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Abstract – In this paper, a scaling method is proposed 

and studied for the maximum likelihood sine fitting 

algorithm. It is shown that similarly to the case of least 

squares fitting, this method can significantly improve 

the conditioning of the investigated algorithm. The 

maximum error in the solution of a linear system of 

equations strongly depends on the condition number of 

the coefficient matrix. Namely, the condition number of 

the coefficient matrix upper bounds the relative error 

of the solution. It is shown that the condition number 

of the maximum likelihood fitting is connected to the 

Hessian matrix. Thus, this matrix is analyzed to find 

general properties increasing the condition number. It 

is pointed out that the scaling factor applied for the 

least squares fitting also decreases the conditioning of 

the Hessian matrix significantly. By this means, the 

numerical stability of the maximum likelihood fitting is 

improved. Theoretical results are verified through 

simulations. 
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 I. INTRODUCTION 

Estimation of the parameters of a sine wave is a common 

task in measurement technology: the problem arises in 

analog-to-digital converter (ADC) testing, harmonic 

analysis of power networks, system identification and in 

many other fields of electrical engineering.  

 

Literature provides several algorithms to solve this 

problem. They differ in complexity, precision, accuracy 

and computational demand. One of the most commonly 

used methods is the time domain least squares (LS) fitting, 

defined in IEEE Standard 1241 [1]. In this algorithm, the 

parameters are adjusted so that the sum of squared 

differences between the fitted and measured sine waves is 

minimal. The method implicitly assumes uniform and 

ideal quantization. Once the sine is measured on a real 

ADC with non-zero integral nonlinearity (INL), results are 

getting distorted. A much more complex method is the 

maximum likelihood (ML) fitting [4] which can handle the 

above problem. In the ML algorithm, besides sine 

parameters, the standard deviation of the noise and 

transition levels of the ADC are also estimated. The most 

important advantages of the ML method are asymptotical 

unbiasedness and minimum variance among the estimation 

methods (which holds true even for non-ideal 

quantization).  

 

A common point of LS and ML methods is their possible 

numerical instability: both algorithms require matrix 

inversion calculations which can be challenging for large 

number of samples and columns of largely different 

magnitudes.  

 

The condition number (CN) is a good measure of stability. 

It is defined as the ratio of the largest and smallest singular 

values of a matrix [2]. Solving linear systems of equations 

with ill-conditioned coefficient matrices are likely to result 

in significant errors even with 64-bit double precision 

number representation, and might prevent the precise 

estimation of the sine parameters. In this paper, a scaling 

method is presented in order to handle the problem of ill-

conditioning.  

 II. BACKGROUND AND NOTATION 

A sine wave can be characterized by the following 

description: 

 

𝑦𝑘 = 𝑅 ∙ cos(2𝜋𝑓𝑡𝑘 + 𝜙) + 𝐶, (1) 

 

where 𝑦𝑘 is the kth sample in the fitted sine wave, 𝑅, 𝜙 and 

C are the amplitude, initial phase and offset components, 

respectively, and 𝑓 denotes the frequency of the signal. 

However, this model is not advantageous in optimization 

problems. Namely, it is nonlinear in two parameters (𝑓, 𝜙). 

Fortunately, the initial phase can be eliminated by using 

the following form: 

 

𝑦𝑘 = 𝐴 ∙ cos(2𝜋𝑓𝑡𝑘) + 𝐵 ∙ sin(2𝜋𝑓𝑡𝑘) + 𝐶, (2) 

 

where A and B are the cosinusoidal and sinusoidal 

components of the signal, respectively. The description 

can be given in another way, assuming that the sampling 



is equidistant, that is: 

 

 𝑡𝑘 =
𝑘

𝑓𝑠
  , (3) 

 

where 𝑓𝑠 denotes the sampling frequency. In this case: 

 

 

𝑦𝑘 = 𝐴 ∙ cos(𝑘𝜗) + 𝐵 ∙ sin(𝑘𝜗) + C 

𝜗 = 2𝜋
𝑓

𝑓𝑠
 

(4) 

 

where 𝜗 is the (to the sampling frequency) relative angular 

frequency. 

