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On the Monotonicity and Linearity of Ideal
Radix-Based A/D Converters
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Abstract—Both cyclic and pipelined analog-to-digital (A/D) con-
verters are getting more and more popular, as they are relatively
easy to design and either have a high throughput (pipelined con-
verters) or small area- and power-consumption (cyclic/algorithmic
converters). To avoid saturation and to ensure effective digital cal-
ibration, in the analog stage(s) of these converters, instead of the
ideal two, often a smaller nominal gain (called radix number) is
used. In this paper, it is shown that these radix-based converters
have nonmonotonic output and finite linearity. The causes of these
phenomena are discussed in detail. Fully digital method is sug-
gested to remove nonmonotonic code transitions and estimation on
the maximum differential nonlinearity of the ideal converter as a
function of the number of cycles is presented.

Index Terms—Algorithmic, analog-digital (A/D) conversion,
cyclic, differential nonlinearity, DNL, linearity, monotonicity,
multistage pipelined, nonradix-2, radix less than 2, subradix ADC,
subranging A/D converter.

I. INTRODUCTION

SUB-RANGING analog-to-digital (A/D) converters [1]
are getting more and more popular in different applica-

tions. In these converters the input signal is quantized first
by a coarse (e.g., 1-bit) quantizer, then the analog residue is
calculated and requantized either by the same circuit (algo-
rithmic/cyclic converter, [1], Fig. 1) or by another similar stage
(subranging/pipelined converter, [1]). Cyclic converters are
easy to design and have very low area- and power-consumption.
Pipelined converters can exhibit high throughput at medium or
high resolution, and are commonly used in high-speed digital
communication systems.

Fig. 1 shows the block diagram of a 1-bit/stage cyclic con-
verter. Its operation is as follows. In the first cycle, the input
signal is sampled by a sample and hold (S/H) circuit, quantized
by a 1-bit A/D (i.e., a comparator), the quantized output is con-
verted back to analog again by a D/A and finally, it is subtracted
from the input multiplied by the radix number . The value of
is equal to two in the ideal case. In the next cycle, this residue is
used as an input signal to obtain the second Most Significant Bit
(MSB), and so on, up to . The output of the converter is the se-
quence of the one-bit s, which is the binary representation
of the input signal in the ideal case ( is the Least Significant
Bit (LSB) of the converter).
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Fig. 1. Block diagram of an algorithmic converter. V is the input signal, V
is the reference signal, V [i] is the residue signal in the ith cycle, g is the radix
number equal to two in the ideal case, and d is the 1-bit digital output.

Due to the finite precision of the analog components, circuit
nonideality errors affect the accuracy of the converter. The most
important error source is the capacitor mismatch which causes

to become inaccurate. As a result, two types of error can occur
[2], [3]. If , at specific inputs at least one stage will be satu-
rated, causing missing-decision-level error (i.e., the output does
not change for a wide range of the input signal). If , codes
will be missing in the output (i.e., the output jumps larger than
one LSB at a code transition). As in the digital domain there is no
information about the range of the input signal causing the same
output code, missing-decision-level errors must be avoided [2].
This can be ensured generally two ways: the first alternative is
to use a nominal in the circuit to make sure it will not turn
over 2 even in a worst-case mismatch error, and use more stages
to compensate for the resolution loss (analog redundancy [2],
[4]). The second alternative is to use more than one bit/stage in
the converter, and still use a nominal gain (digital redun-
dancy, [3]). Both of these techniques can be later compensated
in the digital domain, and they can also be transformed into each
other.

In the following, the 1-bit/stage converters with [2],
[4] are examined in details. The paper is organized as follows.
Section II discusses the operation of a radix-based converter in
detail, then the nonmonotonic behavior of the converter is exam-
ined. Section III discusses the linearity error introduced by the
structure. The paper is finished with some concluding remarks.

