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Abstract

The adaptive Fourier analyzer (AFA) is a structurally
adaptive system for exact measurement of band-limited pe-
riodic signals of arbitrary fundamental frequency. It is an
extension of the resonator based observers which calculate
the recursive discrete Fourier iransform. The AFA adapts
the resonator frequencies to coincide with those of the in-
pur signal, avoiding the picker-fence effect and leakage.
Hawever, the lower the frequency of the input signal, the
higher the computational demand required by the struc-
ture. Due 1o this fact, in practical cases, there i a lower
limit for the fundamental frequency. This paper describes
a new AFA, which sets the sampling frequency adaptively,
using the aciual estimator af the fundamencal frequency.
The input signal is first filtered by a decimation filter bank,
and s appropriate owtput is fed to a conventional AFA.
The paper investigates the transients of the system as well
as shows some examples.

1. Introduction

Tradiional Fourier analysis via the discrete Fourier
transform (DFT) is distorted due to the picket-fence effect
and leakage. The exact spectrum can be estimated only
if synchronized measurements are possible. A successful
solution of the problem is the interpolation and the resam-
pling of the measurement record using the estimated fun-
damental frequency [7], [6]. After resampling, a conven-
tional DFT is utilized for the estimation of the spectrum.

The adaptive Fourier analyzer (AFA) [2] is an alterna-
tive solution of the problem. It is an extension of the res-
onator based observers developed earlier to calculate the
recursive discrete Fourier transform (RDFT) [1], [5]. In

these observers the resonators work in a common feedback
loop providing zero steady-state feedback error at the res-
onator frequencies. The AFA adapis the resonator frequen-
cies to coincide with those of the input signal. The adap-
tation procedure is very similar to the locking of a phased
locked loop.

The AFA has been known for some time and it is proved
to be a fast and robust system. It was successfully utlizzd
e.g. m high-precision vector-voltmeters [2] or in active
noise contrel systems [9]. In the last years different al-
gorithms were developed based on the original AFA. [4]
describes the modification of the algorithm which is able
to analyze sweeping periodic signals. Although the sysiem
has excellent features, the exact convergence analysis is
not present. [8] describes a slight modification of the struc-
ture which allows to investigate its convergence properties.
[10] introduces a fast filter bank for efficient caleulation of
the algonthm.

Although the AFA can theoretically lock on periodic
signals of arbitrary fundamental frequency, there is a prac-
tical limit for the lowest fundamental frequency. As the
fundamental frequency changes, the number of the rep-
resented harmonics changes, as well. Since the AFA has
resonators at each harmonic frequency, the number of res-
onators depends on the estimated fundamental frequency.
The lower the frequency of the input signal, the higher the
number of the rescnators and therefore the computational
demand required by the structure. Assuming 40 kHz sam-
pling {requency and 40 MIPS (or MFLOFPS) digital sig-
nal processor (DSP), the maximal number of harmonics
is about 100, hence the lowest fundamental frequency is
about 200 Hz.

On the other hand, the input signal with a frequency
near to the lowest possible fundamental frequency is highly
oversampled. Therefore it seems to be a reasonable idea to
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decimate the mput signal, il its {frequency is too low. In this
way the required number of resonators can be reduced, ac-
cording to the decimation factor. Consequently, the lowest
possible fundamental frequency is reduced, as well, If the
frequency of the input signal gets higher or lower, the dec-
imation factor can be changed accordingly. This procedure
requires a decimation filter bank, the appropriate output of
which is used as input of the AFA. Our paper introduces
such an adaptive Fourier analyzer algorithm, and investi-
gales its behavior.

Section 2. recalls the original AFA algorithm, and sec-
tion 3. introduces the improved analyzer. Section 4. deals
with the decimation filter design, while section 5. shows
some examples. The paper is closed with a short conelu-
sion.

