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Resonator-Based Nonparametric Identification
of Linear Systems

László Sujbert, Member, IEEE, Gábor Péceli, Fellow, IEEE, and Gyula Simon

Abstract—A nonparametric identification method for linear
systems is proposed. The identification is done via synchronized
multisine measurements where the synchronization is ensured by
a resonator-based generator–observer pair. The advantage of the
proposed structure is that it works as a filter bank and, hence,
provides the measurement results online. Exponential averaging
is an option of the method and it requires no extra calculations. A
further advantage is that the identification can be done over any
frequency set without any loss of performance. Explicit formulas
are given for noise suppression and settling time. The method is
illustrated by practical examples.

Index Terms—Multisine, nonparametric frequency domain
identification, resonator-based observer.

I. INTRODUCTION

FOURIER analysis is a well-known method for nonpara-
metric frequency domain identification of linear systems

[1]. Frequency domain data are often inputs for parametric
identification [2]. The utilization of multisine excitation pro-
vides the possibility of the elimination of the systematic errors
like leakage and picket fence (or scallop loss) (see e.g., [3]).
In most cases, the output of the system is analyzed by the
discrete Fourier transform (DFT), while the frequency domain
parameters of the excitation are known in advance. The DFT
is calculated via the fast Fourier transform (FFT). In order
to suppress the measurement noise, averaging of the analysis
results is also necessary.

Resonator-based observers were developed earlier to per-
form the recursive discrete Fourier transform (RDFT) [5],
[6]. In these observers, the resonators work in a common
feedback loop providing zero steady-state feedback error at the
resonator frequencies. The summed output of such resonators
can generate any periodic signal up to the half of the sampling
frequency. [7] introduces an adaptive Fourier analyzer, where
the resonator positions are set according to the signal com-
ponents to be analyzed. [8] suggests a different method for
the adaptation, concentrating on the computationally effective
implementation of the algorithm.

It is straightforward to utilize such a generator–observer pair
for frequency domain nonparametric system identification: the
system to be identified has to be in between the generator and
the observer and the ratio of the state variables of the observer
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and the generator supplies the estimated transfer function. In
this paper, this procedure is described and a detailed analysis is
given. The main contribution of this paper is that it provides ex-
plicit formulas for noise suppression and settling time which are
of key importance in the case of frequency-response measure-
ment. The suggested arrangement can be a competitor of the
FFT-based analysis, since it works as a filter bank and provides
the measurement results online over an arbitrary frequency set.

Section II recalls the identification problem and the resonator-
based observer. Section III introduces the resonator-based iden-
tification and a detailed analysis is given. Real measurement
data are provided in Section IV, while Section V is the conlusion.

II. PRELIMINARIES

A. Nonparametric Frequency Domain Identification of Linear
Systems

Let be a linear, time-invariant discrete time system. The
nonparametric frequency domain identification of is the
estimation of its samples over a finite set of [1], [2], and [4]
as follows:

(1)

where is the estimation of , and and
denote the Fourier transform of the input and the output signal,
respectively. There are many possibilities to excite the system;
a possible choice is the utilization of multisine excitation [4].
In this case, is usually known in advance, and
is calculated by the DFT. If the length of the input sequence
equals the number of the DFT points [supposing the steady-state
of ], the estimation is not distorted due to the leakage and
the picket-fence effect. There are different averaging techniques
to reduce the random noise corrupting the measurement. If the
identification should follow the changes in , exponential
averaging can be used.

B. Resonator-Based Observer

The resonator-based observer was designed to follow the
state variables of the so-called conceptual signal model [6].
The signal model is described as follows:

(2)

(3)

(4)

where is the state vector of the signal model at time step ,
is its output (the input of the observer), and represents the
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Fig. 1. Resonator-based observer.

basis functions. To generate a real signal, (4) shall be satisfied.
This restriction is not necessary, but advantageous in most cases.
Obviously, in these cases, the correspondig state variables shall
form complex conjugate pairs. The conceptual signal model can
be considered as a summed output of resonators which can gen-
erate any multisine with components up to half of the sampling
frequency. The corresponding observer is (Fig. 1)

(5)

where is the esti-
mated state vector, are free parameters to
set the poles of the system, and the overbar denotes the complex
conjugate operator.

