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An Efficient Nonlinear Least Square Multisine
Fitting Algorithm

Gyula Simon, Rik Pintelon, Laszl6 SujbeMember, IEEEand Johan Schoukens

Abstract—This paper presents a new nonlinear least-squares tuned resonator-based filter bank [2]. The proposed method re-
algorithm for fitting band-limited periodic signals with unknown quiresO(M N) operations and)(N) storage space. The low
frequency and harmonic content. The new solution features \namaory requirements and the recursive nature of the computa-

a model-based recursive calculation method that requires less fi ke the hard imol tati | iol
memory space and has smaller computational demand than the lon make the haraware iImplementation aiso possible.

known matrix-based algorithms.

L Il. NONLINEAR LEAST-SQUARESALGORITHM
Index Terms—teast squares methods, parameter estimation, =

periodic functions, recursive estimation, resonator filters. The classical parameter estimation problem of periodic sig-
nals with unknown frequency and amplitude content can be for-

| INTRODUCTION mulated as follows

. e fmik=0,1,...,N—1)
nals is a very common problem and the solution is also

very well known for several typical scenarios. If the signal’s " (2)
frequency is knowra priori and the record contains a wholewheres(k) is the estimate of the discrete-time periodic signal
number of periods, then the solution can be computed by the (k) at time instant:. The angular frequency is, and 4,,
fast Fourier transformation (FFT). If the generator and the aig-the complex amplitude of theth harmonic. The frequency
quisition device are not synchronized, then a linear least-squaggsand the harmonics amplitudes,, are to be estimated in
(LS) problem must be solved to gain the unknown amplitudeast-squares sense so that the squared error

values; in this case, the computational load is higher than in the N1 N1

synchronized case. If the signal frequency is not known either, 2 2 2

then a much more complicated nonlinear least-squares (NLS) B = Z e(k)” = Z (5m (k) = 5(k)) 2)
problem must be solved. In typical cases, when the record con-

tains only a reasonable number of points and frequency lined¥gninimal. A well-formed solution was presented in [1]; the
be estimated (up to a few thousand data points and a few hundi@in features of the nonlinear least squares algorithm (NLS)
frequencies), the problem can be solved using the methods avai briefly described here.

able in the literature [1]. Based upon this method, the solution Theoretically, the iterative solution of the NLS problem can
of the NLS problem requires roughy(M N?) operations and be divided into two main parts. Part 1 is a solution of a linear
O(M N storage space, whefe represents the number of harLS problem with a fixed frequency value; then, in Part 2, a
monics to be estimated, ad is the length of the time record. New frequency estimate is calculated using a Gauss-Newton
If the number of samples and/or the harmonics to be estimaf@@dient-search procedure. Then, Parts 1 and 2 are repeated
exceeds a certain limit, these methods cannot be used in conv#Hil no improvement is achieved any more. The algorithm
tional computers any more because of the slowdown of theseR{loposed in [1] performs the iterative steps without the explicit
gorithms and, especially, of the extreme memory requiremerﬁg_lculation of the linear LS solution (Part 1 is hidden in Part 2),

This paper presents a new model-based so'ution’ which usébl@ pI’OViding numerica”y stable and fast calculation. Since the
derivatived E? / w, can be calculated (see [1]), a Gauss-Newton

procedure is used to find the minimum versus the fundamental
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» The frequency value is estimated by solving the nonlinear
LS problem.

» The data record is segmented inBbseparate (or only
slightly overlapping) parts. The segments usually contain
a full number of periods. If it is possiblé? should be at
least four [3].

» The linear LS problem is solved for each segment, thus -1
providing B sets of Fourier coefficients. s(k)

» The sample mean is calculated by taking the mean value of
the Fourier-coefficients over th@ sets, after appropriate
phase reconstruction.

» The sample variance is the variance of tBedifferent
(phase-reconstructed) representations. The variance of
the sample mean is calculated BB times the sample
variance.

