtr points to the first byte of the PDU, and the SduLength

indicates how much of the data afterwards represent the PDU. So technically the

SduDataPtr is a SduLength long array.

5.4.2.2 Std_VersionInfoType

The Std_VersionInfoType structure represents the version information of the

module. It has five members in total, two unsigned 16-bit integers, vendorID and

moduleID, and three unsigned 8-bit integers, sw_major_version, sw_minor_version, and

sw_patch_version. The above mentioned information is irrelevant to the functionality of

the module, it just contains data regarding the version of the module.

 36

5.4.2.3 IpduM_ConfigType

The IpduM_ConfigType structure contains members that correspond to the

parameters in the configuration model. Through this structure all the configured

parameters can be reached.

5.5 Functions of the Module

The IpduM module has a total of seven functions, as whole they are known as

the Application Programming Interface (API) of the module. Through the API, the

module communicates with the rest of the AUTOSAR software architecture. [2]

5.5.1 Initialize

The IpduM_Init function initializes the IpduM module. Before this function call

the module is considered to be in an uninitialized state, which means it is uncertain what

will happen by calling any other function of the module. IpduM_Init has one parameter,

a pointer to an IpduM_ConfigType structure. This structure contains elements

corresponding to the configuration parameters selected in the model.

5.5.1.1 Syntax:

void IpduM_Init(const IpduM_ConfigType* config);

5.5.2 GetVersionInfo

The IpduM_GetVersionInfo function is used to obtain the version information of

the module. This function can be turned either on or off by a pre compile time

configuration parameter called IpduMVersionInfoApi. The parameter of the

IpduM_GetVersionInfo function is a pointer to a Std_VersionInfoType structure, where

the version information of the module will be stored. This structure contains the

module ID and the Vendor ID.

5.5.2.1 Syntax:

void IpduM_GetVersionInfo(Std_VersionInfoType* versioninfo);

5.5.3 Transmit

The IpduM_Transmit function is used to transmit data to the IpduM module by

the PDU Router. This function has two parameters, the PDU ID and a pointer to a

structure containing the I-PDU, which is to be transmitted. The return value of the

 37

function is a Std_ReturnType which has two values, E_OK if the transmission was

successful, and E_NOT_OK if the transmission failed.

5.5.3.1 Syntax:

Std_ReturnType IpduM_Transmit(PduIdType PdumTxPduId, const PduInfoType*
PduInfoPtr);

5.5.4 RxIndication

The IpduM_RxIndication function is an indication from the lower layer module,

stating that it successfully received the I-PDU. This function contains two parameters, a

PDU ID and a pointer to a structure containing the received I-PDU.

5.5.4.1 Syntax:

void IpduM_RxIndication(PduIdType RxPduId, PduInfoType* PduInfoPtr);

5.5.5 TxConfirmation

The IpduM_TxConfirmation function is a confirmation from the lower layer

module, to confirm that it transmitted the I-PDU. This function has one parameter, the

PDU ID of the transmitted I-PDU.

5.5.5.1 Syntax:

void IpduM_TxConfirmation(PduIdType TxPduId);

5.5.6 TriggerTransmit

The IpduM_TriggerTransmit function is a request made by the lower layer

module, to copy the transmit buffers of the upper layer module. The two parameters of

the functions are, the ID of the PDU which is to be transmitted, and a pointer to a buffer

where it shall copy the content of the transmit buffers. The return value of this function

is a Std_ReturnType, which can take up two values. E_OK if the PDU was successfully

copied, and E_NOT_OK if the function was unable to copy the PDU. An unsuccessful

copy is usually due to the pointer of the PDU, being a null pointer or its points to invalid

data.

5.5.6.1 Syntax:

Std_ReturnType IpduM_TriggerTransmit(PduIdType TxPduId, PduInfoType*
PduInfoPtr);

 38

5.5.7 MainFunction

The IpduM_MainFunction is a scheduled function that is called by the

BSW Scheduler to synchronous the modules. It is periodically called to signify the time

passing. In the IpduM module, this functionality is important because of the

TxConfirmation timeout that can be configured.

5.5.7.1 Syntax:

void IpduM_MainFunction(void);

5.6 Initialization

Before the IpduM module can be put into use, it needs to be initialized. This is

done by calling the already discussed IpduM_Init function. By calling this function, the

module is placed into an initialized state, and the internal global variables and buffers of

the module are reset and initialized.

The IpduM_Init function utilizes the PduR_IpduMTriggerTransmit function to

acquire the initial values of the internal buffers. Therefore, the COM module must be

initialized before the IpduM module. This is the responsibility of the system designer to

make sure the modules are initialized in the correct order. [2]

5.7 Transmission

Transmissions of I-PDUs occur in the following way. Inside the COM module,

the I-PDUs are separated according to their static and dynamic parts. So each part is

considered a distinct I-PDU, with its own PDU ID. When an IpduM_Transmit function

is called by the PDU Router, the I-PDU corresponding with the PDU ID in the

argument of the function call is transmitted to the IpduM module. An

IpduM_TxConfirmation call can be made, by the PDU Router to confirm the successful

transmission of the I-PDU.

After transmit calls have been made, the IpduM_TriggerTransmit function takes

the transmitted static part and the last transmitted dynamic part and merges it into a new

multiplexed I-PDU, with a new unique I-PDU ID. This multiplexed I-PDU is then

copied into a buffer specified by the argument of the IpduM_TriggerTransmit function.

[2]

 39

5.8 Reception

Multiplexed I-PDUs sent by the PDU Router and are received by the IpduM

module. When the IpduM module receives the multiplexed I-PDUs, it individually

forwards the static part and dynamic parts to their corresponding destinations, by using

their distinct PDU IDs.

The multiplexed I-PDU does not need to be divided into different I-PDUs,

because the target module receiving the I-PDU will simply just ignore the segments it

does not require. For this reason it is simply enough just to forward the same

multiplexed I-PDU with different PDU IDs. I-PDUs with a PduLength of zero will be

silently ignored. [2]

5.9 Development Errors

During development of modules, specific errors are used to indicate unintended

use of functions. Detected development errors are reported to the BSW module, called

the Development Error Tracer (DET). The configuration parameter,

IpduMDevErrorDetect, specifies whether or not development errors are to be detected.

The IpduM module comprises of the following three development error codes.

5.9.1.1 IPDUM_E_PARAM (0x10)

This development error indicates when a function was called with an invalid

parameter. For example, if the IpduM_Transmit function was called with a non-existent

PDU ID.

5.9.1.2 IPDUM_E_PARAM_POINTER (0x11)

This development error indicates when a function was called with a null pointer.

This can occur, for example, when the IpduM_TriggerTransmit function is called with

the PduInfoType pointer pointing to NULL.

5.9.1.3 IPDUM_E_UNINIT (0x20)

This development error indicates when a function was called before initialization

of the IpduM module. For example, an IpduM_Transmit call is made, before calling

IpduM_Init.

 40

6 Testing of the Module

This chapter represents the effort I have put into my thesis. All the following

sections are about how I created the test environment of the IpduM module. I explain

the thought process I used in writing the test cases that examine the IpduM module.

6.1 Prerequisites

Before the formal testing of the module can begin, several prerequisite steps had

to be taken. These include understanding the tools used for testing, the requirements that

are being tested, and the testing procedure itself. It is important to note that the I-PDU

Multiplexer was tested for requirements dictated by 4.0 Release of the AUTOSAR

standard.

