
Analysis of Distributed Multi-Channel Active Noise
Cancelling Algorithms

Balázs Varga, György Orosz
Budapest University of Technology and Economics

Department of Measurement and Information Systems
Budapest, Hungary

Email: bvarga92@gmail.com, orosz@mit.bme.hu

Abstract—Multi-channel active noise cancellation is typically
achieved by using computationally expensive signal processing
algorithms. A centralized architecture, in which all computation
is carried out by a single processing unit, is therefore often
costly and poorly scalable. Noise cancelling systems designed in a
distributed fashion can be more efficient. In this article, the au-
thors propose and compare a number of different implementation
schemes of distributed active noise cancellation, with emphasis
on computational complexity and settling time.

Index Terms—active noise cancellation, FxLMS, distributed
signal processing

I. INTRODUCTION

Noise control refers to a means of reducing acoustic emis-
sions in order to improve personal comfort, comply with
legal requirements or to reduce environmental noise pollution.
Noise control methods can be divided into two major cate-
gories: passive and active. Conventional passive noise control
measures use physical barriers and isolating materials such
as soundproofing insulation and sound-absorbing wall panels.
However, these methods lack flexibility and they generally
do not work well at low frequencies, where the acoustic
wavelengths become large compared to the thickness of a
typical acoustic absorber [1].

In active noise control (also commonly referred to as
active noise cancellation, ANC), noise suppression is achieved
by using a speaker to generate an anti-noise, which causes
destructive interference in the desired protection zone – as
illustrated in Fig. 1. As opposed to passive methods, active
noise cancelling offers higher flexibility and portability, as
well as better low-frequency performance. However, they are
not without drawbacks either. Active methods require the
constant availability of a power source, and the zone of noise
suppression is smaller – especially at higher frequencies, as
it is inherently comparable in size to the wavelength of the
sound. Furthermore, an active noise cancellation system may
create areas outside the protection zone where the noise is
not cancelled but amplified. Important practical applications
of ANC include enhancing vehicle comfort (e.g. suppression
of engine, propeller or rotor noise in car interiors and aircraft
cabins), noise-cancelling headphones, electronic stethoscopes
and sleep aid devices [2].

Due to their relatively small size, usually multiple pro-
tection zones are necessary in practical applications (e.g.

NOISE SOURCE

ANTI-NOISE

RESIDUAL

Fig. 1. Active noise cancellation.

multiple seats of a car, two ears of a person). As we will
see in Section II, this requirement can greatly increase the
computational complexity of digital active noise cancellation
algorithms. Therefore, ANC systems implemented in a cen-
tralized architecture – i.e. a single processing unit is used
to carry out all of the necessary computation – often use
expensive high-performance DSP (digital signal processor)
or FPGA (field-programmable gate array) circuits. However,
performance limits are still easily reached with the addition of
more protection zones.

Cost and scalability can be improved by distributing the
computational load among multiple processing units which
are interconnected via a common communication network.
As an additional benefit, a distributed architecture creates the
potential for improved fault tolerance. However, decomposing
the algorithm into separately executable sections is not a trivial
problem, and several different approaches exist. Therefore,
when designing a distributed active noise cancelling system,
factors such as the available computational performance, net-
work bandwidth, and the achievable settling time must be
taken into careful consideration.

This paper is structured as follows. Section II describes
an algorithm widely used in digital active noise cancelling
systems, as well as three implementation architectures with
varying degrees of centralization. In Section III, results of
numerical simulations are presented for each of these architec-
tures, allowing for comparison. Finally, Section IV concludes
the paper.

28



II. ALGORITHMS AND ARCHITECTURES

A. The FxLMS Algorithm

One of the most frequently used algorithms in active noise
cancelling is the Filtered-x Least Mean Squares (FxLMS),
proposed by Widrow et al. in 1981 [3]. The algorithm is
illustrated in Fig. 2 for the case of single-channel noise
cancellation.

LMS

W (z)

P (z)
d(n)

y(n)

e(n)

x(n)

-

+S(z)

P (z)

Ŝ(z)

S(z)

r(n)

Fig. 2. Diagram of the FxLMS algorithm.

The reference signal x(n) is measured at the noise source,
and propagates to the point of suppression through the primary
acoustic path modeled by the discrete-time transfer function
P (z). The resulting disturbance signal d(n) is the noise we
aim to suppress. The speaker outputs the anti-noise y(n) which
propagates through the secondary acoustic path S(z). The two
signals get added1 together at the point of suppression, and the
resulting error signal e(n) is picked up by the microphone.
The reference signal is supplied to the algorithm and is
filtered with the transfer function Ŝ(z). Ideally, Ŝ(z) = S(z),
however, the transfer function of the secondary path is usually
not known analytically. Therefore, Ŝ(z) is the result of a
system identification performed prior to starting the normal
noise-cancelling operation. The transfer function W (z) is a
finite impulse response (FIR) filter of order L − 1 that is
initialized to zero and is updated in each step according to
the LMS rule:

w(n+ 1) = w(n) + 2µe(n)r(n) (1)

where w(n) is a vector of the filter coefficients, r(n) is
a vector containing the previous L samples of the filtered
reference signal r(n), and µ is the step size parameter which
influences stability and settling time.