Due to the complex exponentials, the channels of the observer
can be considered as time-invariant systems with a pole on the
unit circle. This is why they are called resonators. The resonator
frequencies can be expressed as the ratios of the consecutive
samples of the basis functions [6]

(6)

and the transfer function of a channel is

(7)

These channels work in a common feedback loop forming a
single input-multiple output filter bank, the transfer functions
of which are

(8)

If the resonator poles are arranged uniformly on the unit circle,
and , the observer has finite impulse
response, and the observer corresponds to the RDFT [6]. In that
case, the transfer function (8) is very simple

(9)

the magnitude response of which is

(10)

Equation (10) has zeros at each resonator frequency, except
when , where .

In practical applications where the fundamental frequency
changes, the resonators cannot be placed uniformly, and the
above setting of parameters does not provide a finite impulse
response. The adaptive Fourier analyzer described in [7] adapts
the resonator frequencies to coincide with those of the input
signal, avoiding the picket-fence effect and leakage. It was suc-
cessfully utilized, e.g., in high-precision vector-voltmeters [7]
or in active noise control systems [9].

III. RESONATOR-BASED IDENTIFICATION

A. Identification System

The above described resonator-based generator–observer pair
can be used for frequency domain nonparametric system iden-
tification as is depicted in Fig. 2. The excitation is given by
the state vector of the generator which does not change
while the identification is in progress. The system to be identi-
fied has to be in between the generator and the observer
and the ratio of the corresponding state variables of the observer
and the generator supply the results

(11)

Exponential averaging is an option of the structure, and it is
controlled by the parameter . Its role is discussed in detail in
the following subsections.

The setup of Fig. 2 assumes that the input of the system is
known exactly. In practical cases, where the exact input of the
system could be unknown, the input state variables can be mea-
sured by another resonator-based observer.

Since the same basis functions are applied both in the gen-
erator and the observer, no picket-fence effect and leakage oc-
curs, even if finite wordlength effects are taken into considera-
tion. The operation of the method can be characterized by noise
suppression and measurement time. These are discussed below.

B. Identification Over a Uniform Resonator Set

The resonators are arranged uniformly on the unit circle, if
. If , the observer per-

forms the RDFT [6]. It is the case when in Fig. 2. Each
channel has an equivalent noise bandwidth of . If the mea-
surement noise is white, the ratio of the variances are

(12)

where is the variance of the original measurement noise, and
is the variance of . The system has finite impulse re-

sponse, and the measurement time is steps.
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Fig. 2. Resonator-based identification.

If , the measurement results are exponentially
averaged. The equivalent time constant is

(13)

In this case, the noise suppression is (see e.g., [10])

(14)

where is the variance of the original measurement noise, and
is the variance of the averaged output. This averaging im-

proves the noise suppression of (12) if is small enough. How-
ever, not all values result in a lower noise variance. For
sufficiently large, can be approximated by

(15)

Substituting this into (14), the noise suppression is

(16)

where if . It follows
that (14) is slower than (12) for .

Since the system has infinite impulse response, the measure-
ment time depends on the accuracy of the measurement

(17)

where denotes the final error to be achieved. Note that in prac-
tical cases, first is determined upon the specification of the
identification task, and is calculated by the inverse of (13)

(18)

C. Identification Over an Arbitrary Resonator Set

In many practical cases, the identification shall be done over
a nonuniform frequency set: e.g., acoustical measurements re-
quire logarithmic frequency points. In these cases, (9) and (10)

are no more valid, and the system has infinite impulse response,
even if . However, it remains that the th transfer func-
tion has zeros at each resonator frequency, except when ,
where it is exactly 1. It means that the structure is able to per-
form undistorted measurements, according to (11). Note that
the identification in this case does not require extra calculations
compared to the uniform resonator set case.

The calculation of the noise suppression and the measurement
time is generally very complicated, since each channel has a
different equivalent noise bandwidth. Fortunately, if , the
relevant transfer functions can be well approximated as follows:

(19)

where in Fig. 1. In this case, the th channel can
be approximated with another resonator-based observer output,
which contains one resonator only, at the frequency of , with

. The approximation is good along the frequency axis,
with the exception of the neighborhood of the original resonator
positions, since the approximating transfer function has no zeros
at those places. This is demonstrated in Fig. 3. The figure shows
that the magnitude response of the original and the associated
structure are close to each other. It also implies that the equiv-
alent noise bandwidth is nearly the same for the two structures,
so (14) is a good estimation for the case of an arbitrary resonator
set.