1-z7"

Fig. 1. Resonator-based observer.

[ll. RESONATORBASED NLS ALGORITHM

A model-based structure was proposed in [2] for recursi&@qu'reaEz/a‘f’O in order to use a gradient method. Unfortu-
discrete transforms, which was proven especially suitable faftely: the derivative in this framework is not known, so another
calculating the discrete Fourier transformation. The structurel§eudo-gradient search must be used. The main features of the
nothing but an observer containing an embedded model of fH@POsed search method are the following
signal to be measured, as shown in Fig. 1. If the signal model * Itis supposed that the error surface is a parabola (note that
is the same as in (1), then the corresponding resonator-based the same assumption is made using the Gauss-Newton

structure has the following parameters method). This approximation is good if the frequency
estimate is close to the true value (see the example in

em (k) = edwomk Y MM Sec_tion V). _ _ N
G (k) = rpye=iwomk m=-M,....0,...,M,Mwo <m * Unlike in conventional gradient search methods, it is not
3) the gradient value in one point that is used to find the

andA,, contains the Fourier coefficients for theth harmonic bottom of the error surface, but rather a parabola is fitted
(A,, = A%, ). The coefficients-,, can be used to set the pole to three different points to estimate the minimum point.
placement of the structure. For a dead-beat observer, the parifrthe frequency estimate is close to the true value, the behavior
eters can be calculated as follows of the proposed solution is very similar to that of the Gauss-
Newton method. The reason is that both algorithms use the same
model (quadratic error surface) built-in the search method. The
only disadvantage of the newly proposed method is that three

1 L
= y ,zi = el (4)
H{'\i—l\l (1 — Z,Zm)

T'm

i#m

frequency points must initially be supplied to the algorithm,

With these settings, the,,, (k) outputs of the system contain theeach of them sufficiently close to the true value, instead of one

Fourier coefficients of the segmeptk — 2M — 1), ..., s(k —

2), s(k — 1)] after the initial transient a2\ + 1 samples.
Notes L1

» Theresonator bank structure is able to compute the Fourier
coefficients of the input signal in a sliding window manner
(i.e., the new result is available at every time instant).

» The computation is synchronized to the fundamental fre-
quencywy; So, leakage and picket fence effects can be L2
avoided without synchronizing the sampling frequency.

» The computational complexity i€ (M) operation per L3
sample, 0lO(M N) operations for a block of length .

« The memory requirement of the algorithmd¥ M) for L4
the calculations, 0O (N) for a record of lengthV if the L5
input must also be stored.

Using the resonator-based structure, a new algorithm has beeN1
constructed to solve the nonlinear least-squares problem for pe-
riodic signal parameter estimation. In the proposed method, theN2
resonator bank structure is used to solve the linear LS problem
(in Part 1wy is supposed to be known), with the settings (3)—(4). N3
The iterative Part 2 (upgrade of the frequency estimator) would

(see Figs. 2 and 3). The proposed algorithm works as follows.
Part 1 (The Linear LS Solution):

Determine M and the signal model (3) from the
frequency estimatey,. Note that if the number of
frequency lines is not knowa priori, M is the total
possible number of frequencies (i.pr fs/wo], where
fs is the sampling frequency).

Calculate the values,, using the current frequency
estimatavg, according to (4).

Run the resonator bank for the whole record of length
N, using the appropriate signal model (3).
Calculate the sample mean (see below).

Compute the least-squares error according to (2).

Part 2 (NLS lIteration):

Aninitial frequency value is selected together with two
neighboring points.

For all three frequency estimates calculate the linear
LS solution (Part 1).