 

To fit a sine wave, a fitting criterion is needed. In [1], a 

time domain least squares (LS) fitting is prescribed. For 

this fitting, a parameter set is searched that minimizes the 

squared differences between the fitted and sampled sine 

waves. The cost function (CF) of this fitting is: 

 

 CFLS =∑(𝑥𝑘 − 𝑦𝑘)
2

𝑁

𝑘=1

 (5) 

 

where N denotes the number of samples and 𝑥𝑘 is the kth 

element in the sampled record. 

 

If the frequency of the signal is known, a three-parameter 

fitting is needed. Otherwise, the frequency has to be 

estimated, as well. This turns the problem into non-linear, 

implying that an iterative optimization is required. A 

general and commonly used method in this case is the 

Gauss-Newton method, which is proposed in [1] (with 

minor modifications). The least squares solution in the ith 

step is calculated in the following form: 

 

𝐩 = (

𝐴
𝐵
𝐶
Δ𝜗𝑖

)  , 

𝐃𝑖𝐩𝑖 = 𝒚  , 

𝐩𝑖 = (𝐃𝑖
𝐓𝐃𝑖)

−1
𝐃𝑖
𝐓𝒚  . 

 

(6) 

where p denotes the parameter vector to be estimated and 

𝐩𝑖 is the estimator in the ith iteration. In the above 

equation, 𝐃𝑖 is the coefficient matrix of the least-squares 

equation:  

 

𝐃𝑖 = (

cos𝜗    sin 𝜗 1 𝐷𝑖,14
cos 2𝜗    sin 2𝜗 1 𝐷𝑖,24 

⋮ ⋮ ⋮ ⋮
cos𝑁𝜗    sin𝑁𝜗 1 𝐷𝑖,𝑁4 

 ) (7) 

𝐷𝑖,𝑘4 = 2𝜋𝑘(−𝐴𝑖−1 𝑠𝑖𝑛 𝑘𝜗 + 𝐵𝑖−1 𝑐𝑜𝑠 𝑘𝜗) 
 

The LS solution of the fitting can be obtained by 

calculating the Moore-Penrose pseudo inverse of 𝐃𝑖. The 

simplest calculation method is:  

 

 𝐃𝑖
+ = (𝐃𝑖

𝐓𝐃𝑖)
−1
𝐃𝑖
𝐓 (8) 

 

where 𝐃𝑖
+ denotes the pseudo inverse of 𝐃𝑖. However, 

from a numerical point of view, this evaluation is 

advantageous only if the CN of 𝐃𝑖 is small. Namely, the 

larger the CN, the higher the sensitivity of the solution of 

the system of equations to small perturbations [2]. The CN 

of 𝐃𝑖
𝐓𝐃𝑖 equals to the square of the CN of 𝐃𝑖. Thus, 

evaluating the pseudo inverse of an ill-conditioned 𝐃𝑖 
according to (8) increases numerical instability. To avoid 

this problem, decomposition methods, like QR-

decomposition or singular value decomposition (SVD) can 

be applied [2]. Nevertheless, decomposition methods only 

prevent the CN from being squared. Ill-conditioned 

problems remain ill-conditioned even if these methods are 

used. Thus, it is reasonable to investigate how the CN can 

be decreased. 