6.1.1 Tools

6.1.1.1 Eclipse

Eclipse is an open source integrated development environment (IDE), with the

ability to develop in multiple programming languages. Eclipse was utilized to develop

the testing environment written in the C language. The debugging functionality of

Eclipse was also used.

6.1.1.2 In-house Developed Modeling Tool

TKP developed an AUTOSAR modeling and configuring tool specifically for

ECU development. It is used to configure the parameters of the module, and to generate

configuration header and source files.

For each configuration, the following three files are generated into the

ECUSoftwareIpduMTest.x86.cc test project.

 IpduM_Cfg.h: This is the configuration header file containing the

pre-compile time configurable parameters. These parameters are defined

as macros. For example, IPDUM_DEV_ERROR_DETECT is set to

STD_ON.

 41

 IpduM_PBcfg.h: This is the configuration header file containing the

post-build time configurable parameters. It contains the pointer to the

configuration structure and also an array containing pointers to a number

of configuration structures.

 IpduM_PBCfg.c: This is the configuration source file containing

numerous structures and data types representing the parameters

configured in the model. These data types can be reached using the main

configuration pointer, IpduM_BasicConfigPtr, or from the configuration

pointer array, IpduM_MultiConfigArray.

6.1.1.3 MinGW

MinGW, stands for “Minimalist GNU for windows”, is an open source software

development environment that is predominantly used for making Microsoft Windows

applications. MinGW includes the GNU Compiler Collection (GCC), a compiler for

various programming languages. The GCC compiler functionality of MinGW was

utilized to compile source code written in C. [7]

By accessing the ECUSoftwareBuilder.all.all project in the MinGW shell,

commands can be given to compile the module and the testing environment together.

The following are a list of commands used in the MinGW shell during testing of the

module.

 cd c://company/Eclipse_C_WS/ECUSoftwareBuilder.all.all

This command accesses the ECUSoftwareBuilder.all.all project.

 build.sh --for-project -e ECUSoftwareIpduMTest.x86.gcc -c

ConfBasic -g rebuild

This command is rebuilds and compiles the IpduM test project with the

ConfBasic configuration and IpduM module. Instead of rebuild, build can also be used

to only affect source code files that were modified since the last build. This saves time

during development of the testing environment.

 ../ECUSoftwareIpduMTest.x86.gcc/bin/ConfBasic/ECUSoftwareIpduMTes

t.x86.gcc.out basic

 42

This command runs the out file that was compiled by the previous command. By

running the out file, the shell displays the test suites and test cases, and indicates which

test passed or failed. By adding the keyword, verbose after the word basic in the

command, all the logs are displayed out on the shell in detail. This was useful, when

examining why some test cases failed during their development.

Figure 6.1 MinGW Shell displaying successful test cases

 build.sh --requirement-analysis -e ECUSoftwareIpduMTest.x86.gcc

This command runs a requirement analyzing tool. It generates a folder in the test

project called requirement-analysis, which includes a file that displays the number of

requirement tested and the location of the tagged requirement.

6.1.2 Requirements

The IpduM module has a total of 83 requirements. Out of which 5 were

proposed by ThyssenKrupp Presta AG, the remaining requirement were proposed by

AUTOSAR. However, only 33 requirements were testable. To test them, specific test

cases were written to assert the functionality of each testable requirement. After a test

case properly satisfies the requirement, it was tagged in the source code with the proper

 43

format, including its requirement ID. Simple requirements are usually tested in one test

case. While more complex requirements might need several test cases to fully test the

functionality that the requirement proposes.

6.1.3 Testing Procedure

The testing of the IpduM module was done using the black-box method. Only

through the interface of the module was the test performed and the knowledge of the

inside of the module was unneeded.

AUTOSAR BSW modules are tested as independent components, meaning they

are tested without the rest of the AUTOSAR software architecture. The module that is

currently undergoing testing is called the System Under Test (SUT). The driver takes

the place of upper level modules, which call the module’s API functions. Underneath

the SUT are stubs, empty modules with only an interface and without any inner

architecture. The stubs are representation of modules that interact with the SUT, and

their purpose is to log testing information when their API functions are called.

Figure 6.2 Conceptual Diagram of the Testing Environment

Each stub receives information it needs to log. These stubs logs hold the data

that the IpduM module used to interact with the stubs. The stub logs reflect the actual

behavior of the IpduM module that was implemented. During test cases, the APIs of the

module are called, and data is written into other stub logs, called the expected stub logs.

 44

By calling APIs, the actual stub logs are modified. The data written in the expected stub

logs are according to the behavior of the module dictated by the requirements in the

specification AUTOSAR releases for the module. Therefore the actual and expected

stub logs are modified entirely independent of each other.

The actual stub logs represent the actual behavior of the IpduM module, while

the expected stub logs represent the expected behavior according to the requirements.

These two array of values are compared inside test cases to check if the IpduM module

behaves according to the requirements. If the values of the stub logs are equal, then the

module behaves properly and the testing environment is set up sufficiently. If there is a

difference, then either the test is wrong, or the module does not behave according to the

specifications.

The goal is to have the expected and actual stub logs be the same, but only if the

IpduM module is implemented properly. The IpduM module is deemed fully tested if

the following three conditions are satisfied. The test cases check all the requirements.

During each test case the expected and actual stubs are equal. The branch coverage of

the module is 100%.

6.2 Testing Environment

The testing of the module is done with the help of the CUnit framework, and it

must be set up correctly before testing can begin. The following sections indicate

important steps to be taken before test cases can be implemented.

6.2.1 Framework Setup

The entire testing environment is ran by the main.c source file. The main

function is the entry point of the program. It initializes the test registry, adds the utilized

test suites, and cleans up the registry after the tests are completed.

The test suites are defined in the testsuites.h header file as external global

variables. The test suites are CU_TestInfo data structures that contain the signatures of

their test cases. The test suites are registered using the registerTestSuites function in the

main file.

 45

6.2.2 Test Utilities

The testhelper.h header file contains the values that can be determined before

run-time. These values are defined as macros and are used for specific reasons such as

setting maximum and default values for buffers and IDs, and also to establish error

codes for the API functions. The IDs and error codes are specified by AUTOSAR and

their values do not change for a specific module. The maximum and default values for

buffers and IDs are used in multiple locations throughout the code. If for some reason

they need to be changed, only the value of the macro has to be replaced with a different

value.

When writing test cases, sometimes it occurs that the same line of code is

written down multiple times. It is at this point, when the tester realizes that such line of

code should be placed into a function and called whenever the functionality is needed.

A collection of functions frequently used throughout the code are found in the

testhelper.c file to assist the test cases. These functions are explained in detail below.

6.2.2.1 TestHelper_Init

In the test cases, this function is called before calling IpduM_Init, to guarantee

that the IpduM module is in an uninitialized state. This is done by setting the global

variable IpduM_Initialized to FALSE. The unsigned 8-bit integer parameter,

defaultData passes its value to the global variable defaultUsedData, which is the default

value of the used areas of an I-PDU. The ResetStubLogs_All is called to reset the

expected and actual stub logs.

6.2.2.2 TestHelper_CheckArrays

This function compares the value of two arrays to check whether they are

equivalent or not. First the length of the two arrays are compared, and if they are the

same, the function proceeds to compare the elements of the array. If the lengths are

different, then the CU_ASSERT_EQUAL is called on the lengths, and since they are not

equal, the assert fails.