A parabola is fitted to the three points in the fre-
guency—LS error space and a new frequency estimate
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used), then all of thel,,, (k) estimates, which are available at
each time instant, can be used to calculate the sample mean and
the sample variance

N-1
- 1
Fig. 2. The minimum search procedure. a) The error surface with three Am :N A Am<k)7 (8)
measurement points, the lowest being the current estimate of the minimum; T Y k=L
b) the fitted parabola with its minimum; c) the new measurement points, the N—1
lowest is the updated estimator. 1

6% (Aw) == =7 2 1A — AR (9
x 103 k=L

Because of the strong correlation of the samples used in the
calculations, the variance of the sample mean would be biased if
(7) was used. Based on the results described in the Appendix, the
variance of the sample mean can be calculated using (A8) with
the substitutiod = N — L. This estimate is unbiased for white
noise disturbances. For colored noise disturbances simulations
show that the bias in the variance estimate is present, but the
compensation still provides acceptable results.

0
1045 105 1055,
9 100 105 f 110 115 120

IV. SIMULATION RESULTS

In this section, the operation and performance of the proposed
Fig. 3. Error surface versus the estimate of the fundamental frequency. Tlgorithm are illustrated through simulation examples.
true value isfo = 105 Hz. Error Surface: Fig. 3 illustrates the error surface (2) as a
function of the frequency estimator. In the example a multi-
is calculated where the parabola is minimal. Thgine was used with 40 harmonics, with uniform amplitudes. The
frequency value farthest from the new frequency igindamental and the sampling frequencies wgre= 100 Hz
replaced by the new frequency at the minimum (seghd f, = 10 kHz. The LS solution was calculated for different
Fig. 2). values of the frequency estimator, as shown on the plot. The
N4  The linear LS solution (Part 1) is calculated for thénset illustrates that the shape of the error surface is close to a
new point, providing a new set of three points in thgarabola in case the estimate is close to the true value. The figure

frequency—LS error space. also illustrates the necessity of a good starting value; otherwise,
N5 Steps N3-N4 are repeated until the improvement {Re iteration may end in a local minimum.

below a limit. . The following simulations illustrate the behavior of the pro-
N6 Calculate the sample variance (see below). posed algorithm and compare it to the matrix-based method [1].

The calculation of the sample mean is quite straightforward (theall the simulations, the iteration was finished when the rela-
calculated Fourier coefficients are in-phase, so no further phaise residual error was below-1.0° (see the exit criterion in step
reconstruction is required) and can be made in two differeNs for the resonator-based case). The number of harmonics was
ways. close to the maximumf(/2fo).

If the record contains several periods, then the conventionaExample 1: In this simulation, the frequency estimators and
block-wise calculation can be used. If there &eblocks of the residual errors of the two algorithms are compared. The
lengthL = 2M + 1 (N = BL), then the sample mean of afundamental frequency of the input signf = 105 Hz, the

Fourier coefficient4,,, is sampling frequency; = 10 kHz, and the number of harmonics
B M = 45. All of the spectral components have equal amplitudes
A, = 1 ZAW (Lb) (5) (lAm| =1, random phase) and the variance of the additive

B~ noise iso? = 10~2. The number of points in the record varied

from N = 110 (1.15 periods) toN = 1000 (10.5 periods).
Table | shows the estimators of the fundamental frequency and
1 B ) the residual errors for the matrix-based algorithm [1] and for
5% (An) = 51 Z | A — A (LD)| (6) the proposed resonator-based method. It is clearly visible that
T b= the two algorithms gave very similar results. The difference
from which the sample variance of the sample mean can be d§-dué to the fact that the resonator-based method uses the
culated as follows: sample mean values as amplitude estimators, instead of the
true LS solution.
52 (Am) - l(32 (A). 7 Example 2: The convergence rates of the two algorithms are
B compared in Fig. 4, where the frequency error is shown as a
If the record is short and no separate segments can be clomction of the iteration steps. The test signal was similar to that
structed (but the record contains at ledgt samples, which of Example 1, but now it contained 10 000 samples. The initial
means at least one full period if all the possible harmonics drequency estimator was 105.1 Hz for the matrix-based method