If the algorithm has achieved convergence, W (z) ≈ P (z)
S(z) ,

resulting in e(n) ≈ 0, i.e. the disturbance is being actively
cancelled.

B. Completely Centralized Architecture

For the following sections, we restrict our analysis to the
special case of multiple channel noise cancellation, where
the number of microphones (protection zones) is equal to
the number of speakers – let this number be N . In this
case, Pm(z) is the primary path from the noise source to
the mth microphone, Ss,m(z) is the secondary path from
the sth speaker to the mth microphone, and rs,m(n) is the

1For historical reasons, the error signal is written as the difference between
the disturbance and the anti-noise. This is merely a sign convention; in a
practical application the computed anti-noise is multiplied by −1.

reference

.

.

.

.

.

.

PROCESSING

Fig. 3. Completely centralized architecture.

reference filtered with Ŝs,m(z), where s,m = 1 . . . N . Each
microphone has its own error signal em(n), and each speaker
has its own filter Ws(z) and output ys(n). The adaptation rule
now becomes:

ws(n+ 1) = ws(n) + 2µ
N∑

m=1

em(n)rs,m(n) (2)

Fig. 3 shows an architecture in which a single processing
unit is responsible for sampling the microphones, driving the
speakers, as well as executing the FxLMS algorithm for all
channels, which requires N(N+1) FIR filtering and N2 vector
addition operations.

C. Partially Distributed Architecture

An example of a partially distributed architecture is shown
in Fig. 4. In this case the majority of the computation is
still carried out by a high-performance central processing
unit, however, the sampling of the error signals is done by
individual sensor nodes (also known as motes), which are
connected to the central unit via a communication network

reference

.

.

.

.

.

.

MOTE 1

MOTE 2

MOTE N

GATEWAY

CENTRAL

PROCESSING

Fig. 4. Architecture with distributed data acquisition.

29



such as ZigBee or Ethernet. Since the motes are already
equipped with a simple processing unit (typically a low-
power microcontroller), some rudimentary preprocessing may
be done by the motes themselves (e.g. data compression).

In the typical operation of such an architecture, the motes
buffer their error signals and periodically send their buffer
contents to the central unit. Mathematically, this can be
modeled by introducing a delay in the secondary paths:

S′s,m(z) = Ss,m(z)z−∆ (3)

where ∆ is the send period (expressed in the number of
samples). Assuming simultaneous transmission, the required
communication bandwidth is BfsN , where B denotes the
number of bits used to represent a signal sample, and fs is
the sampling frequency.

D. Completely Distributed Architecture

reference

.

.

.

MOTE 1

MOTE 2

MOTE N

C

O

M

M

U

N

I

C

A

T

I

O

N

Fig. 5. Completely distributed architecture.

The architecture shown in Fig. 5 lacks a designated central
processing unit; the computations of the FxLMS algorithm
are carried out entirely by the motes in an evenly distributed
fashion. The operations executed by the kth mote can be
summarized as follows:

In every step:
For all j = 1 . . . N :

rj,k(n) ← xT(n)̂sj,k

δwj,k ← δwj,k + 2µek(n)rj,k(n)
wk ←wk + δwk,k

δwk,k ← 0

yk(n) ←xT(n)wk

If it is time to send δwj,k to mote j:
Sendj(δwj,k)
δwj,k ← 0

If δwk,j was received from mote j:
wk ←wk + δwk,j

In this architecture, each mote accumulates the filter updates
for every other mote for a preset number of steps, after which

the updates are sent to the other motes over the communication
network. This operation is similar to that described in [4]
and [5] – however, the authors proposed a frequency-domain
implementation, which only allows blockwise processing.
Contrarily, a time-domain implementation allows every mote
to apply an update based on its own error signal in each step,
which may lead to faster convergence. Furthermore, the algo-
rithm described above makes it possible to tune transmission
periods individually, allowing the available communication
bandwidth to be distributed among the motes arbitrarily.

Since each mote needs to carry out N + 1 FIR filtering
operations and N+1 vector additions in the majority of steps,
the per-mote computational complexity scales linearly with the
number of nodes.

III. SIMULATION RESULTS

Each of the active noise cancellation architectures described
in Section II was implemented in MATLAB for two channels.
Simulations were run with multiple physical configurations;
the results presented in this section were obtained under the
following common circumstances:

• The speakers and the microphones were located in the
vertices of a square, except for the microphone of chan-
nel 2, which was moved significantly farther.

• The acoustic paths were chosen as simple allpass filters
with delay and attenuation corresponding to the geometry.

