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Abstract—This paper presents a signal processing method
for cancelling spurious distortion products in high frequency
bandpass signals. The proposed method uses a direct-conversion
demodulator to transpose the signal to baseband, and a resonator-
based observer to determine the harmonic content of the base-
band signal. Based on the observed parameters, the algorithm
generates an appropriate signal that is converted back to the car-
rier frequency and subtracted from the original signal, in order
to suppress the distortion products. The method is illustrated by
simulations and an experimental implementation.

Index Terms—active distortion cancellation, IQ modulation,
digital signal processing

I. INTRODUCTION

Power amplifiers and other active electrical devices often
exhibit nonlinearity, which causes spectral components that are
not present in the input signal to appear in the output signal.
These unwanted distortion products may adversely affect the
operation in several applications where high spectral purity is
required, such as wireless communications and high-precision
instrumentation. In these cases, the effects of nonlinearities
must be minimized so that the output signal can be as free of
spurious spectral contents as possible.

Methods for compensating nonlinearities can be divided into
two major categories: passive and active. Passive approaches
utilize no on-line adaptation, the distortion compensation
mechanism is designed along with the entire system, and is not
changed during operation. The simplest example is filtering the
signal with an analog or digital bandpass filter tuned to fixed
frequencies. A more advanced approach involves the identi-
fication of the transfer function and the pre-distortion of the
input signal according to the inverse of the identified function
[1]. The obvious disadvantage of these passive methods is the
necessary presupposition of long-term stability – if the transfer
function changes during operation, the compensation will no
longer work properly.

In active distortion cancellation, nonlinearities are compen-
sated by a digital control loop which adds an appropriate
signal to the input or the output of the system, suppressing
unwanted frequency components, and making the resulting
response appear linear [2]. With active distortion cancellation,
it is not necessary to make assumptions about the nature of the
nonlinearity at design time; the transfer function is adaptively
identified and compensated during operation.

However, active methods are not without drawbacks either.
Fig. 1 shows two possible arrangements of an active distortion
cancelling system. The addition of the compensating signal
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Fig. 1. Summation at input vs. output.

can be performed at the input or the output of the nonlinear
system. In the former case, the nonlinear system is part of
the control loop, which may have detrimental effects on the
stability and dynamical properties. On the other hand, if the
summation takes place at the output of a power amplifier, the
large signal amplitudes may present a practical challenge [2].

This paper is structured as follows. Section II describes
an algorithm for determining the amplitude and phase of
the distortion products. In Section III, a digital controller is
introduced that can be used in active distortion cancelling
systems, and a method is proposed by which this controller
can be extended to work on high frequency signals. The
described methods are illustrated with numerical simulations
in Section IV. Section V highlights some potential difficulties
that may rise in practical implementations. In Section VI, an
experimental implementation of high frequency active distor-
tion cancellation is presented, along with measurement results.
Finally, Section VII concludes the paper.

II. DETECTION OF DISTORTION PRODUCTS

Let us consider the nth sample of the signal y as a scalar
product of a basis vector cTn and a state vector xn:

yn = cTnxn (1)

In the case of the Discrete Fourier Transform (DFT), let cn
be the nth sample of the set of DFT basis functions:

cn = [ck,n] = ejωkn, k = −L . . . L (2)
ω−k = −ωk (3)
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Fig. 2. The resonator-based observer.

The resonator-based observer (RBO) – introduced and thor-
oughly analysed in [3] and shown in Fig. 2 – is described by
the following equations:

x̂n+1 = x̂n + gnen (4)

en = yn − cTn x̂n (5)

gn = [gk,n] =
1

N
ck,n (6)

where x̂n is the estimated state vector and N = 2L + 1.
If all equations (1)-(6) are satisfied, the resonator poles are
arranged uniformly on the unit circle, and the observer per-
forms a Recursive Discrete Fourier Transform (RDFT) – the
estimated state vector xn contains the DFT coefficients of y,
at frequencies corresponding to the resonator channels [2].

In practice however, usually not all resonator channels need
to be realised. In this case, (6) becomes:

gn = [gk,n] = αck,n (7)

where 0 < α < 1
N is a common convergence parameter,

chosen to be small enough to ensure stability. Furthermore,
the fundamental frequency f1 (ω1) might change over time, or
it might be unknown. In such cases, the resonator frequencies
can be adaptively tuned to coincide with the harmonics of the
input signal [4].