and the sample variance is calculated by
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TABLE | 3
FREQUENCY ESTIMATES AND RESIDUAL ERRORS OF THETWO
NLS ALGORITHMS -2
10
Matrix-based [1] Resonator-based
N j 0 E? j 0 E? >
<
110 104.984 571 104.986 574 10*
200 104.991 1150 104.993 1153
500 104.998 2872 104.998 2876
1000 105.001 6021 105.001 6028
10° S—
0 5 10 iterations

and 105.1 Hz with two additional points at 10&D.01 Hz for _ _
the resonator-based algorithm. The behaviors of the algorithfig 4- Convergence of frequency estimator of two NLS algorithps.
. . L resonator-baseds : matrix-based method.
again were quite similar.
Example 3:The computational complexity of the two TABLE I
algorithms is compared in Table I, where the numbers of coupurarionaL Loap PERITERATION OF THE TWONLS ALGORITHMS
floating-point operations (flops in Matlab) are shown for one Y P — = P
iteration step, using different input data. The results illustrate — v q atrix-based [1] csonator-base
. . . . ops Time flops Time
the complexity of the algorithms: the matrix-based method re- 55050 | 5.0.107 0.65 44.100 14s
quiresO(N M?) operations while the resonator-based method 7000 | 50 | 2.5.10° 4.5s 2.2:10’ 5.3s

only O(NM). The evaluation times are also shown (Matlab, 1000 | 100 | 9.7-10 17s 4.4-10 8.3s
Pentium Il with 256 Mbyte memory). It is clearly visible that 1000 | 400 | 1.7-10" | 4.7min | 1.7-10° | 1.0min
the built-in matrix calculations provide faster execution for the ~ 5000 | 400 | 8.1-10' | 26.7min | 8.7-10° | 2.7min
matrix-based algorithm for smaller data sizes, although the 3000 | 2000 out of memory 4.5-10° | 26min
number of calculations is higher.

Notes var 4,

» The results shown in Table Il apply to one iteration step. 107 —_\v\/\//\/\

The necessary number of iterations usually varies between N 1.2 periods \

3-15, depending on the input signal and the initial fre-
guency estimations. For the same initial conditions, the 5
numbers of iterations of the algorithms are usually close
to each other.

» The resonator-based algorithm does not require the imple- 100.5 periods
mentation of any matrix-based calculations. This makes it 10° | iAot A et g
extremely easy-to-implement on a low-level (DSP, or pro-
grammable logic arrays). 0 10 20 30 40

* If the number of harmonics is knowa priori and it is _ _ _
much lower than the possible number of harmonics, thEY. . verance o the same mean, catlated by e sampleie (e
the matrix-based method can spare calculatidis the  the theoretical values (white noise).
number of the harmonics actually present). In the case of
the resonator-based method, it is also possible, but from a vard,
numerical point of view it is more advisable, to use almost 4
equally distributed resonators, i.e., to use all the possible

harmonics 1 = fs/2fo).

Example 4: In these simulations, the variance estimators are 10
illustrated for white and colored disturbances. For white addi-
tive noise with variance? = 1072, Fig. 5 shows the variance
estimators of the sample mean calculated by the resonator-based 8

10.5 period

1.2 periods

algorithm, using the two different calculation methods (7) and 0 _

(A8), for different numbers of periods present in the record. The 10.5 periods

results gained from the block-wise and the sample-wise calcu- 0 10 20 30 40

lation methods are very similar and they are close to the true _ _ _
value, t0o. Fig. 6. Biased variance of the sample mean, calculated by the sample-wise

(thick lines) and the block-wise (thin lines with dots) methods. Solid thin lines
When the noise is colored, the sample-wise estimator is Bhow the shape of the colored noise.

ased, as illustrated in Fig. 6. In case of multiple periods, the
estimates (both the block-wise and the sample-wise) are clesample), the sample-wise estimator has a large bias. However,
to the true value, while for short data records (1.2 periods in tkiee estimate still provides information on the shape of the noise.
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Note that the variance estimators together with the sampig®! = 1/L 2" = ¢(i), then the variance and cross-correla-
mean can be used to determine the frequency componeida terms of the noise spectrum are the following:
present in the signal, as described in [4].

