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Abstract—Spectral estimation plays a significant role in 

engineering practice. Along with the spreading of sensor 

networks, more and more data are transmitted through 

unreliable channels which may lead to lost data. The most 

common method of spectral estimation uses FFT, but this 

requires the whole record without any data loss. This paper 

presents a new FFT-based method for the problem which can be 

used for coherent sampling. Its efficiency and accuracy is 

demonstrated via theoretical analysis, simulation and 

measurement results. 
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I. INTRODUCTION 

Data loss is usually caused by communication problems. 
For example, in sensor networks data are often transmitted via 
radio channel, which is known to be faulty if interference or 
noise occurs. Data loss can mean missing samples, invalid 
samples (e.g. ADC overdrive) or synchronization issues. 

In engineering practice, spectral estimation plays an 
important role. If this is the measurement task and some of the 
samples are lost, then data loss becomes a serious problem. 
The spectral estimate of sampled signals can be calculated via 
DFT: 

         
  

  
 

  
   

   
                  (1) 

The DFT can effectively be evaluated by the Fast Fourier 
Transform (FFT). In order to get the value of any point of the 
DFT, the whole record is needed, without data loss. An 
obvious solution is to wait for a complete record, but the 
number of samples which are needed can be the multiple of 
the DFT record size, which is unacceptable in most 
applications, where linear or exponential averaging is applied 
to reduce the measurement noise. 

There are available methods which can be used, e.g. 
Lomb-Sclarge [5][6] or autoregressive analysis [7]. For our 
research, computationally effective and robust methods are 
preferred, two of them will be presented briefly. The first one 
is the extension [1] of the resonator-based observer (RBO) [2]. 
The second one [3] utilizes the FFT because of its particular 
efficiency in spectral estimation. This modifies the FFT blocks 
by zero padding them (here: replacing the samples with zeros) 
from the first lost sample. 

A question arises why we don't replace only the lost 
samples with zeros. Replacing lost samples results in an 

additive noise, which can make difficult or impossible to find 
low magnitude spectral components. The aim of the methods 
is to reduce the power of this noise. 

When data loss arises, time-domain interpolation (e.g., 
linear from nearest neighbors or Lagrange) is one of the first 
ideas to consider. However, interpolation methods cause a 
linear distortion in the spectrum (e.g., linear interpolation 
distorts the original spectrum with a sinc-squared function), in 
spite the additive noise of “replacement with zeros” method. 
Every method which uses surrounding samples gives a kind of 
memory. This makes the spectrum variable (even if it was 
constant) which we want to avoid. 

In the paper a new method is presented which can be used 
effectively if the sampling is coherent. It provides the same 
accuracy as the RBO, but with much less computational 
complexity. 

II. PRELIMINARIES 

A. Mathematical Description of Data Loss 

1) Indicator Function 
Data loss can be modeled with an availability indicator 

function: 
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Available samples will also be termed as processed 
samples. Using this we can define the data loss rate: 

          (3) 
where      is the probability operator. We can describe a 
signal with lost samples as 

           (4) 

where      is the original signal (without data loss). 

2) Data Loss Models 
There are different data loss models with different 

indicator functions. Random independent data loss is the 
simplest. It can be defined as 
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In random block-based data loss, a block is formed from 
each   samples. The same applies to the blocks as in the 
random, independent case: 
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In Markov-chain based data loss, the indicator function is 
generated as the state of a Markov-chain, see Fig. 1. 

 

Fig. 1. Two-state Markov-chain. State 1:     , state 0:      

B. Spectral Estimation Using the Resonator-Based Observer 

[2] 

The resonator-based observer was designed to follow the 
state variables of the conceptual signal model [2] which 
generates signals according to their Fourier-series. This way, 
the observed state variables can be the Fourier coefficients or 
their rotating versions. 

This structure has been modified to be able to handle data 
loss [1]. The main idea is to modify the conceptual signal 
model to generate signals with lost samples, then design a 
state observer for this system. The conceptual signal model 
can be described as: 
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where     is the diagonal matrix formation operator,    is the 
state vector in the time step  ,    is the output signal and    is 
the relative frequency of the  th component. Fourier-
coefficients can be extracted from the state vector as: 

   
         (8) 

where    is the column vector of the Fourier-coefficients. The 
equation of the observer is the following: 

                                  
         

(9) 

where     is the estimated state vector,   is the feedback 
vector,    is the estimated signal and    is the estimation error. 
Fig. 2. shows the RBO for signals with lost samples. 