In an active distortion cancelling application, the resonator-
based observer can be used to determine the amplitude and
phase of the distortion products. The RBO has the following
advantages over traditional DFT implementations:

• A current estimate of x is always available – as opposed
to a blockwise DFT implementation.

• Only the necessary resonator channels need to be realised,
• which also allows faster computation.

III. CONTROL LOOP

A. Traditional control loop

When the RBO has reached steady state, the error signal
is zero and the output follows the input. This feature can
be utilized to construct a resonator-based controller, shown
in Fig. 3 [2]. The controller contains resonator channels
at frequencies that are to be cancelled. The inputs are the
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Fig. 3. Traditional controller.

corresponding coefficients observed by the RBO. Therefore,
if the controller output rn is subtracted from the input signal
yn, the resulting signal will no longer contain components
at the frequencies of the controller channels – assuming the
algorithm converges.

In the case when there are only linear systems in the control
loop, convergence can be ensured by the appropriate choice
of parameters

βk,n =
β

H(zk)
(8)

where β is a convergence parameter and H(zk) is the transfer
function from the output of the controller to the input of the
system, evaluated at the kth frequency [5]. H(zk) generally
cannot be calculated, therefore it has to be measured prior to
the beginning of operation. This can be done automatically:
the controller generates a sinusoidal signal of the desired
frequency, and the RBO observes the corresponding coefficient
at the input [2].

When nonlinearities are present in the control loop, stability
analysis becomes complicated. However, practical experiments
show that the same linear approach works in the majority of
these cases as well [2].

B. High frequency control loop

According to the sampling theorem, if a signal contains
no frequencies higher than fB , and it is sampled at a rate
of at least 2fB , then it can be perfectly reconstructed from
its samples. Unfortunately, for high frequency signals – such
as those used in wireless communications – blindly applying
this rule would necessitate very high sampling rates and
computational requirements.

However, different approaches exist for signals with narrow
bandwidth that are converted up to a high carrier frequency
(also called bandpass, passband, non-baseband or narrowband
signals) [6], [7]. In this paper, the method known as IQ
modulation is described.

Let us consider the high frequency sinusoidal signal

y(t) = A cos(ωct+ ϕ) =
A

2

[
ej(ωct+ϕ) + e−j(ωct+ϕ)

]
(9)

The spectrum of a real-valued signal always satisfies the
Hermitian property – i.e. Y (−ω) = Y (ω). Multiplication by
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Fig. 4. Bandpass signal.

a complex exponential corresponds to the linear translation of
the spectrum and yields a complex-valued signal:

v(t) = y(t)e−jω0t =

= y(t) cos(ω0t)− jy(t) sin(ω0t) = (10)

=
A

2
ej((ωc−ω0)t+ϕ) +

A

2
e−j((ωc+ω0)t+ϕ)

Naturally, a complex-valued signal cannot be realised, how-
ever, its real and imaginary part can individually exist as
physical signals. If they are digitised separately, then the
complex signal can be computationally constructed. Taking
into account the anti-aliasing lowpass filters of the analog-to-
digital converters (ADCs), and assuming that ω0 is chosen to
be sufficiently close to ωc, the complex signal becomes

vf (t) =
A

2
ej((ωc−ω0)t+ϕ) (11)

The filtered complex signal vf (t) still carries all amplitude and
phase information of y(t), but its spectrum has been shifted
to the left by ω0 and the resulting high-frequency component
has been omitted. An RBO with a single resonator channel at
ωc−ω0 can be used to determine the amplitude and phase of
vf (t), and therefore also of y(t).

The same principle can be used to generate high frequency
signals. Let us consider the low frequency complex signal

w(t) = Aej(ωt+ϕ) (12)

The real and imaginary part of w(t) can be individually
generated and multiplied by other sinusoidal signals:

r(t) = Re{w(t)} cos(ω0t)− Im{w(t)} sin(ω0t) =

= A cos(ωt+ ϕ) cos(ω0t)−A sin(ωt+ ϕ) sin(ω0t) =

= A cos((ω + ω0)t+ ϕ) (13)

Similarly as before, the high frequency real signal r(t) re-
tained the amplitude and phase of its low frequency complex
representation w(t).
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Fig. 5. High frequency controller.

Fig. 5 shows how the method of IQ modulation1 can be
used to extend the traditional distortion cancelling system to
work on high frequency signals.