 

In order to determine the CN of the LS problem, 𝐃𝑖
𝐓𝐃𝑖 was 

investigated in [3] and [7]. It was pointed out that the 

following approximation holds: 

 

 𝐃𝑖
𝐓𝐃𝑖 ≈

(
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 (9) 

 

In the ML method, the signal is assumed to be quantized 

by a (non-ideal) quantizer: 

 

 𝑥𝑘 = 𝑄(𝑦𝑘 + 𝜉𝑘)        𝑛 = 1…𝑁 (10) 

 

where 𝑄(∙) denotes the operation of quantization, and 𝜉𝑛 

is the additive noise that is mostly assumed to be of 

Gaussian distribution with zero-mean and standard 

deviation 𝜎. In the ML estimation, a parameter set is 

searched that maximizes the probability of observing the 

sampled data set. Since a noise model is also added, the 

standard deviation of the additive noise is to be estimated, 

as well. The main advantage of the ML method is that the 

non-ideality of the quantizer is taken into account during 

the calculation of sine parameters. Thus, the estimation is 

(asymptotically) unbiased independently from the 

quantizer characteristics.  

 

The probability that the kth sample is in code bin 𝑙 equals 



to [5]: 

 

𝑃(𝑋𝑘 = 𝑙) =
1

2
[erf (

𝑇𝑙 − 𝑦𝑘

𝜎√2
)

− erf (
𝑇𝑙−1 − 𝑦𝑘

𝜎√2
)], 

(11) 

 

where 𝑇𝑙  is the 𝑙th transition level. The CF of the ML 

estimation is [5]: 

 

 CFML = −∑ 𝑙𝑛[P(𝑋𝑘 = 𝑥𝑘)]

𝑁

𝑛=1

  . (12) 

 

The negative sign is needed in order to turn the probability 

maximization problem into a minimization problem. The 

CF can be effectively minimized by the Levenberg-

Marquardt algorithm [9]. This method is implemented in 

the ADC toolbox [6]. In the Levenberg-Marquardt 

algorithm, the fine tuning of the parameters can be 

determined by: 

 

 Δ𝐩 = −(
𝜕2CF(𝐩)

𝜕𝐩𝐓𝜕𝐩
+ 𝜆𝐈)

−1
𝜕CF(𝐩)

𝜕𝐩
 (13) 

 

where 𝜆 is set during the optimization, 
𝜕CF(𝐩)

𝜕𝐩
 is the gradient 

of the cost function, and 
𝜕2CF(𝐩)

𝜕𝐩𝐓𝜕𝐩
 is the Hessian matrix of 

the cost function. If 𝜆 → ∞, the method becomes a step in 

the direction of the gradient, while with 𝜆 = 0, we get the 

Newton-Raphson method. This latter method can find the 

optimum of a quadratic CF in one step. In the vicinity of 

the optimum, the CF can be assumed to be quadratic, so 

the value of 𝜆 can be decreased. With 𝜆 = 0, we obtain: 

 

 Δ𝐩 = −(
𝜕2CF(𝐩)

𝜕𝐩𝐓𝜕𝐩
)

−1
𝜕CF(𝐩)

𝜕𝐩
  . (14) 

 

It is obvious that the conditioning of this problem is 

connected to the CN of 
𝜕2CF(𝐩)

𝜕𝐩𝐓𝜕𝐩
, that is, to the Hessian 

matrix of the CF.  

 III. RELATED RESULTS IN THE LITERATURE 

In this section, results on the conditioning of the four-

parameter least squares method will be summarized. In [3] 

and [7], it was pointed out that the condition number of the 

LS method can be significantly decreased, if the fourth 

parameter is scaled (the fourth column in 𝐃𝑖 is divided by 

a scaling factor): 

 

(𝐃𝑖
𝐓𝐃𝑖)scaled ≈

(
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 (15) 

 

where 𝛾 denotes the scaling factor. The optimal scaling 

𝛾opt was shown to be [7]: 

 

 𝛾opt =
𝑅𝑁

1.852
  . (16) 

 

In [7], a Monte Carlo analysis was carried out in order to 

demonstrate the effectiveness of the scaling. The analysis 

showed that with the proposed scaling, the CN of the 

scaled 𝐃𝑖
𝐓𝐃𝑖 does not exceed 20, provided that at least 4 

periods are sampled from the signal and at least four 

samples are sampled from one period. If the number of 

sampled periods is increased above 100, the condition 

number drops under 15.  