The corresponding elements of the two arrays are then compared and if there is

any discrepancy, a Boolean variable, called correct, is set to FALSE. At the end of the

function, an assertion is made that the correct variable stayed TRUE. If correct is set to

FALSE, then the assertion fails.

 46

6.2.2.3 TestHelper_InitPduRTriggerTransmit

During initialization, the IpduM_Init function utilizes the

PduR_IpduMTriggerTransmit function to acquire the initial values of the internal

buffers. This means the actual logs of the PDU Router stub have been augmented. So

the corresponding data must be added to the expected logs as well, to reflect the

changed in the actual logs caused by the PduR_IpduMTriggerTransmit function call.

Since this needs to be done before every initialization in each test case, it was

reasonable to create a function that fills the expected logs of the PDU Router

corresponding to the first PduR_IpduMTriggerTransmit.

6.2.2.4 TestHelper_InitComTriggerTransmit

This function does the same task as the TestHelper_InitPduRTriggerTransmit

function, expect it fills the expected logs of the COM stub, instead of the PDU Router

stub. It depends on whether the IpduMRxDirectComInvocation is turned on in the

configuration, in which case the TestHelper_InitComTriggerTransmit is called instead

of TestHelper_InitPduRTriggerTransmit.

6.2.2.5 TestHelper_HammingWeight

This function calculates the hamming weight of the byte that was given to the

function as a parameter, aNumber. The thought process behind calculating the hamming

weight is that a mask is used to determine the value at each bit, and the number of 1 bits

are added up to get the hamming weight of aNumber. The hamming weight of the

aNumber is the return value of the function.

6.2.2.6 TestHelper_BitPosition

This function calculates the position of the first 1 bit starting from the least

significant bit. The parameter, aNumber, is shifted to the right until a 1 bit is reached. A

mask determines whether or not the bit is equal to 1 or not. The number of shifts is

tallied and it is equal to the bit position of the first 1 bit, viewing the byte from the least

significant bit. This value is the return value of the function.

 47

6.2.2.7 TestHelper_ResetPdu

This function overwrites the data of the PDU with the defaultByte given as a

parameter. The parameter pdu is given as a pointer to the PDU that data needs to be

modified. The value of the defaultByte is copied to each byte of the pdu.

6.2.2.8 TestHelper_FillBits

This function fills up a PDU with 1 bits according to the length and position of

the segment specified, while taking endianness into consideration. The PDU that is

altered is then passed to the function as a pointer to a PduInfoType, called pdu. The

segment parameter is an IpduM_SegmentType structure containing the starting bit

position of the segment and the segment length. A Boolean variable, bigEndian

indicates whether the PDU should be filled up regarding the big endian byte order

(bigEndian set to TRUE) or the little endian byte order (bigEndian set to FALSE).

The segment can cross byte borders, which is why the endianness is necessary. If

big endian is used, then the remaining data is written on the lower index bytes when the

byte borders are traversed. If little endian is used, then the upper index bytes are written

over if byte borders are crossed.

This function is additive, meaning 1 bits are only added to the pdu, it never

overwrites 1 bits to 0 bits. This functionality is necessary because several segments can

be used to create a mask out of the pdu, and the previous modifications should not be

overwritten.

6.2.2.9 TestHelper_ChangeData

This function alters the data of the pdu, passed as a pointer to a PduInfoType. It

shifts the even indexed bytes to the left, and the odd indexed bytes to the right.

6.2.2.10 TestHelper_InitBufferLogs

This function initializes the transmit logs of the PDU Router stub. The parameter

of this functions is an unsigned 8-bit integer, called configIdx, which is used to reach the

relevant IpduMTxPathway from the configuration model.

With the help of a mask, which is created inside the function, the transmit logs

are initialized with the value of defaultUsedData, wherever segments exist in the PDU

 48

in the IpduMTxPathway. The other areas, where there are no segments, are filled with

the value of IPduUnusedAreasDefault.

6.2.2.11 TestHelper_CreateInitBuffer

This function initializes the outPduPntr, a pointer to a PduInfoType, the same

way as the previously discussed TestHelper_InitBufferLogs function initializes the

transmit logs.

6.2.3 Configuration

Using the in-house developed modeling tool, the IpduM module can be

configured with different parameters. To thoroughly test the module at least three

configurations had to be constructed; ConfBasic, ConfNoDet, and ConfNoStatic.

The ConfBasic configuration has all possible parameters configured, including

IpduMDevErrorDetect, IpduMStaticPartExists, IpduMRxDirectComInvocation, and

IpduMVersionInfoApi. This configuration model has numerous IpduMTxPathways and

IpduMRxPathways configured, each with a different combination and values configured

for their parameters. The reason for this is to run the test cases through numerous

variations of the configurations, in order to comprehensively test the IpduM module.

Using the ConfBasic configuration all the test cases were conducted.

The ConfNoDet configuration has development error detection turned off.

Therefore the test cases examining development errors will be omitted, when running

the tests using this configuration.

The ConfNoStatic configuration indicates that no static parts of the PDUs are

configured inside the pathways of this configuration.

The static part and dynamic parts of PDUs are configured using this in-house

developed modeling tool. The segments can be arbitrarily chosen using this tool,

however the specification dictates some constraints, which must be followed in order to

effectively test the module. The specification gives more details of what values and

parameters are allowed to be configured.

6.3 Stubs

The IpduM module requires communication with two other modules. These two

modules are represented as stubs during the testing process. During the development

 49

process, another module, the Development Error Tracer (DET), exchanges data with the

IpduM module, therefore it is implemented as a stub as well. Another stub is utilized to

ensure mutual exclusion is not infringed upon. The stubs log the information received

through the APIs of the IpduM module. There are two commands concerning the stub

logs, reset and compare.

The ResetStubLogs_All function initializes all the stub logs, both the actual and

expected logs. The CompareStubLogs_All function compares all the corresponding

actual and expected stub logs in order to check whether the tests were successful or not.

6.3.1 Stub Structures

The following stub structures are used by various logs in the testing process of

the IpduM module. They are explained here collectively and mentioned later in the

sections concerning the stubs that use them.

6.3.1.1 RxIndication

The RxIndication log contains the PDU ID of the last two RxIndication calls, the

SDU data of all the past calls, the entire length of the SDU data, and number of times an

RxIndication function occurred.

6.3.1.2 TriggerTransmit

The TriggerTransmit log contains the PDU ID of all the TriggerTransmit calls

that occurred, the entire length of the SDUs that were transmitted, and the number of

times a TriggerTransmit function was called.

6.3.1.3 Transmit

The Transmit log contains the PDU ID and data of SDUs of all the past transmit

calls, the entire length of the SDUs, and the number of times Transmit was called.

6.3.2 COM

The COM module communicates with the IpduM module using the following

three APIs: Com_RxIndication, Com_TriggerTransmit, and Com_TxConfirmation. The

corresponding logs to these functions are structures embedded in the

COM_InterfaceStubLog structure.

 50

The Com_TriggerTransmit function logs the information pertaining to the

TriggerTransmit stub log, and also fills the SDU of the PDU pointed to by pduInfoPtr

with the defaultUsedData values. This is because TriggerTransmit calls, in general,

copy the content of the transmit buffers into the PDU passed as a pointer, and in this

case the initial contents of the transmit buffers are set to defaultUsedData, in the testing

environment.

