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Abstract—Adaptive Fourier analyzers have been developed for
measuring periodic signals with unknown or changing funda-
mental frequency. Typical applications are vibration measure-
ments and active noise control related to rotating machinery
and calibration equipment that can avoid the changes of the
line frequency by adaptation. Higher frequency applications have
limitations since the computational complexity of these analyzers
are relatively high as the number of the harmonic components to
be measured (or suppressed) is usually above 50.

In this paper, based on the concept of transformed domain
signal processing, a fast filter-bank structure is proposed to
reduce the above computational complexity. The first step of the
suggested solution is the application of the filter-bank version
of the fast Fourier transform or any other fast transformations
that convert input data into the transformed domain. These
fast transform structures operate as single-input multiple-output
filter-banks, however, they can not be adapted since their ef-
ficiency is due to their special symmetry. As a second step,
the adaptation of the filter-bank is performed at the transform
structure’s output by adapting a simple linear combiner to the
fundamental frequency of the periodic signal to be processed.

Index Terms—Adaptive Fourier analysis, digital signal process-
ing, fast filter-banks, fast recursive transformations, transform-
domain measurements.

I. INTRODUCTION

I N CERTAIN applications, like vibration analysis and active
noise control, periodic signals with unknown or changing

fundamental frequency are to be measured. The traditional
Fourier transform structures do not offer very good perfor-
mance unless the sampling frequency and the fundamental
frequency of the signal are synchronized. Without synchro-
nization, the picket-fence effect and the leakage can not be
avoided. There are two known alternatives to match the signal
and the Fourier analyzer. The first technique [1], [2] applies
(re)sampling controlled by the estimate of the fundamental
frequency. If the signal to be measured is already digitized,
first an interpolation is to be performed, which is followed by
resampling. The resampled signal can be processed using the
fast Fourier transformation (FFT) algorithm without the side-
effects of picket-fence and leakage. The second technique is
the application of a special filter-bank, the so-called adaptive
Fourier analyzer (AFA) [3] and [4]. This filter-bank is tunable
to match signal components and the measuring channels. The
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price to be paid for this solution is that fast transformation
algorithms, like the FFT, cannot be directly utilized.

The purpose of this paper is to propose a third alternative.
The technique to be introduced is based on the concept of
transform domain adaptive signal processing. As a first step the
signal transformation is performed using a filter-bank version
of one of the fast transformations, like the FFT. Unfortunately,
however, none of these transformers can be adapted since
their computational efficiency is due to their special symmetry.
Therefore, the second step is tuning or adaptation which is
performed at the transformer’s output by setting the weights
of simple linear combiners as a function of the estimated
fundamental frequency of the periodic input signal in hand.
Explicit formulas are given to calculate the weights. To avoid
the burden of these calculations a proper tabulation of the
weights is also suggested. This latter considerably reduces the
overall computational complexity and thus, implementations
with higher sampling frequency can also be considered.

In Section II the concept of the AFA is summarized rather
briefly. Since the technique to adapt the fundamental frequency
[3], [4] can be directly utilized also in the case of the
proposed method, in the subsequent sections we consider the
fundamental frequency as an input variable. In Section III,
the details of the transform domain adaptive Fourier analysis
are presented. These include the basic design equations of
the analyzer in hand. Section IV is devoted to an illustrative
example where the AFA versions are compared and the
strength of the proposed method is shown.

II. THE ADAPTIVE FOURIER ANALYZER

The AFA [3] and [4] is an adaptive filter-bank structure
strongly related to the recursive discrete Fourier transformation
(DFT). This is suitable for the calculation of the Fourier
coefficients and/or components in a sliding-window mode with
computational complexity proportional to the window size for
every input sample [5]. The classical version of the recursive
DFT based on the Lagrange interpolation has been replaced by
an observer structure [6] and resulted in a common framework
for signal processing algorithms.