IV. SIMULATION RESULTS

The high frequency distortion cancelling arrangement
shown in Fig. 5 was simulated in MATLAB. The aim was
to suppress a single sinusoidal signal with a frequency of
fc = 110 kHz. The local IQ signals were generated with
f0 = 100 kHz, resulting in 10 kHz baseband signals. The
complex signal introduced in (11) was assembled and an RBO
was applied to it. Then, the control loop was created according
to Fig. 5.

The simulation results are shown in figures 6 and 7. The
algorithm clearly converges and successfully generates an
output signal (RFout) that cancels out the input signal (RFin).
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Fig. 6. High frequency (top) and downconverted signals (bottom) at the
beginning of the cancellation. The controller is turned on at 0.4ms.
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Fig. 7. Magnitude of the estimated state variable x̂1.

1The name IQ modulation originates from the fact that the local oscillator
produces two signals with a 90 degree phase shift between them: one is often
referred to as the in-phase (I) signal, and the other as the quadrature (Q)
signal.

63



V. IMPLEMENTATION ISSUES

Thus far, the in-phase and quadrature signal paths have been
assumed perfectly identical. In reality however, imbalances
such as offset and gain errors are present. Taking these into
account on the downconversion (input) side, (10) becomes:

ṽ1(t) = (y(t) + C) cos(ω0t)− j (y(t) +D) sin(ω0t) =

= v(t) + C cos(ω0t)− jD sin(ω0t) (14)
ṽ2(t) = y(t) (cos(ω0t) + C)− jy(t) (sin(ω0t) +D) =

= v(t) + Cy(t)− jDy(t) (15)
ṽ3(t) = (1 + ε) y(t) cos(ω0t)− jy(t) sin(ω0t) =

= v(t) + εy(t) cos(ω0t) (16)

As can be seen from (14) and (15), offset errors cause high
frequency components to appear, which are of no particular
concern, since these are eliminated by the lowpass filters of the
ADCs. On the other hand, the gain error results in baseband
components, which are sampled by the ADCs.

Similarly, on the upconversion (output) side, (13) becomes:

r̃1(t) = (Re{w(t)}+ C) cos(ω0t)−
− (Im{w(t)}+D) sin(ω0t) =

= r(t) + C cos(ω0t)−D sin(ω0t) (17)
r̃2(t) = Re{w(t)}(cos(ω0t) + C)−

− Im{w(t)}(sin(ω0t) +D) =

= r(t) +AC cos(ωt+ ϕ)−AD sin(ωt+ ϕ) (18)
r̃3(t) = (1 + ε)Re{w(t)} cos(ω0t)−

− Im{w(t)} sin(ω0t) =

=
(
1 +

ε

2

)
r(t) +

Aε

2
cos((ω0 − ω)t− ϕ) (19)

In this case, all errors have significant effect on the output
signal. A simple way to eliminate these effects is to nu-
merically compensate the errors by the multiplication and
addition of appropriate constants – which can be determined
via measurement or heuristic (e.g. tune the parameters until the
output spectrum is sufficiently pure). This approach proved to
be adequate in the experiment presented in Section VI.

VI. EXPERIMENTAL RESULTS

To experimentally illustrate the viability of the described
concepts, a high frequency distortion cancelling system proto-
type was constructed that closely matches the diagram shown
in Fig. 5. In our setup, all computation was done by an Analog
Devices ADSP-21364 digital signal processor. For the two
ADC and two DAC channels, an AD73322L audio codec was
used. The IQ signal pair was generated by an AD9854 direct
digital synthesizer (DDS) chip designed specifically for this
application. The signal multiplications were carried out by four
AD835 analog multipliers.

Similarly as in Section IV, the aim was to suppress a high
frequency sinusoidal signal. In the measurements presented
here, the frequency of the input signal was 101 kHz, and the
local oscillator was set to 100 kHz, resulting in 1 kHz baseband
signals, which were then sampled by the codec at 64 kHz.

Fig. 8 shows that over 50 dB suppression was achieved. In
Fig. 9, the convergence of the algorithm can be observed.

Fig. 8. Output spectrum without (top) and with (bottom) the controller in
operation. Horizontal scale 25 kHz/div.

Fig. 9. Settling of the output after applying a 101 kHz signal to the input.
Horizontal scale 5ms/div. Settling time approximately 50 milliseconds.

VII. CONCLUSION

In this paper, the concept of a high frequency active dis-
tortion cancelling system was introduced. The mathematical
background was explored and illustrated with simulations, as
well as a working prototype. Some practical difficulties were
examined and a possible solution was proposed. However,
further research should focus on overcoming these issues.
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