Com_RxIndication and Com_TxConfirmation function simply log the data

corresponding to their respective structures.

6.3.3 PduR

The PDU Router module communicates with the IpduM module using the

following four API functions: PduR_RxIndication, PduR_TriggerTransmit,

PduR_IpduMTransmit, and PduR_TxConfirmation.

All the above mentioned functions, log the information corresponding to their

respective stub structures. The PduR_IpduMTransmit function also copies the content of

the transmit buffers into the PDU pointed to by the pduInfoPtr. The reason was

explained in the previous section regarding the COM module.

6.3.4 Det

The stub representing the Development Error Tracer logs development errors, if

IpduMDevErrorDetect parameter is set in the configuration model. The ApiId and the

ErrorId of all the development errors and number of errors reported are saved in

DET_ErrorReporterStubLog.

6.3.5 Mutual Exclusion

There is a stub, called SCHM_StubLog, which monitors the mutual exclusion

requirement. This stub contains only one element, an unsigned 8 bit integer, called

CriticalSection, which represents if a critical section has been entered or not. The

SchM_Enter_IpduM_EA function increments CriticalSection, indicating that a crictical

section was entered. Before entering a critical section, the value of CriticalSection had

to be zero, because the processes cannot enter their respective critical section at the

same time. SchM_Exit_IpduM_EA function decrements CriticalSection, indicating the

program leaving the critical section. If mutual exclusion is not fulfilled, then test fails.

 51

Mutual exclusion is a vital requirement pertaining to multi-thread all software

programs.

6.4 Test Suites

The test suites are a collection of test cases examining similar functionalities of

the module. The test cases are categorized into three different test suites; tsDet.c,

tsRxInd.c, and tsTransmit. These test suites are declared as external CU_TestInfo

structures in the testsuite.h header file, and registered using the registerTestSuites

function in the main.c source file.

6.4.1 Development Test Suite

The tsDet.c test suite examines the module for development errors and

initialization. The detection of development errors is either turned on or off, by a macro

configured during pre-compile time. If IpduMDevErrorDetect is set to FALSE, then test

suite will not run any test cases concerning development errors, it will only run test

cases regarding the initialization of the module. If IpduMDevErrorDetect is set to

TRUE, then development errors are detected and reported while running the

corresponding test cases.

6.4.1.1 Harness Functions

Harness functions are support functions that are called numerous times during

the test suite with different valued parameters. Harness functions cause the test suite to

be more compact and comprehendible. There is a harness function for the following

IpduM module functions: IpduM_RxIndication, IpduM_TxConfirmation,

IpduM_TriggerTransmit, and IpduM_Transmit. These harness functions have the same

parameters as their corresponding function with an addition of a uint8 parameter, called

errorCode.

The errorCode parameter represents the development errors, which takes up the

hexadecimal value of 0x10, 0x11, and 0x20, each corresponding to a development error.

The harnesses were created for following reason. Since the API functions must be tested

for all three development errors, the harness is called throughout the test suite three

times, performing the same function except with different error codes.

 52

The role of the harness is to call the corresponding API function with the given

parameters and to log the ApiId and ErrorId in the DET stub logs, in the case of error

detection.

Inside the harness functions, the IPDUM027 and IPDUM028 requirements are

tested.

 IPDUM027: This requirement states if IpduMDevErrorDetect is set to

FALSE, then development errors shall not be logged. This requirement is

fulfilled because inside the harness functions are pre-compile switch

directives that decides whether or not the development errors should be

logged.

 IPDUM028: This requirement is the opposite of the above stated

requirement. It states that the development errors should logged if the

IpduMDevErrorDetect is set to TRUE. This requirement is fulfilled

because of the same precompile switch mentioned above.

6.4.1.2 Invalid PDU ID Test Cases

Invalid PDU ID falls under the invalid parameter development error. These test

cases examine the effects of calling the function with a PDU ID, which is not

configured in the module. The following API functions are tested against invalid

PDU ID: IpduM_RxIndication, IpduM_TxConfirmation, IpduM_TriggerTransmit, and

IpduM_Transmit.

Inside each test case their corresponding harness functions are called with the

pduId parameter being equal to the TEST_IPDUM_PDUID_INVALID macro and the

errorCode parameter being equal to the TEST_IPDUM_E_PARAM macro.

Both the above mentioned macros are defined in the testhelper.h header file. The

value of TEST_IPDUM_PDUID_INVALID is defined as 255, because no PDU ID is

configured to this value. The hexadecimal value of TEST_IPDUM_E_PARAM is

defined as 0x10, because the specification defines this as the error code for an API

called with an invalid parameter.

The invalid PDU ID test cases are rather simple and only test the IPDUM026

requirement.

 53

 IPDUM026: This requirement states that if an API service is called with

an invalid parameter, then the development error code with a

hexadecimal value of 0x10 shall be logged. This is fulfilled because the

value of the TEST_IPDUM_E_PARAM macro is defined to be 0x10.

6.4.1.3 Null Pointer Test Cases

Null pointer test cases call the API functions with a null pointer as one of its

parameters. The following five functions have a pointer as a parameter:

IpduM_RxIndication, IpduM_TriggerTransmit, IpduM_Transmit, IpduM_Init, and

IpduM_GetVersionInfo.

IpduM_RxIndication, IpduM_TriggerTransmit, and IpduM_Transmit all have

corresponding harness functions. So in order to properly log the development error, the

harness has to be called with the PduInfoType pointer parameter equal to zero, the null

pointer, and the error code has to be equal to TEST_IPDUM_E_PARAM_POINTER.

The remaining parameter, PduIdType, is set equal to a correct value obtained from the

configuration model using IpduM_BasicConfigPtr.

IpduM_Init and IpduM_GetVersionInfo both only have one parameter, which is

a pointer to an IpduM_ConfigType and a pointer to Std_VersionInfoType, respectively.

In their corresponding null pointer test cases, these pointers are set to equal zero, to

signify a null pointer. If the detection of development errors is enabled, their respective

ApiId and the error code for null pointer, hexadecimal value of 0x11, are both logged in

the DET stub log.

Null Pointer test cases test the IPDUM162 requirement.

 IPDUM162: This requirement states that if an API function is called

with a null pointer, then the development error code with the

hexadecimal value of 0x11 should be logged. This requirement is

fulfilled because the value of the TEST_IPDUM_E_PARAM_POINTER

macro is defined to be 0x11.

6.4.1.4 UnInit Test Cases

UnInit test cases call the API functions before the IpduM module has been

initialized by the IpduM_Init function. These test cases are necessary to check if the

development error, pertaining to calling an API function without module initialization,

 54

is properly logged in the DET stub logs. The following API functions are tested for this;

IpduM_RxIndication, IpduM_Transmit, IpduM_TxConfirmation IpduM_Mainfunction,

and IpduM_TxConfirmation.

 IpduM_Init and IpduM_GetVersionInfo are not tested because these two

functions are allowed be called before the module is in an initialized state.

The API functions that are tested here all have harness function except one,

IpduM_Mainfunction. The API functions with harnesses are tested the following way.

Inside the test cases, no IpduM_Init function call is made, so the module in not

initialized. Then the harness functions are called with correct parameters obtained from

the configuration model, and while the errorCode parameter set equal to

TEST_IPDUM_E_UNINIT.

The test case examining the IpduM_Mainfunction is set up the same way.