Due to the Parseval’s theorem, the measurement time can be
estimated by the corresponding transfer functions. The squared
error of the approximating transfer function (19) tends to zero as

tends also to zero. Numerical simulations show that the error
of the approximation can be omitted for values frequently
used in the practice . Thus, (17) is also a good es-
timation for the measurement time in the case of an arbitrary
resonator set.
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Fig. 3. Magnitude response of one resonator channel with logarithmic
frequency set (� = 0:01). Solid line: magnitude response of the approximating
structure; dashed line: magnitude response of the original structure.

IV. MEASUREMENTS

A. Measurement System

In order to test the algorithm, a digital signal processing (DSP)
program was written. The proposed identification method was
implemented on an ADSP 2181-based EZ-KIT Lite development
board [11]. (ADSP 2181 is a 16-b fixed-point signal processor
[12].) It has two analog channels with 16-b delta–sigma A/D and
D/A converters. The sampling frequency can be set from 5.5125
to 48 kHz, in several steps. The system to be identified has to be
connected in between the D/A and the A/D converters. The input
variables of the program are: 1) the multisine excitation sequence
(thus, the number of the resonators) and 2) the time constant
for exponential averaging (see Section III). The proposed iden-
tification is an online method, so the resolution is limited by the
computational complexity of the method. Up to the sampling
frequency of 8 kHz, the transfer function can be measured in
512 points. At the maximal sampling frequency of 48 kHz, the
measurement can be done in 64 points.

Now the proposed method is illustrated by two examples.
The first one is the identification of a bandstop finite impulse
response (FIR) filter, which illustrates the main features of the
method transparently. The second example is more complicated:
acoustic transfer function measurement of a tube.

1) Example 1: Identification of a Bandstop Filter: The
bandstop filter is a FIR filter implemented on another DSP
board, with a sampling frequency of 16 kHz. The measurement
result can be seen in Fig. 4. The transfer function is measured
in 256 points, i.e., with a resolution of 62.5 Hz. Damping near
to dc and 8 kHz are due to the ac coupling and the delta–sigma
A/D and D/A converters. The suppression in the stop band is
about 50 dB, while the specification is 60 dB. This difference
is because of the 16-b wordlength.

The settling of the system can be seen in Fig. 5. The figure
shows the feedback error of the structure (see Fig. 1) in the case
of the above measurement, with a time constant of .
The settling can be considered complete if this error signal is
zero. Although the settling of the system is exponential, the

Fig. 4. Result of the identification of a bandstop FIR filter.

Fig. 5. Settling of the resonator-based structure in the case of identification of
a bandstop filter.

Fig. 6. Schematics of the measurement setup in example 2.

decay is not continuous: the magnitude of the transient changes
only in every 16 ms (in every steps), when it is mul-
tiplied by . In the example , according to
(18). This settling is characteristic only when the resonators are
arranged uniformly.

2) Example 2: Identification of an Acoustic Transfer Func-
tion: The schematics of the measurement setup can be seen in
Fig. 6. A plastic tube of a length of 1.4 m and a diameter of 0.2 m



390 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 1, FEBRUARY 2005

Fig. 7. Result of the identification of the acoustic transfer function of a tube.

was excited by a loudspeaker at one end of the tube, while a mi-
crophone was placed to the another end of the tube. The sam-
pling frequency was 5.5125 kHz, and the transfer function is
measured in 512 points, i.e., with a resolution of about 10 Hz.
The result of the identification can be seen in Fig. 7. The time
constant of the averaging was set to as in the pre-
vious case. Fig. 7 clearly shows the resonances at frequencies
of about 120 Hz and its multiples. At low frequencies, there are
standing acoustic waves in the tube. Indeed, at 120 Hz, the half
of the wavelength of the sound in air equals the length of the
tube.

V. CONCLUSION

A nonparametric identification method for linear systems was
introduced. The paper described the theoretical background of
the method and it was illustrated by two practical examples.
The advantages of the proposed method can be summarized as
follows.

• It provides the identification result online.
• Exponential averaging can be easily implemented by

changing a multiplier factor in the structure.
• The identification can be done over an arbitrary frequency

set and it requires no extra calculations.

As a disadvantage, it should be mentioned that the number
of frequency points is limited, compared to the conventional
FFT-based methods. The computational demand of the pro-
posed method is proportional with for each time instant

, which corresponds to the DFT. Consequently, the highest
sampling frequency (providing online analysis) for a given is
less than that of the FFT-based solutions. The resonator-based
method, therefore, is an alternative of the FFT-based analysis if
slowly time varying systems should be identified, especially if
the frequency set is not uniform.
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