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An Efficient Nonlinear Least Square Multisine
Fitting Algorithm

Gyula Simon, Rik Pintelon, László Sujbert, Member, IEEE, and Johan Schoukens

Abstract—This paper presents a new nonlinear least-squares
algorithm for fitting band-limited periodic signals with unknown
frequency and harmonic content. The new solution features
a model-based recursive calculation method that requires less
memory space and has smaller computational demand than the
known matrix-based algorithms.

Index Terms—Least squares methods, parameter estimation,
periodic functions, recursive estimation, resonator filters.

I. INTRODUCTION

T HE estimation of the harmonic content of periodic sig-
nals is a very common problem and the solution is also

very well known for several typical scenarios. If the signal’s
frequency is knowna priori and the record contains a whole
number of periods, then the solution can be computed by the
fast Fourier transformation (FFT). If the generator and the ac-
quisition device are not synchronized, then a linear least-squares
(LS) problem must be solved to gain the unknown amplitude
values; in this case, the computational load is higher than in the
synchronized case. If the signal frequency is not known either,
then a much more complicated nonlinear least-squares (NLS)
problem must be solved. In typical cases, when the record con-
tains only a reasonable number of points and frequency lines to
be estimated (up to a few thousand data points and a few hundred
frequencies), the problem can be solved using the methods avail-
able in the literature [1]. Based upon this method, the solution
of the NLS problem requires roughly operations and

storage space, where represents the number of har-
monics to be estimated, and is the length of the time record.
If the number of samples and/or the harmonics to be estimated
exceeds a certain limit, these methods cannot be used in conven-
tional computers any more because of the slowdown of these al-
gorithms and, especially, of the extreme memory requirements.
This paper presents a new model-based solution, which uses a
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tuned resonator-based filter bank [2]. The proposed method re-
quires operations and storage space. The low
memory requirements and the recursive nature of the computa-
tion make the hardware implementation also possible.

II. NONLINEAR LEAST-SQUARESALGORITHM

The classical parameter estimation problem of periodic sig-
nals with unknown frequency and amplitude content can be for-
mulated as follows

(1)
where is the estimate of the discrete-time periodic signal

at time instant . The angular frequency is and
is the complex amplitude of the th harmonic. The frequency

and the harmonics amplitudes are to be estimated in
least-squares sense so that the squared error

(2)

is minimal. A well-formed solution was presented in [1]; the
main features of the nonlinear least squares algorithm (NLS)
are briefly described here.

Theoretically, the iterative solution of the NLS problem can
be divided into two main parts. Part 1 is a solution of a linear
LS problem with a fixed frequency value; then, in Part 2, a
new frequency estimate is calculated using a Gauss-Newton
gradient-search procedure. Then, Parts 1 and 2 are repeated
until no improvement is achieved any more. The algorithm
proposed in [1] performs the iterative steps without the explicit
calculation of the linear LS solution (Part 1 is hidden in Part 2),
thus providing numerically stable and fast calculation. Since the
derivative can be calculated (see [1]), a Gauss-Newton
procedure is used to find the minimum versus the fundamental
frequency. Note that although the gradient search algorithm
always finds a (local) minimum, it is necessary to have an
initial guess of the frequency, which is sufficiently close to the
true frequency value, in order to guarantee convergence to the
global minimum (see the example in Section IV). The algorithm
described in [1] uses matrix calculations and its numerically
stable and effective implementation requires memory
space and operations.

Identification algorithms require the sample mean and its
variance as input quantities to provide parametric models on
the signal or system [3]. The calculation of these quantities is
usually performed as follows.
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• The frequency value is estimated by solving the nonlinear
LS problem.

• The data record is segmented intoseparate (or only
slightly overlapping) parts. The segments usually contain
a full number of periods. If it is possible, should be at
least four [3].

• The linear LS problem is solved for each segment, thus
providing sets of Fourier coefficients.

• The sample mean is calculated by taking the mean value of
the Fourier-coefficients over the sets, after appropriate
phase reconstruction.