Without the initialization of the module, the IpduM_Mainfunction is called and its ApiId

and the value of TEST_IPDUM_E_UNINIT, hexadecimal 0x20, is logged in the DET

stub logs.

The Uninit test cases test the following requirements: IPDUM084, IPDUM153,

and INTERNALREQUIREMENT01.

 IPDUM084: This requirement states that the behavior of the IpduM

module is unspecified before a proper IpduM_Init function call is made.

This requirement is fulfilled because since the API functions were called

without proper module initialization, the API did not perform the correct

task, therefore the behavior of the module cannot be determined.

 IPDUM153: This requirement states that the hexadecimal value of the

error code pertaining to calling API services before initialization should

be 0x20. This is fulfilled because the value of the

TEST_IPDUM_E_UNINIT macro is defined to be 0x20.

 INTERNALREQUIREMENT01: This requirement states that in an

uninitialized state the IpduM module will not execute any of its API

functions, with the exception of IpduM_Init and IpduM_GetVersionInfo.

This requirement is fulfilled because all the other functions were not

executed when the module was not initialized, only their corresponding

error codes were logged.

 55

6.4.1.5 Initialization Test Cases

There are two test cases specifically dealing with the initialization of the

module, IpduMTest_TC_Init and IpduMTest_TC_Init_ReInit. IpduMTest_TC_Init

simply calls the IpduM_Init function with the correct configuration pointer,

IpduM_BasicConfigPtr, to place the module in an initialized state. The

INTERNALREQUIREMENT03 requirement is explicitly fulfilled in this test case.

 INTERNALREQUIREMENT03: This requirement states that by the

result of a successful IpduM_Init call, the module is placed in an

initialized state from an uninitialized state.

The IpduMTest_TC_Init_ReInit test case asserts that if an IpduM_Init function

call is made, while the IpduM module is already in an initialized state, it shall be

ignored and a development error is logged with the error code value of

TEST_IPDUM_E_INVALID_REINIT. This test case was made to specifically fulfill the

INTERNALREQUIREMENT02 requirement.

 INTERNALREQUIREMENT02: This requirement states that if the

IpduM module is in an initialized state, any IpduM_Init function calls

shall be ignored.

6.4.1.6 GetVersionInfo Test Case

This test case asserts the proper behavior of the IpduM_GetVersionInfo function.

The IpduM_GetVersionInfo function must acquire the correct version information of the

IpduM module. This information is copied into the corresponding elements of the

Std_VersionInfoType structure, called version. This structure is passed by reference to

the IpduM_GetVersionInfo function.

This test case fulfills two requirements, IPDUM038 and

INTERNALREQUIREMENT01. The INTERNALREQUIREMENT01 requirement was

already discussed earlier, however this test case fulfills the requirement by giving a

sufficient reason why it is fulfilled.

 INTERNALREQUIREMENT01: This requirement also states that the

IpduM_GetVersionInfo function can be called even if the module is in

an uninitialized state.

 56

 IPDUM038: This requirement states that the IpduM_GetVersionInfo

shall return the version information of the module, including Module ID

and Vendor ID.

6.4.2 Reception Test Suite

Only the IpduM_RxIndication function deals with the reception side of the

IpduM module, therefore an entire test suite is dedicated to this function. The

tsRxIndication.c test suite examines the functionality of the IpduM_RxIndication

function in two test cases, with the help of one harness function.

6.4.2.1 HarnessRxIndication

The harness function receives two parameters, an unsigned 8-bit integer,

configIdx and a pointer to a PduInfoType structure, pduPntr. The configIdx is an index

used to select the correct IpduMRxPathway from the configuration model. The pduPntr

points to the received PDU which must be separately forwarded by using the static and

dynamic part ID.

The harness takes the IPDUM_RX_DIRECT_COM_INVOCATION macro into

account, which decides whether the COM or PDU Router stub logs should be modified.

If IPDUM_RX_DIRECT_COM_INVOCATION is set to TRUE, then the COM module

sent the PDU directly, so the COM stub logs need to be filled out. If however, the

macro is set to FALSE, then the PDU was sent by the PDU Router, and the PduR stub

logs need to be augmented.

The harness takes the length of the PDU into consideration, because if it is set to

zero, then the PDU must be disregarded. This means none of the stub logs need to be

changed. If the PDU has a static part configured, then the stub logs are filled with

information regarding to the static part, such as the OutGoingStaticPduId of the PDU.

The next step is finding out the value of the selector field. By using information

provided by the configuration model, the value of the selector field can be calculated

using the SelectorFieldMask and SelectorFieldBytePosition parameters. If the value of

the selector field corresponds to any of the dynamic parts configured, then the

OutGoingDynamicPduId is saved in the appropriate stub log.

 57

At the very end of the harness, the IpduM_RxIndication function is called with

the RxHandleId of the current IpduMRxPathway, and the PDU pointed to by the

pduPntr.

The purpose of this harness is to calculate the value of the selector field, and to

forward the applicable static and dynamic parts of the PDU.

6.4.2.2 RxIndication Test Cases

There are two test cases examining the reception side of the module.

IpduMTest_TC_RxIndication_ValidPDU test case checks the behavior of the

IpduM_RxIndication function if it is correctly called with a valid PDU information. This

test is conducted for each IpduMRxPathway configured in the configuration model. To

thoroughly test the IpduM_RxIndication function each possible variation of the selector

field must be set, in order to test if the correct dynamic parts are forwarded to their

respective destination.

The test cases obtains the length of the selector field, and calculates the

maximum value the selector field can contain, to use as the end condition for a for

cycle. The for cycle is then used to call the harness of the IpduM_RxIndication function

with all the possible values of the selector field.

IpduMTest_TC_RxIndication_LengthNull test case asserts that the

IpduM_RxIndication function properly ignores a PDU which is configured with a

PduLength of zero. A PduInfoType structure, called pduNull, is declared with a

PduLength of zero. The pduNull is then passed by reference to the harness of the

IpduM_RxIndication function. As discussed before, the harness checks whether or not

the length of the PDU is zero, and if it is, the stub logs are not modified. The

IpduM_RxIndication function is still called, but the module will silently ignore it. Since

the tsRxIndication test suite only examines the IpduM_RxIndication function using two

similar test cases, the requirements they fulfilled are listed together.

 IPDUM041: This requirement states that if the IpduM_RxIndication

function is called with a parameter of a PDU containing a static part,

then the PDU is forwarded with the help of the static part’s ID. This

requirement is fulfilled by the harness where it examines the

configuration of a static part. If there is a static part configured, then the

stub log is filled out with the OutGoingStaticPduId of the PDU.

 58

 IPDUM042: This requirement states that by the result of calling the

IpduM_RxIndication function, the dynamic part’s ID of the PDU is

calculated using the selector field, so the PDU can be forwarded to the

dynamic part’s destination. This requirement is also fulfilled in the

harness when the value of the selector field is calculated, in order to find

the correct dynamic part. The OutGoingDynamicPduId of the dynamic

part is then logged in the appropriate stub log.

 IPDUM098: This requirement states that the IpduM module does not set

or modify the value of the selector field. This requirement is implicitly

fulfilled, since the module does not overwrite the selector field. This can

be concluded because the test cases ran successfully.

 IPDUM140: This requirement states that the COM module can directly

communicate with the IpduM module without the need of the

PDU Router. This functionality is turned on by the pre-compile time

macro called IPDUM_RX_DIRECT_COM_INVOCATION. If it is set to

TRUE, then the COM module directly communicates with the IpduM

module. If it is set to FALSE, the communication is directed via the PDU

Router.