K]\ 2 1 . ’ Lo?
V. CONCLUSION E{(E([J ]) } = (f z; (i) e
A new solution was proposed to solve the nonlinear least (A2)
squares problem for periodic signal estimation. The proposed ki+L—1
algorithm uses recursive model-based computation techniques E([)kl]) (E(Ekz])} =E { <l > e(i))
which enable the reduction of both the computational cost and L i—k1
the memory requirements of the algorithm. The structure of the | ket
algorithm makes it especially suitable for low-level (hardware <— Z e(i)) }
or DSP) implementation. L

i=ks

The proposed new calculation method has the following prop- (L=|k1—ks)o” i by — ko| < L
erties compared to the conventional (matrix-based) calculation: = { 0 L2 if Iki _ k; ST
» The new algorithm requires onl§(M N') operations and _(A3)

O(N) storage space, in contrast with th¢ N M?) oper-

ations andO(N M) memory requirement of the convenyyhere £{.} denotes the expected value operator. The sample
tional method, whereV is the length of the data record, 5riance ofA, can be computed as follows.

and M is the number of frequency lines.

 For long data records the sample mean and variance es- 2

K

K
timates are the same as in the conventional approach, but 52 (Ap) __ 1 Z Ag“] 1 Z Ag“]
no segmentation, synchronization, and re-estimation are K-14~ K kel
required. X X 2
* For short data records, when the sample variance estima- __ 1 B 1 Z Elkl (A4)
tion is not possible using the conventional block-approach, K-14~ K el 0

the new algorithm still gives good estimates for the sample

variance. For white noise, the estimate is unbiased. In cagging (A2) and (A3), the expected valuedt(A4,) can be cal-

of colored noise the estimator has bias, but follows thg)|ated [see (A5) at the bottom of the page], where
noise shape, according to simulations.

k if 1 <k <min(L, K)
APPENDIX fe ={ min(L,K) if min(L,K) < k < max(L, K)
VARIANCE OF THE SAMPLE MEAN L+K—-k ifmax(L,K)<k<K+L- 1(A6)
For sake of simplicity, the calculations are made for the dc The variance of the sample mean is
componentd,, but for all the spectral componemts,, the cal-
culation can be similarly carried out by inserting the appropriate | X 2
phase components. o varAd, :E{(AO -E {AO})2} =F Ve ZE[[)'“]
Let's denote the estimate of spectral component at time in- k=1
stantk + L — 1 by 9 K+L-1
g
=3 > (A7)
] 1 k+L—-1 k=1
AP = Ag(k+L-1)== s(i Al
0 of ) L ; (0 (A1) The estimate of the variance of the sample mean can be ex-

pressed from (A5) and (A7) [see (A8) at the top of the next
wheres(i) = §(i) + e(4) is the noisy observed input. Thepage]. (A8) will be an unbiased estimator in case of white noise
noise e(i) is white with zero mean and varianc€?. If disturbances.

2 min(K,L)
) o2 KL 1 Koo g M ‘ 2L
E{6*(A)} = | 72 + <ZE([)] - =7 > (K —i)(L—i) = 75
k=1 1=1
2 K+L-1 min(K,L)

:m KL=2L+ 4 ; fi— % (K —i)(L — 1) (A5)

i=1
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K+L-1

A2 (T a2 (K-1) 2 1
o (AU) =0 (AO) K2 Z Ji ) K+L-1 A min(K,L) (A8)
B=L KL-2D+% Y fi-4 (K —i)(L —1i)
K = kT K =
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