 IV. DESCRIPTION OF THE METHOD 

During the LS estimation, matrix 𝐃𝑖 contains the 

derivatives of the fitted signal. Notice that 𝐃𝑖
𝐓𝐃𝑖 is 

connected to the Hessian matrix of the LS fitting, since 

[10]: 

 

 
𝜕2CFLS(𝐩)

𝜕𝐩𝐓𝜕𝐩
≈ 2 (

𝜕𝒚

𝜕𝐩
 )
T

(
𝜕𝒚

𝜕𝐩
 ) = 2𝐃𝑖

𝐓𝐃𝑖  . (17) 

 

It is known that in case the additive noise is white, of 

Gaussian distribution and zero-mean, the ML and LS 

estimates coincide [8]. Thus, it is reasonable to use the 

same scaling for the ML estimation, as for the LS 

estimation to ensure the good-conditioning of the Hessian 

matrix in (13). 

 

In order to represent this, let us analize the second 

derivative of CFML with respect to the relative angular 

frequency: 

 

𝜕2CFML(𝐩)

𝜕𝜗2
= ∑

1

𝛼𝑘
2

𝑁

k=1

(
𝜕𝛼𝑘
𝜕𝜗
)
2

−
1

𝛼𝑘

𝜕2𝛼𝑘
𝜕𝜗2

  . (18) 

 

where 𝛼𝑘 is the argument of the natural logarithm function 

in (12), that is 

 

 𝛼𝑘 =  P(𝑋𝑘 = 𝑥𝑘)  . (19) 

 

First, let us investigate the value of 𝜕𝛼𝑘 𝜕𝜗⁄ : 

 



 

𝜕𝛼𝑘
𝜕𝜗

=
2

√𝜋
∙
𝐴 sin(𝑘𝜗) − 𝐵 cos(𝑘𝜗)

√2𝜎
𝑘 

∙ (𝑒
−(
T[𝑦𝑘+1]−𝑥𝑘

√2𝜎
)
− 𝑒

−(
T[𝑦𝑘]−𝑥𝑘
√2𝜎

)
)  , 

(20) 

 

It can be seen that the result grows with growing k. 

Furthermore, it is proportional to the amplitude of the 

signal (R). It can be shown similarly that 𝜕2𝛼𝑘 𝜕𝜗
2⁄  is also 

proportional to these values. Thus, 
𝜕2CFML(𝐩)

𝜕𝜗2
 increases 

with increasing N and R. However, its value cannot be 

approximated as easily as for the case of the LS method. 

Namely, the ML method takes quantizer non-linearities 

into consideration. Thus, the problem cannot be solved 

generally. Nevertheless, we can expect significant 

improvement in the conditioning of the Hessian matrix, if 

it is scaled with a proper scaling factor. 

 

The Maximum Likelihood method optimizes the 

parameters iteratively to maximize the Likelihood 

function. The update step (as described in Section  II) is 

the following: 

 

 Δ𝐩 = −(𝐇 + 𝜆𝐈)−1
𝜕CF(𝐩)

𝜕𝐩
 (21) 

 

where H is the Hessian matrix, which contains the second 

order derivatives of the cost function (thus it is positive-

definite): 

 

 Hij =
𝜕CF(𝐩)

𝜕p𝑖𝜕p𝑗
 (22) 

 

In the above equation, p is the vector of the estimated 

parameters: 

 

 𝐩 =

(

 
 

𝐴
𝐵
𝐶
𝑓
𝜎)

 
 

 (23) 

 

Equation (21) shows that the numerical stability of the 

calculation of the new set of parameters strongly depends 

on the CN of the Hessian matrix: if it is ill-conditioned, 

significant errors might appear in the calculation, resulting 

in numerical instability and distorted estimation of the 

parameters. To avoid such errors, the following weighing 

matrix was used to improve numerical performance: 