 

Fig. 2. Resonator-based observer for signals with lost samples. 

It is worth noting that the estimation error is multiplied by 
the indicator function which can be interpreted in two ways. 

First, if the sample is lost, measurement update isn’t 
performed. Second, at the lost samples the structure acts as its 
estimate was accurate. 

RBO can be used for coherent and incoherent sampling if 
the frequencies of the signal components are known. The 
characteristic polynomial can be set arbitrarily with the 
feedback vector  , which implies, for example, exponential 
averaging can be done without extra computation. The 
structure can be applied in real-time and offers fairly precise 
spectral estimation even at high data loss rate. The main 
drawback is the complexity: RBO is a quadratic algorithm, 
while the complexity of FFT-based algorithms is linearithmic 
(        ). 

C. Spectral Estimation Using FFT with Zero Padding [3] 

The procedure of spectral estimation using FFT with zero 
padding for a record is the following: 

1.    and                  input FFT record and 
indicator function are given.   is the size of FFT. 

2.                         is the position of the 
first lost sample in the block. 

3. If       , the block is discarded. (     
 

 
 is 

recommended.) Else, a new indicator function is 
generated: 
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4. The signal is multiplied by 
 

 
 and the new indicator 

function is applied: 

   
 

 
    

  (11) 

5. DFT of    is computed, with a window function for   
samples, the result is the spectral estimate of the 
record. 

Fig. 3. shows the procedure graphically. 

 
Fig. 3. Spectral estimation with zero padding FFT method 

Here overlapping FFT-blocks are used. The aim of this is 
to make estimate converge faster. Based on [4], the maximal 
recommended overlap ratio is 75%. 

The final spectral estimate is computed from the FFTs of 
the blocks with an averaging procedure. Averaging can be 
done both with magnitude spectra and complex spectra. 
Magnitude spectra can be averaged both for coherently and 



incoherently sampled signals, but complex spectra can only be 
averaged in the case of coherent sampling. 

The main benefit of this method is its linearithmic 
complexity, which makes it easy to apply in real-time 
measurements. It can be used effectively for searching 
dominant components even with high data loss rates. If we 
don’t need to know the phase information, this method can be 
used for both coherently and incoherently sampled signals. 

III. PROPOSED METHOD: REPLACEMENT FFT 

A. Description of the Method 

The idea is to use FFT for spectral estimation, and to try to 
achieve the same behavior at lost samples as RBO has. This 
means that at positions with lost samples, the method needs to 
behave as its estimate was accurate. This can be done by 
computing a replacement value for each lost sample via IDFT. 
The procedure is the following: 

1. Wait for the first   samples (FFT block), substitute 
lost samples with zeros and compute the DFT of the 
block, the result is     . 

2. Wait for the next FFT block. 
3. For the positions of lost samples, compute the 

replacement value with IDFT from     . 
4. Compute the DFT of the new block, the result is 

    . 
5. After applying the appropriate phase shift on     , 

compute the new spectral estimate from      and 
     via exponential averaging, and store it in     . 

6. If the measurement is not over, continue from the 
second step. 

Fig. 4. shows the method graphically. 

 

Fig. 4. Spectral estimation with replacement FFT method 

It should be noted that in the first FFT block the lost 
samples are substituted with zeros, thus a noise is added to the 
initial estimate. It depends on the actual application if it is a 
problem or not, because exponential averaging reduces this 
noise over time. If it is a problem, we can wait for the first 
block without lost samples. 

With the phase shift on      the phase of the fundamental 
harmonic (in the DFT base functions) is made equal in      
and     . Similar phase shift is necessary at the computation 
of the replacement values. These can be done only for 
coherently sampled signals. That’s why this method is not 
applicable for incoherently sampled signals. The phase shifts 
can be done automatically by implementing the method with a 
circular buffer. 

B. Computation of the Replacement Values 

The computation of a single replacement value needs 
     operations using IDFT. In an   samples long block 
there are on average    lost samples, so the replacement 
values can be computed with        operations. If the data 
loss rate isn’t small enough, these operations make the method 
complexity quadratic. In this case, IFFT can be used to 
compute a whole replacement block and use only the 
necessary positions of it. Of course, this solution needs more 
memory and at low data loss rates it is slower than individual 
computation. 

It can be easily suspected that there is a data loss rate, 
where the two procedures have the same computational 
requirement, this is called critical data loss rate (     ). Below 
it, IDFT, above it, IFFT needs less operations. 