6.4.3 Transmission Test Suite

The tsTransmit.c is the largest and most complex test suite used in the testing of

the IpduM module. The complexity is due to the extensive testing that was needed to

test precise functionalities such as Just-In-Time updates and TxConfirmation timeouts.

This test suite deals with the transmission side of the IpduM module, and encompasses

the functions; IpduM_TriggerTransmit, IpduM_TxConfirmation, and IpduM_Transmit.

6.4.3.1 Logging Functions

Two functions were implemented specifically to log information, due to the

result of Just-In-Time updates and TxConfirmation timeouts.

IpduMTest_Log_JIT_TriggerTransmit function logs the PduIdType parameter

called handleId in the trigger transmit logs of the either the PDU Router or the COM

module, depending on how the IPDUM_RX_DIRECT_COM_INVOCATION macro is

configured.

 59

IpduMTest_Log_TxConfirmation function logs the StaticHandleId and

DynamicHandleId, if StaticConfirmation and DynamicConfirmation are set to TRUE,

respectively. The DynamicHandleId is chosen with the help of the dynIdx parameter,

which selects the relevant dynamic part from the DynamicPartConfigArray.

6.4.3.2 Harness Functions

Two harness functions are used for the transmission of PDUs. There is a

separate harness for the IpduM_Transmit function regarding the static part and the

dynamic part. The reason for creating a distinct harness for both the static and dynamic

part is to limit the size of the harness functions and to be able to make a single transmit

call.

Both the harness for the static part and dynamic part are rather complex, and

without the actual source code, it is difficult to explain their algorithm. So instead, the

main purpose and functionality of the harness is explained only.

IpduMTest_HarnessTransmit_StaticPart transmits the static part of the PDU,

and fills in the appropriate stub logs. It also takes Just-In-Time updates into

consideration. Through the arguments of the harness function, the function receives

information regarding the index of the last transmitted dynamic part, as a uint8 named

lastTransmittedDynamicIdx. This information is needed to correctly generate the

transmitted PDU, if JitUpdate is configured. It is also important to know if a there even

was a dynamic part transmitted prior to this harness call. This is indicated by the

Boolean variable called dynamicTransmittedBefore. If there was a dynamic part

transmitted prior, then PDU in transmission must represent the dynamic segments as

well. The outPduPntr PDU pointer is filled out the exact same way as the stub logs,

because there are test cases which will need to compare this value without the value

returned by the IpduM_TriggerTransmit function. If StaticTrigger is configured, then

the stub logs are filled, and either way the IpduM_Transmit is called with the relevant

StaticHandleId. If the JitUpdate of the dynamic part is configured, then the

IpduMTest_Log_JIT_TriggerTransmit function is called with the handle ID of the

relevant dynamic part. The return value of the harness is a Boolean variable indicating if

StaticTrigger is configured.

IpduMTest_HarnessTransmit_DynamicPart works in a similar way as the

harness for the dynamic part. It transmits the dynamic part of the PDU, by taking the

 60

Just-In-Time updates into account. The harness receives the index of the dynamic part,

dynPartIdx and whether or not at static part was transmitted before,

staticTransmittedBefore. If staticTransmittedBefore is TRUE and the JitUpdate is

configured, then the static part is also represented in the transmitted PDU. The PDU

pointed to by the outPduPntr pointer is filled out the same way as the data inside the

transmit stub logs. If DynamicTrigger is configured the stubs are filled out, and if the

JitUpdate of the static part is also configured the IpduMTest_Log_JIT_TriggerTransmit

function is called. IpduM_Transmit call is made with the DynamicHandleId of the

relevant dynamic part. The return value of this harness is the value of the

DynamicTrigger.

6.4.3.3 Transmit Test Case

This case asserts if the IpduM_Transmit function is called properly and the

transmission request is accepted. This test case is conducted for each IpduMTxPathway

and with different data inside the PDU. The harness functions for the static part and all

the dynamic parts configured are called for each individual PDU. The following

requirements are fulfilled by this test case.

 IPDUM017: This requirement states that the IpduM_Transmit function

must assemble a PDU, with the relevant static and dynamic parts, and

transmit it depending on the trigger conditions configured. This

requirement is fulfilled inside the harness functions, because the stub

logs are filled out if the trigger conditions are met. This mean that the

stub logs are filled out only if the transmission is accepted.

 IPDUM021: This requirement states that the transmission request is

accepted according to the following trigger conditions: static part,

dynamic part, static and dynamic part, and none. This requirement is

fulfilled in the harness by using subsequent if conditions to fill out the

logs, according to the value of the StaticTrigger and the DynamicTrigger

variables.

6.4.3.4 TriggerTransmit Test Cases

There are two test concerning the IpduM_TriggerTransmit function. One test

case pertains to calling the IpduM_TriggerTransmit function without previous

IpduM_Transmit function calls. This means the default values of the transmit buffers

 61

are received by the IpduM_TriggerTransmit function. The other test case performs

IpduM_Transmit function calls before the IpduM_TriggerTransmit function call, while

taking the Just-In-Time update into account.

IpduMTest_TC_TriggerTransmit_Default test case asserts that the

IpduM_TriggerTransmit function properly copies the content of the I-PDU transmit

buffer into the buffer pointed to by the PduInfoPtr. Since IpduM_Transmit was not

called prior to the IpduM_TriggerTransmit, the transmit buffers contain the default

values. The test is conducted for each IpduMTxPathway. The IpduM_TriggerTransmit

is called with the relevant OutGoingPduId and the content of the PDU is then copied to

the buffer given to the function as a reference to the pdu. A pduMask is created by using

the information from the IpduMTxPathway. The PDU is then compared with the

expected values, which is calculated with the help of the mask and the default values

from the configuration. The test case also handles the Just-In-Time updates by filling

out the appropriate stub logs.

IpduMTest_TC_TriggerTransmit test case asserts IpduM_TriggerTransmit

properly copies the content of its I-PDU transmit buffer into the buffer pointed to by the

PduInfoPtr, after IpduM_Transmit calls have been made. The test is conducted for each

IpduMTxPathway. The test is only conducted if the TimerInitialValue is set to zero.

IpduM_Transmit calls are made prior to the IpduM_TriggerTransmit call, in order to fill

up the transmit buffers with the data content of the inPdu. The outPduExpected is the

expected PDU after calling the transmit harness function. This is compared with the

outPduActual, which is the PDU returned by the IpduM_TriggerTransmit function. The

test case also handles the Just-In-Time updates by filling out the appropriate stub logs if

need be.

The two TriggerTransmit test cases fulfill several complex requirements, which

are listed below.

 IPDUM015: This requirement states that the static part and last received

dynamic part are merged in a single I-PDU, with a unique PDU ID, and

is then transmitted to the PDU Router. This requirement is fulfilled in the

IpduMTest_TC_TriggerTransmit test case, because after the transmit

functions, the IpduM_TriggerTransmit receives the merged I-PDU with

the static part and last transmitted dynamic part.

 62

 IPDUM067: This requirement states that the internal buffers shall be

initialized with the value of IpduMIPduUnusedAreasDefault from the

configuration. This requirement is fulfilled because when the

IpduM_TriggerTransmit function is called without any previous

IpduM_Transmit calls, the data copied from the buffers have the value of

IpduMIPduUnusedAreasDefault.