2. Adaptive Fourier Analyzer

The theoretical background of the AFA is the resonator
based observer. It was designed to follow the state vari-
ables of the so-called conceptual signal model [2], [5]. The
signal model is described as follows:

T

¥n = CpXn (1)
Co = [Cap] =00 k. L. L (2)
Lfi <05<(L+1)f (3)

where x,, is the state vector of the signal model at time
Step 1. yn 15 its outpul (the input of the observer), ¢, rep-
resenis the basis of the Fourier expansion, and fi is the
fundamental frequency relative to the sampling frequency.
The corresponding observer is (Fig. 1):

Xnpr = Ry + g (un — c?;in}; Bn = [gn] = Thlnk
(4)
where %y, is the estimated state vector, {rs; k¥ =
L.N; N = 2L + 1} arc free parameters to set the poles
of the system, and the overbar denotes the complex conju-
gate operator. Due to the complex exponentials, the chan-
nels of the observer can be considered as time-invariant
systems with a pole on the unit circle {z; k = 1.N}
(Fig. 1). This is why they are called resonators. If the res-
onalor poles are arranged uniformly on the unit circle, and
{re = 1/N; k = 1..N}. the observer has finite impulse
response [5]. In practical applications [2] where the funda-
mental frequency changes, the resonalors cannot be placed
uniformly. and the above setting of parameters T does not
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Figure 1. The structure of the original AFA

provide finite impulse response. But, if (2), and (3} hold,
the system is fairly fast. If the estimated frequency does
not coincide with that of the input signal y,,, the complex
state variables will rotate, and the speed of this rotation
at each resonator is proportional 1o the corresponding fre-
quency difference. This is the basic idea for the frequency
adaptation in the AFA [2]. The exact formula is the fol-
lowing:

1 . s
frnvi = fin+ mmglﬁfzt.nﬂ.ﬂf:,n) (5)

where £, ; is the estimated state variable belonging 1o the
positive fundamental frequency, and “angle” gives the an-
gle between two complex numbers.

The algorithm and the update procedure of the variables
18 decribed step by step in [3]. Assuming real input signals,
the AFA requires about 10 DSP instructions for each har-
monic component,

3. The Improved AFA

The computational demand mentioned at the end of the
previous section determines the maximal number of har-
monics al a given sampling fi requency. Thus the lowes|
frequency of the input signal, which the AFA can lock on
is also determined. However, the input signal with a fre-
quency near o the lowest possible fundamental frequency
is highly oversampled. Due to this fact, it is possible 1o
decimate the input signal in such cases. In this way the re-
quired number of resonators can be reduced. according o
the decimation factor. If the frequency of the input signal
gets higher again, the original sampling frequency can be
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Figure 2. The structure of the improved AFA
) [ surement problem to be solved. This section mtroduces
decimation some simple solutions.
level The computational demand and the dynamic properties
’ 1 of the AFA depend on the number of resonators (V). These
i1 1 can be very different if N varies in a wide range. To avoid
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Figure 3. The switch function

used. If the frequency of the inpul signal geis even lower,
a higher decimation factor can be nsed. The lowesl pos-
sible fundamental frequency depends only on the highest
decimation factor, This procedure requires a decimation
filter bank, the appropriate output of which is used as in-
put of the AFA. The outpul selection is controlled by the
estimated fundamental frequency. The proposed structure
can be seen on Fig. 2. The switch function depicted in the
figure has an essential role. A straightforward function can
be seen in Fig. 3. In order to avoid fast up/down switches
between two levels, the swilch function contains a hystere-
sis. Both faown and fup are higher than the lowes! possible
fundamental frequency at level 1, and the lag in the hystere-
sis depends on the signal to noise ratio (SNR) of the signal
to be analyzed. Smaller SNR requires larger lag and vice
VEersa.

The structure described above is already able 1o lock on
periodic signals of arbitrary fundamental frequency also in
practice. However, some important design and implemen-
tation questions are open. The next scction deals with such

problems.

4. Filter Bank Design

The filter bank of the improved AFA can be designed in
different ways. The adequate method depends on the mea-

such problems, il is reasonable to keep N of the same or-
der. To achieve this, half-band decimation filters can be
used, so the ratio between the maximal and the minimal N
is 2. As it is usual in decimation filter banks, the same filter
can be used at each level.

The result of the adaptive Fourier analysis is the esti-
mated fundamental frequency ( f1 ) and the complex ampli-
tudes (x,,). The measurement of X, is distorted by the dec-
imation filters. Their frequency response has to be com-
pensated, if it is required by the measurement problem. In
order to do this, the frequency response of the decimation
filters has to be known and it has to be evaluated using the
actual harmonic frequencies.