• The sample variance is the variance of thedifferent
(phase-reconstructed) representations. The variance of
the sample mean is calculated as times the sample
variance.

III. RESONATOR-BASED NLS ALGORITHM

A model-based structure was proposed in [2] for recursive
discrete transforms, which was proven especially suitable for
calculating the discrete Fourier transformation. The structure is
nothing but an observer containing an embedded model of the
signal to be measured, as shown in Fig. 1. If the signal model
is the same as in (1), then the corresponding resonator-based
structure has the following parameters

(3)
and contains the Fourier coefficients for theth harmonic
( ). The coefficients can be used to set the pole
placement of the structure. For a dead-beat observer, the param-
eters can be calculated as follows

(4)

With these settings, the outputs of the system contain the
Fourier coefficients of the segment

after the initial transient of samples.
Notes

• The resonator bank structure is able to compute the Fourier
coefficients of the input signal in a sliding window manner
(i.e., the new result is available at every time instant).

• The computation is synchronized to the fundamental fre-
quency ; so, leakage and picket fence effects can be
avoided without synchronizing the sampling frequency.

• The computational complexity is operation per
sample, or operations for a block of length .

• The memory requirement of the algorithm is for
the calculations, or for a record of length if the
input must also be stored.

Using the resonator-based structure, a new algorithm has been
constructed to solve the nonlinear least-squares problem for pe-
riodic signal parameter estimation. In the proposed method, the
resonator bank structure is used to solve the linear LS problem
(in Part 1, is supposed to be known), with the settings (3)–(4).
The iterative Part 2 (upgrade of the frequency estimator) would

Fig. 1. Resonator-based observer.

require in order to use a gradient method. Unfortu-
nately, the derivative in this framework is not known, so another
pseudo-gradient search must be used. The main features of the
proposed search method are the following

• It is supposed that the error surface is a parabola (note that
the same assumption is made using the Gauss-Newton
method). This approximation is good if the frequency
estimate is close to the true value (see the example in
Section IV).

• Unlike in conventional gradient search methods, it is not
the gradient value in one point that is used to find the
bottom of the error surface, but rather a parabola is fitted
to three different points to estimate the minimum point.

If the frequency estimate is close to the true value, the behavior
of the proposed solution is very similar to that of the Gauss-
Newton method. The reason is that both algorithms use the same
model (quadratic error surface) built-in the search method. The
only disadvantage of the newly proposed method is that three
frequency points must initially be supplied to the algorithm,
each of them sufficiently close to the true value, instead of one
(see Figs. 2 and 3). The proposed algorithm works as follows.

Part 1 (The Linear LS Solution):

L1 Determine and the signal model (3) from the
frequency estimate . Note that if the number of
frequency lines is not knowna priori, is the total
possible number of frequencies (i.e., , where

is the sampling frequency).
L2 Calculate the values using the current frequency

estimate , according to (4).
L3 Run the resonator bank for the whole record of length

, using the appropriate signal model (3).
L4 Calculate the sample mean (see below).
L5 Compute the least-squares error according to (2).
Part 2 (NLS Iteration):

N1 An initial frequency value is selected together with two
neighboring points.

N2 For all three frequency estimates calculate the linear
LS solution (Part 1).

N3 A parabola is fitted to the three points in the fre-
quency—LS error space and a new frequency estimate
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Fig. 2. The minimum search procedure. a) The error surface with three
measurement points, the lowest being the current estimate of the minimum;
b) the fitted parabola with its minimum; c) the new measurement points, the
lowest is the updated estimator.

Fig. 3. Error surface versus the estimate of the fundamental frequency. The
true value isf = 105 Hz.

is calculated where the parabola is minimal. The
frequency value farthest from the new frequency is
replaced by the new frequency at the minimum (see
Fig. 2).

N4 The linear LS solution (Part 1) is calculated for the
new point, providing a new set of three points in the
frequency—LS error space.