 IPDUM068: This requirement states the initial values of the dynamic

part is set by the stub function called PduR_IpduMTriggerTransmit. This

requirement is fulfilled since the PduR_IpduMTriggerTransmit stub

function does exactly this, gives initial value for the dynamic part.

 IPDUM090: This requirement states that the IpduM_TriggerTransmit

function shall copy the contents of the transmit buffer to the buffer given

in its argument. This requirement is fulfilled by both test cases when the

actual and expected PDU are compared and found to be equivalent.

 IPDUM143: This requirement states the initial values of the static part is

set by the stub function called PduR_IpduMTriggerTransmit. This is

fulfilled the exact same way as the IPDUM068 requirement.

 IPDUM169: This requirement states that if the IpduMJitUpdate is set,

then the value of the static and dynamic parts are updated when the

IpduM_TriggerTransmit function is called.

6.4.3.5 TxConfirmation Test Cases

There are two test cases testing the IpduM_TxConfirmation function

specifically. Both test cases only run if ConfirmationEnabled is set to TRUE and the

TimerInitialValue is set to zero.

IpduMTest_TC_TxConfirmation_Multiple test case examines the outcome of

multiple IpduM_TxConfirmation calls after an IpduM_Transmit call was made. Only the

first IpduM_TxConfirmation call should be logged, while the rest are ignored. Three

individual IpduM_TxConfirmation calls are made, in which only the first call generates

an actual TxConfirmation from the lower layer communication modules, the rest of the

IpduM_TxConfirmation calls are silently ignored.

 63

IpduMTest_TC_TxConfirmation_Single test case is similar to the previous one,

except that an IpduM_TxConfirmation call is made after each IpduM_Transmit call.

This means that each IpduM_TxConfirmation call is logged.

IpduMTest_HarnessTransmit_StaticPart transmits the static part of an I-PDU separately

and if the transmission was successful, the TxConfirmation expected logs are filled out.

IpduM_TxConfirmation is called afterwards. The Boolean variable staticTransmitted is

to indicate that the static part was transmitted. This is taken into consideration in

IpduMTest_HarnessTransmit_DynamicPart. If the Dynamic Part was transmitted

separately then the TxConfirmation expected logs are filled accordingly, and afterwards

IpduM_TxConfirmation is called.

These two test cases fulfill the following requirements:

 IPDUM022: This requirement states that if an IpduM_TxConfirmation

call is made, then the transmit confirmations of the corresponding COM

I-PDUs’ static and dynamic parts also take place. This requirement is

fulfilled when the TxConfirmation stub logs are filled out according to

the StaticHandleId and DynamicHandleId in the

IpduMTest_Log_TxConfirmation function due to the confirmation

settings of the static and dynamic part.

 IPDUM024: This requirement states that unexpected TxConfirmations

are ignored silently. This requirement is fulfilled when all but the first

IpduM_TxConfirmation call is ignored in the test case examining

multiple IpduM_TxConfirmation calls.

 IPDUM088: This requirement states that an IpduM_TxConfirmation

function call will cause the confirmation of the individual static and

dynamic parts of the I-PDU received from the PDU Router. This

requirement is fulfilled in a similar manner as IPDUM022.

6.4.3.6 Timeout Test Cases

There are three test cases testing the timeout functionality. The TxConfirmation

timeout is the time period for which TxConfirmations are accepted. Its value is reached

through the unsigned 32-bit integer called TimerInitialValue. The following test cases

are conducted only if the value of TimerInitialValue is greater than zero.

 64

IpduMTest_TC_Timeout_Elapsed test case examines that if numerous

IpduM_Transmit calls are made, only the first one is registered, the rest are ignored,

until the timeout elapses. After the timeout has passed, it is possible to successfully call

the IpduM_Transmit function again. The time passing is simulated by calling the

IpduM_MainFunction.

IpduMTest_TC_Timeout_TxConfirmation test case inspects the effect of calling

the IpduM_TxConfirmation before the timeout elapses. First, an IpduM_Transmit call is

made and before the timeout can pass, an IpduM_TxConfirmation call is made. This

confirmation is registered in the stub logs, and a new transmit request is now permitted.

IpduMTest_TC_Timeout_Elapsed_TxConfirmation test case examines if the

timeout has passed after an IpduM_Transmit call, then the IpduM_TxConfirmation call

is ignored. This is because there is no need for confirmation to allow for a new

transmission request. The IpduM_TxConfirmation function call is not registered in the

stub logs.

The following requirements were fulfilled by the timeout test cases.

 IPDUM020: This requirement states that if the timeout timer has not

elapsed or no confirmation was made, all transmission request are

ignored until the timeout passes. This requirement is fulfilled in both the

IpduMTest_TC_Timeout_Elapsed test case and the

IpduMTest_TC_Timeout_TxConfirmation test case when the

IpduM_Transmit function calls are not logged, due to the fact that the

timeout has not elapsed or the IpduM_TxConfirmation function was not

called.

 IPDUM023: This requirement states that if no TxConfirmation is

received before the timeout elapses, then the module shall allow new

transmission requests. This requirement is fulfilled in the

IpduMTest_TC_Timeout_Elapsed test case when new transmissions

requests are permitted only after the time has elapsed.

 IPDUM152: This requirement states that if the timeout has not elapsed

and no confirmation occurred, then any transmission request shall return

with E_NOT_OK. This requirement is fulfilled in the above mentioned

test cases when the return value of the IpduM_Transmit function is

 65

compared with the macro E_NOT_OK, before the timeout has elapsed. If

the two values are the same this requirement is fulfilled.

6.4.3.7 Just-In-Time Update Test Case

A test case was created specifically to test the Just-In-Time update functionality.

The Just-In-Time update was mentioned and taken into consideration in previously

discussed test cases, but never fully explained in detail. The IpduM module stores the

value of the static and dynamic parts, but this information can become outdated. During

transmission the parts can be updated with relevant values, by configuring the Just-In-

Time update functionality.

IpduMTest_TC_JitUpdate examines the this functionality by calling the

IpduMTest_HarnessTransmit_DynamicPart harness function and the

IpduMTest_HarnessTransmit_StaticPart harness function one after the other, while

changing the value of the defaultUsedData. The defaultUsedData is the initial value of

the data in the PDU. In this case, it is the value which is used to update the data in the

PDU, when the Just-In-Time functionality is invoked. So if the Just-In-Time update is

configured in any of the static or dynamic parts, then the value of defaultUsedData will

be the updated values in the PDU. If this is true for both the expected and actual stub

logs, the test case is successful, and the Just-In-Time update functionality is thoroughly

tested. This test case is created to fulfill a particular requirement.

 IPDUM168: This requirement states that during the transmission of an

I-PDU, one of the parts is configured to Just-In-Time update, then the

segments of that part will be updated, if the other part triggered the

transmission. For example, if the static part of the PDU is transmitted,

and the Just-In-Time update of the dynamic part is configured, then the

dynamic segments will be updated with new values.

6.5 Generally Tested Requirements

There are few requirements that are not tested by a specific test case or in a

particular test suite, but rather by thoroughly testing the module the following

requirements can be presumed as fulfilled.

 66

 IPDUM098: This requirement was mentioned before, but it is truly only

fulfilled if the entire IpduM module is exercise to see it really does not

set the value of the selector field.

 IPDUM101: This requirement states that the IpduM_MainFunction

shall act as a scheduling function and perform the processing of the

IpduM module. This function is not directly called from the PDU Router

like the other API functions of the IpduM module.