An individual replacement value can be computed with    
real operations using IDFT, for the whole block we need 
     steps. Assuming the usage of radix-2 IFFT, the 

replacement block can be computed with 
 

 
      complex 

multiplications and        complex additions, which means 
        real operations. We also need to check every 
position if there was data loss (  operations) and replace the 
lost samples with the computed values (   operations). In 
total, IFFT-based replacement has              steps. 

At the critical data loss rate, the two procedures have the 
same number of operations, from which we obtain 

      
        

    
  (12) 

Considering that this is only an estimate (e.g. different 
operations need different number of machine cycles, SIMD 
instruction execution, etc.), we can rewrite (12) as 

      
      

  
  (13) 

The evaluation of (13) for different   values can be found in 
Table 1. 

TABLE I.  CRITICAL DATA LOSS RATES 

                              
16 31,250% 5 4096 0,366% 15 

64 11,719% 7,5 16384 0,107% 17,5 

256 3,906% 10 65536 0,031% 20 

1024 1,221% 12,5 262144 0,009% 22,5 

The first and fourth column show the size of the FFT, the 
second and fifth ones show the critical data loss rate and the 
third and last ones show the critical number of lost samples in 
a block. Based on this, if the data loss rate and the FFT size 
are known in advance, we can decide which replacement 
procedure is faster. If data loss rate varies within a large 
interval which contains       and speed is critical, it should be 
taken into consideration to count the number of lost samples in 
each block and use the appropriate method. If this means too 
much overhead, IFFT-based replacement should be used. 

IV. SIMULATIONS AND MEASUREMENT RESULTS 

The proposed method was examined and compared with 
RBO and zero padding FFT via simulations and 



measurements. Some results are presented to demonstrate the 
features of the proposed method. 

A. Simulation Results 

Simulation parameters:  =256 FFT size,     = /4 
minimal valid block size for zero padding FFT, 75% overlap 
ratio, exponential averaging for all three methods with the 
same time constant (1000), square wave with 1/64 relative 
frequency input signal with additive white noise (SNR=20 
dB),  =50*  simulation time, random independent data loss 
with 0.1% data loss rate. 

Fig. 5. shows the settling of the spectral estimation. The 
error was formed as the Euclidean (L2) norm of the difference 
of the original and the estimated magnitude spectra. It must be 
noted that the original spectrum was calculated without 
windowing for RBO and replacement FFT but with Hanning 
window for zero padding FFT. The reason of this asymmetry 
is that in zero padding FFT windowing should be used, but it’s 
problematic to use a window function with RBO. Replacement 
FFT behaves similarly to RBO and provides accurate estimate 
only with coherent sampling, that’s why it doesn’t need 
windowing. The Euclidean norm of the noise magnitude 
spectrum (Noise FFT) is displayed for comparison. In the 
bottom, the data availability ( ) is shown: high level means 
available, low level means lost samples. 

 

Fig. 5. Simulation results of coherently sampled square wave with 0.1% data 

loss rate 

It can be seen that when there are complete blocks, all the 
three methods give fairly accurate results. The precision of the 
replacement FFT is the same as that of the RBO. Data loss 
leads to a peak in the error of zero padding FFT, but the 
estimates of replacement FFT and RBO are unaffected. 

B. Measurement Results 

Measurements were conducted with a Sharc ADSP-21364 
Ez-kit Lite DSP board. A noise generator has been used to 
independently control the data availability. 

Fig. 6. shows the measurement results of the processing of 
a square wave sampled in a special way: the sampling is 
incoherent for the first harmonic, but coherent for the third 
harmonic. That’s why the third harmonic and its higher 
harmonics are measured correctly with all the methods. In this 

measurement, FFT methods were compared with 0.1% data 
loss rate and  =4096. 

The other components are measured incorrectly with the 
replacement FFT even with applying a window function, 
because the problem arises from averaging complex spectra. 
Examining the results of zero padding FFT, it can be stated 
that windowing should be used with the method. 

 

Fig. 6. Measurement results of incoherently sampled square wave with 0.1% 
data loss (zoomed) 

Other measurements have shown that RBO and 
replacement FFT yield the same results. 

V. CONCLUSION 

In this paper, a new method of spectral estimation in the 
case of data loss was introduced and examined. This method 
calculates a replacement value for each lost sample from the 
latest estimate. The replacement FFT can be used effectively 
for coherently sampled signals, even at high data loss rates and 
provides distortion-free spectral estimate. This method has 
linearithmic complexity which makes it beneficial for real-
time applications. 
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