N5 Steps N3-N4 are repeated until the improvement is
below a limit.

N6 Calculate the sample variance (see below).
The calculation of the sample mean is quite straightforward (the
calculated Fourier coefficients are in-phase, so no further phase
reconstruction is required) and can be made in two different
ways.

If the record contains several periods, then the conventional
block-wise calculation can be used. If there areblocks of
length ( ), then the sample mean of a
Fourier coefficient is

(5)

and the sample variance is calculated by

(6)

from which the sample variance of the sample mean can be cal-
culated as follows:

(7)

If the record is short and no separate segments can be con-
structed (but the record contains at least samples, which
means at least one full period if all the possible harmonics are

used), then all of the estimates, which are available at
each time instant, can be used to calculate the sample mean and
the sample variance

(8)

(9)

Because of the strong correlation of the samples used in the
calculations, the variance of the sample mean would be biased if
(7) was used. Based on the results described in the Appendix, the
variance of the sample mean can be calculated using (A8) with
the substitution . This estimate is unbiased for white
noise disturbances. For colored noise disturbances simulations
show that the bias in the variance estimate is present, but the
compensation still provides acceptable results.

IV. SIMULATION RESULTS

In this section, the operation and performance of the proposed
algorithm are illustrated through simulation examples.

Error Surface: Fig. 3 illustrates the error surface (2) as a
function of the frequency estimator. In the example a multi-
sine was used with 40 harmonics, with uniform amplitudes. The
fundamental and the sampling frequencies were Hz
and kHz. The LS solution was calculated for different
values of the frequency estimator, as shown on the plot. The
inset illustrates that the shape of the error surface is close to a
parabola in case the estimate is close to the true value. The figure
also illustrates the necessity of a good starting value; otherwise,
the iteration may end in a local minimum.

The following simulations illustrate the behavior of the pro-
posed algorithm and compare it to the matrix-based method [1].
In all the simulations, the iteration was finished when the rela-
tive residual error was below 110 (see the exit criterion in step
N5 for the resonator-based case). The number of harmonics was
close to the maximum ( ).

Example 1: In this simulation, the frequency estimators and
the residual errors of the two algorithms are compared. The
fundamental frequency of the input signal Hz, the
sampling frequency kHz, and the number of harmonics

. All of the spectral components have equal amplitudes
( , random phase) and the variance of the additive
noise is . The number of points in the record varied
from (1.15 periods) to (10.5 periods).
Table I shows the estimators of the fundamental frequency and
the residual errors for the matrix-based algorithm [1] and for
the proposed resonator-based method. It is clearly visible that
the two algorithms gave very similar results. The difference
is due to the fact that the resonator-based method uses the
sample mean values as amplitude estimators, instead of the
true LS solution.

Example 2: The convergence rates of the two algorithms are
compared in Fig. 4, where the frequency error is shown as a
function of the iteration steps. The test signal was similar to that
of Example 1, but now it contained 10 000 samples. The initial
frequency estimator was 105.1 Hz for the matrix-based method
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TABLE I
FREQUENCY ESTIMATES AND RESIDUAL ERRORS OF THETWO

NLS ALGORITHMS

and 105.1 Hz with two additional points at 105.10.01 Hz for
the resonator-based algorithm. The behaviors of the algorithms
again were quite similar.

Example 3: The computational complexity of the two
algorithms is compared in Table II, where the numbers of
floating-point operations (flops in Matlab) are shown for one
iteration step, using different input data. The results illustrate
the complexity of the algorithms: the matrix-based method re-
quires operations while the resonator-based method
only . The evaluation times are also shown (Matlab,
Pentium III with 256 Mbyte memory). It is clearly visible that
the built-in matrix calculations provide faster execution for the
matrix-based algorithm for smaller data sizes, although the
number of calculations is higher.

Notes

• The results shown in Table II apply to one iteration step.
The necessary number of iterations usually varies between
3–15, depending on the input signal and the initial fre-
quency estimations. For the same initial conditions, the
numbers of iterations of the algorithms are usually close
to each other.