The AFA described in [3] and [4] applies the general
recursive transform structure suggested in [6]. For the case
of Fourier analysis, this structure can be characterized by a
set of parallel complex demodulator/modulator pairs with a
two-channel discrete integrator between them, together with
a common feedback resulting in a recursive DFT structure
(see Fig. 1). The two-channel integrators process the real and
the imaginary parts of the demodulated signal, respectively.
After convergence, this structure produces Fourier coefficients
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Fig. 1. Recursive DFT structure.gm(n) = (1=N) e�j(2�=N)mn; cm(n) = ej(2�=N)mn; m = 0; 1; � � � ; N � 1.

at the output of the integrators,
and Fourier components at
the output of the complex modulators.

In [3] and [4], an adaptive procedure has been added to
the recursive DFT for the analysis of periodic signals with
unknown frequency. This adaptation procedure “locks” the
fundamental frequency component of the periodic signals like
a PLL and tunes the recursive DFT channels accordingly.

The actual estimate of the fundamental frequency can be
calculated by (see [3])

arc (1)

where and denote the fundamental frequency at time
instant and the sampling frequency, respectively. Variable

is the output of the corresponding discrete integrator,
while arc stands for the one-step phase vari-
ation of the fundamental frequency. denotes the actual
number of the channels, which should meet the condition

(2)

This results in applying, always, as many DFT channels as
can be accommodated within the frequency range up to one
half of the sampling frequency. This means that the proposed
method implements a structurally adaptive system with an
order depending on the actual ratio of the fundamental to the
sampling frequencies.

The actual phase estimate of the fundamental component is
given by

(3)

which replaces in the demodulator/modulator pairs
(see Fig. 1). It is important to note that simply changing
the phase of the complex exponentials in Fig. 1 modifies not
only the filter-channel positions but also introduces system
poles and therefore infinite impulse response (IIR) behavior
unless the phases happen to be integer multiples of . The
presence of poles out of the origin results in transients which

Fig. 2. Block diagram of the adaptive Fourier analyzer.

disturb the adaptation procedure. Under such circumstances the
convergence properties are extremely hard to investigate and
no proof is presently available concerning global convergence.

In [7] the concept of a so-called block-adaptive Fourier
analyzer (BAFA) is introduced which avoids the disturbance
due to the transients, and therefore the investigation of the
convergence properties becomes much easier. Since for finite
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Fig. 3. Input signal modified at zero sampling time. Shape: from trapezoidal
to triangular, amplitude change: appr. 100%, frequency change: appr. 10%.

impulse response (FIR) filters, the transients of channels will
die out in a maximum of steps, it seems to be reasonable
to start filter operation with a complete block (samples)
of input data without changing/adapting the filter coefficients.
After filtering the first samples, the transients due to the
parameter changes will disappear. As a second step, based on
further output samples, the phase measurements
are to be performed. These phase values are used to derive
the estimate of the fundamental frequency, similarly to (1),
where equals 1. The third step is the parameter adaptation,
i.e., a new setting of the filter parameters. The block-adaptive
analyzer applies the very same filter-bank structure (see Fig. 1)
except the weights of the demodulators (or modulators) are set
somewhat differently to provide FIR behavior. The design of
such a parameter set is straightforward since explicit formulas
are available (see, e.g., [6]). For the case of the BAFA the
conditions of global convergence are also derived [7]. The
original algorithm and its modifications have been successfully
utilized in low frequency applications (see, e.g., [8]).

III. T HE FAST FILTER-BANK FOR

ADAPTIVE FOURIER ANALYSIS

The fast filter-bank structure suggested in [9] and further
developed in [10] combined with the adaptive “frequency
sampling” method [11] can be utilized for fast adaptive Fourier
analysis, as well. The size of the fast DFT filter-bank is
determined by the smallest possible value of the fundamental
frequency to be detected. To such a transform structure, a set
of adaptive linear combiners is connected (see Fig. 2). After
convergence at the output of the linear combiners the separated
signal components will appear. The adaptation consists of
two different types of calculations. The first is the estimation
of the fundamental frequency. This can be done following
the algorithms described in [3], [4], or [7]. According to
these algorithms the actual value of the basic harmonic’s
angular frequency is calculated recursively from the previous
estimate by adding a correcting term proportional with the

Fig. 4. Estimated frequency for the new AFA (continuous), for the previous
AFA (dotted), and for the BAFA (dashed) structure.