 

 𝐖 = diag 〈1 1 1
1

𝛾opt
 1〉 . (24) 

 

The value of γopt is calculated according to (16). The scaled 

Hessian matrix is determined by: 

 𝐇′ = 𝐖𝐓𝐇𝐖  . (25) 

 

By this means, the fourth parameter, that is, 𝜗 is scaled 

similarly to the case of LS fitting 

 V. RESULTS AND DISCUSSIONS 

The proposed algorithm was tested in simulations where 

the condition numbers of the scaled and the original 

Hessian matrix were compared. In the simulations, a 14-

bit ADC was applied with INL and DNL characteristics 

that are depicted in Figures 1 and 2. 

 

 

Figure 1. INL of the 14 bit ADC 

 

 

Figure 2. DNL of the 14 bit ADC 

 

The ADC was excited with a sine wave input:  

 

 𝑥𝑘 = 𝑅 ∙ cos (2𝜋
𝐽

𝑁
𝑘 + 𝜙) + 𝐶 . (26) 

 

where J is the number of sampled periods. 100 different 

cases were studied with 𝑁 = 218, 𝑅 = 213 LSB (least 

significant bit) and C=0. The further parameters of the sine 

were the following random variables: 

 J was uniformly distributed in the [5, 65536] 

domain 

 𝜙 was uniformly distributed in the [0, 2π] domain. 

 

In addition, to simulate real-like circumstances, Gaussian 

noise with 1 LSB standard deviation and harmonic 

distortion at frequency 2J with 1 LSB amplitude and 



random initial phase 𝜙ℎ was added to the sinewave before 

quantization: 

 

 ℎ𝑘 = 𝐿𝑆𝐵 ∙ cos (4𝜋
𝐽

𝑁
k + 𝜙ℎ) . (27) 

 

 𝑧𝑘 = 𝑁(0, 𝐿𝑆𝐵) . (28) 

 

where 𝑁(0, 𝐿𝑆𝐵) denotes Gaussian distribution with zero-

mean and 1 LSB standard deviation. Quantized signal 𝐱𝑄 

can be obtained by: 

 

 𝐱𝑄 = 𝑄(𝐱 + 𝐳 + 𝐡) . (29) 

 

The ML method requires an initial estimation of the signal 

parameters and the quantizer characteristics. Thus, first a 

histogram test was performed to estimate the transition 

levels of the ADC. Then, the parameters of the input signal 

were estimated using the LS method.  

 

In the simulations, the estimation was run with both scaled 

and unscaled Hessian matrix, and the condition numbers 

in both cases were determined. In the scaled case, the 

Hessian matrix was calculated according to (25). 

Condition numbers in both cases can be seen in Figures 3 

and 4. 

 

 

Figure 3. Condition number of the unscaled Hessian matrix 

 

Figure 4. Condition number of the scaled Hessian matrix 

The figures show that the proposed method reduced the 

CN significantly. The values in the scaled cases are 109 

times smaller than the original ones, ensuring good-

conditioning (the CNs do not exceed 30). As a result, the 

numerical stability of the matrix inversion in (21) was 

significantly increased. Since the error in the resulting 

parameter vector depends linearly on the condition number 

of the Hessian matrix (see [2]), the possible distortions in 

the estimator are much more limited to a smaller extent.  

 VI. CONCLUSIONS 

In this paper, a scaling method for the Hessian matrix of 

the maximum likelihood fitting was presented. It was 

shown that the same scaling factor can be applied that 

improves the conditioning of the least squares fitting. 

Simulation results showed that the presented scaling 

algorithm considerably reduces the condition number of 

the Hessian matrix: in the studied cases, the condition 

number was found to be 109 times smaller than its original 

value. This enhancement ensures that the inversion of the 

Hessian matrix can be evaluated in a numerically stable 

way. Thus, the numerical accuracy of the maximum 

likelihood method was shown to be improved 

significantly. 
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