• The resonator-based algorithm does not require the imple-
mentation of any matrix-based calculations. This makes it
extremely easy-to-implement on a low-level (DSP, or pro-
grammable logic arrays).

• If the number of harmonics is knowna priori and it is
much lower than the possible number of harmonics, then
the matrix-based method can spare calculations (is the
number of the harmonics actually present). In the case of
the resonator-based method, it is also possible, but from a
numerical point of view it is more advisable, to use almost
equally distributed resonators, i.e., to use all the possible
harmonics ( ).

Example 4: In these simulations, the variance estimators are
illustrated for white and colored disturbances. For white addi-
tive noise with variance , Fig. 5 shows the variance
estimators of the sample mean calculated by the resonator-based
algorithm, using the two different calculation methods (7) and
(A8), for different numbers of periods present in the record. The
results gained from the block-wise and the sample-wise calcu-
lation methods are very similar and they are close to the true
value, too.

When the noise is colored, the sample-wise estimator is bi-
ased, as illustrated in Fig. 6. In case of multiple periods, the
estimates (both the block-wise and the sample-wise) are close
to the true value, while for short data records (1.2 periods in the

Fig. 4. Convergence of frequency estimator of two NLS algorithms.+:
resonator-based;�: matrix-based method.

TABLE II
COMPUTATIONAL LOAD PERITERATION OF THE TWONLS ALGORITHMS

Fig. 5. Variance of the sample mean, calculated by the sample-wise (thick
lines) and the block-wise (thin lines with dots) methods. Solid thin lines show
the theoretical values (white noise).

Fig. 6. Biased variance of the sample mean, calculated by the sample-wise
(thick lines) and the block-wise (thin lines with dots) methods. Solid thin lines
show the shape of the colored noise.

example), the sample-wise estimator has a large bias. However,
the estimate still provides information on the shape of the noise.
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Note that the variance estimators together with the sample
mean can be used to determine the frequency components
present in the signal, as described in [4].

V. CONCLUSION

A new solution was proposed to solve the nonlinear least
squares problem for periodic signal estimation. The proposed
algorithm uses recursive model-based computation techniques,
which enable the reduction of both the computational cost and
the memory requirements of the algorithm. The structure of the
algorithm makes it especially suitable for low-level (hardware
or DSP) implementation.

The proposed new calculation method has the following prop-
erties compared to the conventional (matrix-based) calculation:

• The new algorithm requires only operations and
storage space, in contrast with the oper-

ations and memory requirement of the conven-
tional method, where is the length of the data record
and is the number of frequency lines.

• For long data records the sample mean and variance es-
timates are the same as in the conventional approach, but
no segmentation, synchronization, and re-estimation are
required.

• For short data records, when the sample variance estima-
tion is not possible using the conventional block-approach,
the new algorithm still gives good estimates for the sample
variance. For white noise, the estimate is unbiased. In case
of colored noise the estimator has bias, but follows the
noise shape, according to simulations.

APPENDIX

VARIANCE OF THE SAMPLE MEAN

For sake of simplicity, the calculations are made for the dc
component , but for all the spectral components , the cal-
culation can be similarly carried out by inserting the appropriate
phase components.

Let’s denote the estimate of spectral component at time in-
stant by

(A1)

where is the noisy observed input. The
noise is white with zero mean and variance . If

, then the variance and cross-correla-
tion terms of the noise spectrum are the following:

(A2)

if
if

(A3)

where denotes the expected value operator. The sample
variance of can be computed as follows.

(A4)

Using (A2) and (A3), the expected value of can be cal-
culated [see (A5) at the bottom of the page], where

if
if
if

(A6)
The variance of the sample mean is

var

(A7)

The estimate of the variance of the sample mean can be ex-
pressed from (A5) and (A7) [see (A8) at the top of the next
page]. (A8) will be an unbiased estimator in case of white noise
disturbances.

(A5)
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(A8)
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