Fig. 5. Estimated amplitude of the fundamental component for the new AFA
(continuous), for the previous AFA (dotted), and for the BAFA (dashed)
structure.

phase variation of the corresponding Fourier coefficient. The
second step is the calculation of the coefficients for the linear
combiners. The filters to be implemented can be characterized
by the following transfer function:

(4)

where , , ,
, , . The serves

as normalizing factor, which can be derived by evaluating (4)
at . is the actual “order” of the linear combiners
in such a way that . The weights for the linear
combiners are calculated by “sampling” (4) in the frequency
domain at the locations dictated by theth roots of unity. This
latter requires only the evaluation of some formulas derived
from (4). However, these calculations become very intensive
if is large. The “on-line” calculation of the weights can be
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avoided by a proper tabulation for the frequency range to be
covered. For nontabulated frequencies, simple (possibly linear)
interpolation techniques can be applied. It is important to
note that these AFA filters are FIR filters producing minimum
response time.

The frequency-sampling technique can be utilized in the
case of other discrete transformations, as well. The fast recur-
sive Walsh–Hadamard transformation (WHT) [13] can be also
a good candidate for the transformer part in this new AFA. This
change affects the weights of the adaptive linear combiners.
However, the modification required is easy to calculate and
finally tabulate, if needed.

Another very important aspect is that in the transform
domain the sampling rate can be reduced and the only linear
combiners to be evaluated are those which are of interest to
the actual measurement.

The whole system can be operated both in sliding-window
and block-oriented modes. For this latter the transform struc-
ture’s outputs are calculated only in everyth time instant,
i.e., only once for each block. This is always acceptable if
the system is “tuned” by an external frequency signal. In the
adaptive case the phase calculation of the basic harmonic is
critical, however for slowly varying signals slower adaptation
is also acceptable.

The original form of the AFA ([3] and [4]), due to its
feedback structure, requires a complete evaluation in every
time instant. The necessary computational power is determined
by the maximum value of , which corresponds to the order
of the system to be implemented. In our proposition the
AFA is replaced by a fast, and recursive transform structure

with computational complexity proportional to that
of the FFT, and by a set of linear combiners. The weights
of the linear combiners can be calculated on-line or tabulated
for the frequency range to tracked. This new system can be
advantageous if not all the outputs are needed in every time
instant, if minimum response time is required, and if both the
true DFT and the AFA outputs are to be calculated.

The transposed version of the proposed adaptive Fourier
analyzer can be utilized for synthesizing periodic signals with
controlled fundamental frequency and applied similarly as is
suggested in [12].

IV. I LLUSTRATIVE EXAMPLE

The strength of the new adaptive Fourier analysis is il-
lustrated in Figs. 3–5 compared to other AFA versions. The
shape, magnitude, and frequency of the input signal are
modified at time instant zero (see Fig. 3). Fig. 4 shows the
fundamental frequency estimates of the different structures,
while in Fig. 5 the amplitude estimates can be followed.

V. CONCLUSIONS

In this paper a new transformed domain adaptive Fourier an-
alyzer has been described. The frequency adaptation algorithm
is the same as that of the previous AFA proposed in [3] and [4],
but the signal processing part has a more efficient formulation.
The first part of this formulation is the utilization of the fast
recursive Fourier transformation, while the second one is the

implementation of adaptive frequency-sampling filters. The
frequency of the basic harmonic component is either calculated
by recursive adaptation or can be tuned by an external signal.
The weights of the frequency-sampling filters are given by
explicit formulas and thus, can be calculated on-line or can
be tabulated for the frequency range to tracked. This new
system may be especially advantageous if not all the outputs
are needed in every time instant, if minimum response time
is required, and if both the true DFT and the AFA outputs
are to be calculated. The proposed method can significantly
contribute to the frequency range extension of this technique.

REFERENCES

[1] R. B. Randall,Frequency Analysis. Brüel & Kjaer, 1987.
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