• 200 Hz sinusoidal signal was used as reference.
• The sampling frequency was 8 kHz.

In each simulation, the step size was tuned to obtain the
fastest possible settling time. The error signal was considered
settled when its RMS (root mean square) decreased below 10%
of its initial value.

A. Comparison of the Architectures

The first experiment was carried out in order to compare
the fastest attainable settling time with the three previously
described ANC architectures, under identical circumstances.
The error signals obtained in the three simulations are shown
in Figures 6-8, in decreasing degree of centralization.

As anticipated, the fastest settling was achieved with the
fully centralized system, where every filter update is applied
as soon as it becomes available.

The partially distributed architecture provided significantly
worse results, with an average settling time nearly twice longer
than in the previous case. This is not surprising, considering
the delay introduced by the buffering nature of this system.

The fully distributed system provided results comparable
to the centralized case, the average settling time being only
8% longer. This superior behavior presumably stems from two
characteristics of this distributed algorithm. First, all filters
are updated in every step based on the locally available error
signal. Secondly, all filter updates are still calculated in every
step – it is only the application that is delayed.

30



0 0.5 1 1.5 2
−1

0

1

t [s]

e
1

0 0.5 1 1.5 2
−1

0

1

t [s]

e
2

Fig. 6. Settling – centralized (427ms and 574ms)

0 0.5 1 1.5 2
−1

0

1

t [s]

e
1

0 0.5 1 1.5 2
−1

0

1

t [s]

e
2

Fig. 7. Settling – distributed acquisition (908ms and 997ms)

0 0.5 1 1.5 2
−1

0

1

t [s]

e
1

0 0.5 1 1.5 2
−1

0

1

t [s]

e
2

Fig. 8. Settling – distributed (474ms and 609ms)

B. Effect of Transmission Period

In the next experiments, the behavior of the fully distributed
ANC system was further investigated.

First, multiple simulations were run with different trans-
mission periods (equal in the two motes), under otherwise
identical conditions. As shown in Fig. 9, this had practically no
effect on the settling time until the transmission time became
comparable to the settling time itself. This finding is consistent
with the analytical results obtained in [6].

C. Effect of Bandwidth Distribution

In our final experiment, the distribution of the available
network bandwidth among the motes was variable. Fig. 10
shows that this also had very little effect on the settling
time; the slower channel could not be made to settle any
faster by varying the bandwidth distribution. (A distribution
of 0 corresponds to the case when all network resources are
allocated to mote 2, and mote 1 is unable to transmit – and
vice versa.)

0 1000 2000 3000 4000 5000
3

4

5

6

7

8

9

10

11

transmission period

T
s
 [

s
]

 

 

mote 1

mote 2

Fig. 9. Settling time vs. transmission period

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

bandwidth distribution

T
s
 [

s
]

 

 

mote 1

mote 2

Fig. 10. Settling time vs. bandwidth distribution

IV. CONCLUSION

In this paper, a time-domain implementation of a dis-
tributed active noise cancelling algorithm was proposed and
its properties were compared to other similar methods. Its
performance was found to be superior to a simpler, more
centralized ANC architecture. Future research should focus on
the analytical derivation of settling parameters, investigation of
the algorithms for the case of more than two channels, as well
as on formulating feasible design guidelines.

ACKNOWLEDGEMENT

The research reported in this paper was supported by the
Higher Education Excellence Program of the Ministry of Hu-
man Capacities in the frame of Artificial Intelligence research
area of Budapest University of Technology and Economics
(BME FIKP-MI/SC).

REFERENCES

[1] S. J. Elliot, P. A. Nelson, “Active noise control,“ IEEE Signal Processing
Magazine, 10(4):12–35, October 1993.

[2] D. Miljković, “Active Noise Control: From Analog to Digital – Last 80
Years,“, 39th International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO), pp. 1358–
1363, June 2016.

[3] B. Widrow, D. Shur, S. Shaffer, “On adaptive inverse control,“ Pro-
ceeding of the 15th Asilomar Conference on Circuits, Systems and
Computers, pp. 185–189, November 1981.

[4] C. Antoñanzas, M. Ferrer, M. de Diego, A. Gonzalez, “Blockwise
Frequency Domain Active Noise Controller Over Distributed Networks,“
Applied Sciences, 6 (5), 124, April 2016.

[5] J. Lorente, C. Antoñanzas, M. Ferrer, A. Gonzalez, “Block-based
distributed adaptive filter for active noiose control in a collaborative
network,“ 23rd European Signal Processing Conference (EUSIPCO), pp.
310–314, Nice, France, 2015.

[6] G. A. Clark, S. K. Mitra, S. R. Parker, “Block Implementation of
Adaptive Digital Filters,“ IEEE Transactions on Circuits and Systems,
vol. CAS-28, no. 6, pp. 584–592, June 1981.

31