IpduM_MainFunction is the function used to simulate the time passing.

In the configuration model, IpduMConfigurationTimeBase specifies the

time that passes, by one IpduM_MainFunction call. This function is

required because the TxConfirmation timeout timer needs a way of

telling how much time has passed. In the timeout test cases,

IpduM_MainFunction calls are made to ensure that the timeout elapses.

This verifies that it properly simulates time elapsing.

 IPDUM107: This requirement states that the IpduM shall not directly

access the AUTOSAR OS. The AUTOSAR Operating System cannot be

directly accessed by the IpduM module. Testing of this requirement is

limited, but since the IpduM module does not make outward function

calls toward other modules, and the module behaves properly in a

testing environment, it can be said that the AUTOSAR OS is not

accessed. In the testing environment only function calls to stubs are

made, which guarantees that the AUTOSAR OS is not reached.

 IPDUM033: This requirement states that the IpduM_Init function shall

initialize all the global variables of the IpduM module. During

initialization of the IpduM module all the module-related global

variables are initialized, meaning that no value of the global variables

are kept from before initialization, after calling IpduM_Init. The global

variables are given new value, in other words they are restored to their

original value.

 67

7 Conclusion

After completing the testing environment, and also while producing the test

cases, documentation was added. Documentation of the code is crucial to show the

thought process that went into the creation of the test cases. This makes it easier to

comprehend the source code in case any changes have to be made later. Especially at a

company, where numerous people work consecutively on a project, documentation is

important to signify changes made in the code. The documentation of the code also

includes tagging the requirements in the source code next to the test cases that

successfully fulfill these requirements. By running a requirement analyzing tool on the

source code, the tags are identified and a benchmark shows the percentage of

requirements met. The tool also measures the branch coverage of the IpduM module,

which was traversed by running the test cases. After the testable requirements have been

fulfilled and the branch coverage of the IpduM module reached 100%, the testing of the

module can be deemed finished.

7.1 Contribution

During the course of my thesis, I successfully tested the IpduM module

according to the specifications required by the AUTOSAR 4.0 Release. I clearly

documented the algorithms of the test cases. The next step in the development of the

IpduM module is that it goes into code review. Under code review, my testing

environment is inspected for programming formalities and proper documentation. If it is

inadequate, according to company standard, it is then handed back to me for correction.

7.2 Aftermath

After the module has undergone code review, possible correction might have to

be made to the source code to reach company standards.

Since the IpduM module was tested for requirements given by the 4.0 Release of

AUTOSAR, future releases can cause the testing environment to become outdated. If

new functionalities are implemented in the module, then the testing environment needs

to be adjusted, to satisfy the new requirements. This could mean creating entirely new

test cases, or modifying existing ones.

 68

List of Abbreviations

ACC Autonomous Cruise Control

API Application Programming Interface

ASIL Automotive Safety Integrity Level

BC Branch Coverage

BSW Basic Software

C C Programming Language

CAN Controller Area Network

CC Condition Coverage

C/DC Condition Decision Coverage

COM Communication module

ComM Communication Manager module

DC Decision Coverage

DET Development Error Tracer module

E/E Electrical and Electronic

ECU Electronic Control Unit

GCC GNU Compiler Collection

ID Identification

IEC International Electrotechnical Commission

IP Intellectual Property

I-PDU Interface Layer Protocol Data Unit

IpduM I-PDU Multiplexer module

ISO International Organization of

Standardization

 69

LIN Local Interconnect Network

MC/DC Modified Condition Decision Coverage

MISRA Motor Industry Software Reliability

Association

OEM Original Equipment Manufacturer

OSEK Open System and their Interfaces for the

Electronics in Motor Vehicles

OSI Open Systems Interconnection model

PDU Protocol Data Unit

PduR Protocol Data Unit Router module

RTE Run Time Environment

SW-C Software Component

TC Test Case

TKP ThyssenKrupp Presta AG

TS Test Suite

 70

Table of Figures

Figure 2.1 AUTOSAR Layer Model (Top View) [1] ... 11

Figure 2.2 AUTOSAR Layer Model (Coarse View) [1] .. 13

Figure 2.3 AUTOSAR Components and Interfaces View (Simplified) [1] 14

Figure 3.1 V Model of Software Development .. 18

Figure 4.1 Flow of PDUs between Layers [1] .. 27

Figure 5.1 Location of I-PDU Multiplexer in AUTOSAR [1] 30

Figure 5.2 Header File Structure [2] ... 32

Figure 5.3 Conceptual Layout of an I-PDU .. 33

Figure 5.4 Possible layout of a multiplexed I PDU [2] .. 34

Figure 6.1 MinGW Shell displaying successful test cases ... 42

Figure 6.2 Conceptual Diagram of the Testing Environment ... 43

 71

Bibliography

[1] AUTOSAR Consortium, 2012. Layered Software Architecture. [Online]

Available at: http://www.autosar.org/fileadmin/files/releases/4-0/software-

architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitect

ure.pdf

[Accessed 16 November 2015].

[2] AUTOSAR Consortium, 2015. Specification of I-PDU Multiplexer. [Online]

Available at: http://www.autosar.org/fileadmin/files/releases/4-2/software-

architecture/communication-

stack/standard/AUTOSAR_SWS_IPDUMultiplexer.pdf

[Accessed 16 November 2015].

[3] Burden, P., 2013. EE Times Europe Automotive. [Online]

Available at: http://www.automotive-eetimes.com/en/design-center/full-

design-center.html?cmp_id=71&news_id=222902845&page=0

[Accessed 20 November 2015].

[4] Johnson, P., 2015. Testing and Code Coverage. [Online]

Available at: http://pjcj.net/testing_and_code_coverage/paper.html

[Accessed 23 November 2015].

[5] Jones, N., 2002. Introduction to MISRA C. [Online]

Available at: http://www.embedded.com/electronics-blogs/beginner-s-

corner/4023981/Introduction-to-MISRA-C

[Accessed 14 November 2015].

[6] Kumar, A. & St. Clair, J., 2005. CUnit. [Online]

Available at: http://cunit.sourceforge.net/doc/index.html

[Accessed 15 November 17].

[7] MinGW, 2012. Minimalist GNU for Windows. [Online]

Available at: http://www.mingw.org/

[Accessed 28 November 2015].

[8] National Instruments, 2014. What is the ISO 26262 Functional Safety Standard?.

[Online]

Available at: http://www.ni.com/white-paper/13647/en/

[Accessed 27 November 2015].

[9] OSEK OS/ISO WG, 2005. OSEK VDX. [Online]

Available at: http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

[Accessed 10 November 2015].

[10] Pan, J., 1999. Software Testing. [Online]

Available at: http://users.ece.cmu.edu/~koopman/des_s99/sw_testing/

[Accessed 22 November 2015].

 72

[11] Patterson, A., 2014. EE Tims Europe Automotive. [Online]

Available at: http://www.automotive-eetimes.com/en/autosar-and-iso26262-

a-new-approach-to-vehicle-network-design-and-automotive-

safety.html?cmp_id=71&news_id=222903893&page=2

[Accessed 14 November 2015].

[12] Vector Informatik GmbH, 2015. Introduction to AUTOSAR. [Online]

Available at: https://elearning.vector.com/vl_autosar_introduction_en.druck

[Accessed 19 October 2015].