II. MONOTONICITY OF RADIX-BASED CONVERTERS

In the case of a cyclic converter with , ,
and , the residues during the conversion can be
obtained as follows (cf. Fig. 1):
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TABLE I
CODE TRANSITIONS OF A 12-CYCLE CONVERTER WITH g = 1:95

(1)

where is the input signal, is the reference voltage of the
converter, is the residue of the th conversion cycle,
is the output of the comparator, and is the number of cycles
the converter operates. From (1), one can get

(2)

where is the quantization error. Rearranging (2) leads to

(3)

where and . Thus,
replacing and ignoring the offset caused by the {0,
1} representation of the sequence, the digital output can be
calculated as

(4)

A. Output Calculation

Calculating (4) for all possible input codes would exhibit
large jumps at major code transitions, resulting in nonequiva-
lent mapping from the analog input to the digital codes. For ex-
ample, for an input code of 0111 1111 1111, with ,

, while for the input code of 1000
0000 0000, , resulting in a huge nega-
tive jump of 80 LSBs at the MSB transition.

However, as discussed in the introduction, an algorithmic
converter with will exhibit missing codes. Moreover,
it was proven in (3) that (due to the negative feedback) the
operation of the cyclic converter ensures that the absolute
difference between the input signal and its radix-based digital
representation will always be less than half LSB. Although this
behavior ensures that the difference between two consecutive
digital output is less than or equal to one LSB, it allows this dif-
ference to be negative, thus, it allows nonmonotonic behavior.
Table I shows the major code transitions of a cyclic converter
with . (Note that the major code transition can be

Fig. 2. (a) Output of a 12-cycle ideal radix-based converter. The inset shows
a detailed transition, which is nonmonotonic. (b) Steps of the output code
transitions. Steps less than 0 correspond to nonmonotonic code transitions.

calculated as .) It can
be seen that code transition #5 is negative and its absolute value
is less than one LSB. It can be proven that there always exists
such a code transition for any [5].

Based on this derivation, it is expected that an ideal radix-
based converter with and produces major
code transitions #0 to #5, but no major code transitions #6 and
above. Due to the missing codes, other (positive or negative)
step sizes less than one LSB may also be produced. This is il-
lustrated in Fig. 2. In Fig. 2(a) one can see the smooth static
characteristic of the converter, however, the zoomed inset shows
one of the nonmonotonic jumps in the output (the code tran-
sition is , containing the
major code transition of #5). Fig. 2(b) illustrates the step-sizes
between the codes. According to Table I, most steps belongs to
the code transitions #0–#5, however, due to the missing codes,
other step sizes exist as well. For example, the most negative
step, belongs to the code transition

which is not a major code transition, but sim-
ilarly to the negative code transition #5, five consecutive ones
turn to five consecutive zeros in it. The difference is that the al-
gorithm uses the available LSBs to get a better representation of
the input signal.

B. Requantization

In the discussion earlier, calculation of the output code [(4)]
was assumed to be infinitely precise. In a real hardware the
output code is calculated, then requantized to bit,
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Fig. 3. (a) Enlarged output of a 14-cycle 12-bit converter (dashdot line:
14-cycle output code, solid line: 12-bit requantized binary output code),
showing a nonmonotonic code transition. (b) Steps of all output 12-bit binary
code. Steps equal to �1 correspond to nonmonotonic output transitions.

TABLE II
NUMBER OF NON-MONOTONIC TRANSITIONS IN A 14-CYCLE, 12-BIT

CONVERTER WITH g = 1:95

which is the target resolution of the converter [4]. As usually
, the final LSB size will be 2–3 times larger

than the step size of the radix-based converter. Thus, most
of the nonmonotonic transitions will be smoothed out by the
requantization process. However, due to the large number of
nonmonotonic transitions and the fact that the step-sizes of the
radix-based converter are uneven, there will always be some
transitions which crosses one of the quantization thresholds,
causing nonmonotonic behavior also in the final output.

This is illustrated in Fig. 3 and Table II. Fig. 3(a) shows an
enlarged nonmonotonic step in the final requantized output of a
12-bit, 14-cycle, converter, while Fig. 3(b) shows all
the steps of the 12-bit output, where step size corresponds to
a nonmonotonic jump. Table II shows the statistics of the same
example, showing that in the final output about 1% of the input
signal will be mapped wrongly.