The magnitude response of the filters is close to the
unity in the pass band, and its compensation can be ignored
in some applications. However, the phase shift of the filters
is different at each decimation level. As a consequence the
state variables forced to set to a new value at each sampling
rale change, which can cause long transicnis in the mea-
surement. To avoid such problems, different technics can
be used. Tn the following two possibilities are sketched.

The general solution is the update of the state variables,
according to the phase shift caused by the decimation fil-
ters. This is a theoretically good solution, but its computa-
tional complexity strongly depends on the structure of the
decimation filter. Complicaled infinite impulse responsc
(TIIR) filters make difficulties, but lincar phase FIR filters
can be calculated easily.

A simple solution is the utilization of linear phase FIR
fillers as decimation filters and extra delays at lower deci-
mation level, according to the maximal delay at the highes!
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Figure 4. The improved AFA with compen-
sator delays at lower decimation levels. Ex-
ample for decimation factor of 4.

decimation level. An example with a decimation factor of
4 can be seen in Fig. 4. The method works well, if:
M-1
2
where M is the length of the half-band decimation filter
“F". If the original sampling frequency is f,, itis f,/2 and
fs/4 on the second and the third level, respectively. One
can calculate thal a signal appearing at all levels is delayed

D= (6)

by the same amount.

This simple structure works without transients at sam-
pling frequency change. The penalty to be payed is the
delay in the signal path.

5. Examples

In this section two simulation examples are presented.
Both simulations deal with the same measurement prob-
lem. The task is the Fourier analysis of a band hmited
tniangular signal of changing fundamental frequency. The
amplitude of its first harmonic is set to unity. The sampling
frequency f, = 1 kHz, the signal changes in the range
of 38..42 Hz. The signal is analyzed in both cases by the
improved AFA, with switch frequencies of 39 and 41 Hz.
One decimation filter is applied which allows to reduce the
sampling frequency to 500 Hz. The decimation filter is
a Chebishev type linear phase filter specified as follows:

passband | 0..f,/5.12

fofd.fof2

0.1 dB ripple
80 dB suppression

stopband

This specification requires 63 taps. The examples show
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the behavior of the improved AFA without and with tran-
sient elimination. The transient elimination was done by a
delay of 31 samples (see (6)) in the path where no decima-
tion is required. The simulation results can be followed in
Fig. 5.

The diagrams show the time records of the input sig-
nal frequency, the estimated frequency, the feedback error
and the estimated amplitude belonging to the fundamenial
frequency, respectively. The frequency of the input sig-
nal is constant or changes linearly, as il is depicted in the
uppermost plot. During about the first 100 samples the
structures lock on the input signal of constant frequency
of 42 Hz. (Note the zero feedback error and the exact fre-
guency and amplitude estimators.) At time step 200 the
frequency starts to decrease. Like a phased locked loop,
AFA can follow this change with a constant error, as the
nonzero feedback error shows it. At a frequency of 39
Hz both structures switch to the decimated input, which
cause undesirable transients in the struciure without tran-
sient climination (Fig. 5.a), while no effect can be seen in
the structure with transient elimination (Fig. 5.b). Atacon-
stant frequency of 38 Hz both structures are locked. How-
ever, the second structure has shorter settling time, due w
the eliminated transients. At time step 600 the frequency
starts to increase. The phenomena are similar to those of
the decreasing case. but the switching accours only ar fre-
quency of 41 Hz, because of the hysteresis. The superiority
of the transient elimination is clearly visible on the simu-
lation results.

6. Conclusion

The paper presented a new adaptive Fourier analyzer
structure, which can be used for measurement of band-
limited periodic signals of arbitrary fundamental fre-
quency. The original AFA suffers from the high computa-
tional burden if the frequency of the input signal is too low.
The improved AFA sets the sampling frequency adaptively,
using the actual estimator of the fundamental frequency.
The input signal is first filtered by a decimation filter bank,
and its appropriate output is fed to a conventional AFA.
The paper sketched some possibilities of filter bank de-
sign, emphasizing the importance of the elimination of the
transients which can be caused by the sampling frequency
exchange. Simulational results illustrated the capability of
the structure,
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Figure 5. Simulation results without (2) and with (b) transient elimination.
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