Fig. 4. (a) An example, when the differential nonlinearity DNL > 0 in a
12-cycle 10-bit converter. (b) An example, when DNL < 0 (dotted line: input
signal, dashdot line: 12-cycle output code, solid line: 10-bit requantized binary
output code).

If this behavior is not acceptable, the following method can
be used to avoid nonmonotonicity: It was shown previously that
this type of transition occurs only if a given consecutive ones
changes to consecutive zeros in the output code. This can
be calculated from [5], e.g., if , . Therefore,
with a simple digital hardware subtracting one from any code
containing consecutive ones and adding one to any code con-
taining consecutive zeros before the requantization process
removes all nonmonotonic transitions from the digitally cali-
brated output code. Note that analog noise in the converter may
cover up the nonmonotonic code transitions if the noise level is
high enough [5].

III. LINEARITY OF RADIX-BASED CONVERTERS

As it was discussed in the previous section, the step-sizes of
a radix-based converter with are not equal (cf. Table I),
meaning that the input range for each 12-bit radix-based code
may differ. As the final output is requantized from these data,
the converter will map the input signal unevenly even to the
final output digital codes. Fig. 4 shows two examples of this
effect. Fig. 4(a) shows an example when the differential non-
linearity (DNL) is greater than zero, i.e., the analog input range
mapped into one digital code is greater than one , while
Fig. 4(b) shows an example when the DNL is less than zero,
i.e., the analog input range mapped into one digital code is less
than one .

To estimate the DNL of the converter, the following
method is proposed. As it can be seen in Fig. 4, by adding
the step-sizes of consecutive -based code transitions of the
12-cycle converter, one can get an estimate about the input
range of the 10-bit requantized output code. For example, in
Fig. 4(b) the final output code 46 consists of the -based steps

, ,
and . These code transitions in the
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Fig. 5. DNL error of a simulated ideal converter, represented with dots. Solid
gray lines with �-markers show the estimated levels of the DNL error (cf.
Table III).

TABLE III
MULTIPLE 12-BIT CODE TRANSITIONS CAUSING ONE 10-BIT TRANSITION IN

THE REQUANTIZED FINAL OUTPUT

-domain are #1, #0, #4 with step sizes of 0.95, 1 and 0.292
in , respectively (cf. Table I). The sum of these code
transitions have to be converted to the 2-based 10-bit step size.
Since 1 -based is equivalent to and 1 2-based

is equivalent to , the is equal
to , resulting in a DNL error
of . Based on this observation, Table III shows
all possible consecutive 12-cycle code transitions, which are
mapped into one 10-bit transition and the DNL error associated
with them.

To support these derivations, Fig. 5 shows simulation results
of the DNL error of an ideal radix-based converter and com-
pares it with the derived DNL-levels of Table III. Solid gray lines
with -markers show the estimated DNL errors, while black
dots represent the DNL-errors of the simulated converter. Most
errors are close to the predicted levels. Those codes, where the
error is different from the predicted ones, are 10-bit output codes
containing 12-bit code transitions with missing codes, thus they
cannot be derived from the regular major code transitions of
Table III.

Using Table III, the maximum DNL of this ideal radix-based
converter can be estimated as about 0.3 LSB. This DNL is pro-
portional to the ratio of the code width of the -cycle converter
and the target code width of the converter. Thus, increasing the
number of cycles in the converter while keeping the target bit
number the same will decrease this DNL error to an acceptable
level for a desired application.

IV. CONCLUSION

In this paper, properties of radix-based converters were dis-
cussed. It was shown that even ideal converters produce non-
monotonic output. A detailed example with nonmonotonic code
transitions was discussed and a fully digital method was sug-
gested to eliminate these transitions completely from the output
of the converter. Moreover, it was shown that even ideal radix-
based converters have limited linearity, which is inherited from
the topology, thus it cannot be removed from the system. The
expressions derived for the maximum differential nonlinearity
for an ideal system can be used to estimate the required number
of stages in a given design, to push the linearity error below
the required value of the specification.
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