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Abstract—In the field of audio signal processing, logarithmic
frequency resolution IIR filters, such as fixed-pole parallel filters
and Kautz filters, are commonly used. These proven structures
can efficiently approximate the frequency resolution of hearing,
which is a highly desired property in audio applications. In
recursive adaptive filtering however, the FIR structure with LMS
algorithm is the most commonly used. Since the linear frequency
resolution of FIR filters is less than ideal for audio applications, in
this paper we explore the possibility of combining the logarithmic
frequency resolution IIR filters with the LMS algorithm. To this
end the LMS algorithm is applied to fixed-pole parallel and Kautz
filters, and the resulting structures are compared against each
other and to the FIR-LMS filters in terms of convergence time
and remaining error.

Index Terms—audio signal processing, LMS, fixed-pole parallel
filters, Kautz filters

I. INTRODUCTION

Infinite impulse response (IIR) filters are commonly used
in audio signal processing [1], where logarithmic frequency
resolution is highly desired when modeling a transfer function.
To achieve this, specialized filter design methodologies have
been developed, including warped filters [2], second-order
fixed-pole parallel filters [3], and Kautz filters [4].

In adaptive filtering, finite impulse response (FIR) filter
structures with least mean squares (LMS) method are pop-
ular choices. The reason for their popularity is their global
convergence, however, they require more parameters to model
a given response, as opposed to IIR filters. Another drawback
is that their residual error (misadjustment) is related to the
step-size coefficient (µ), and thus, a trade-off must be made
between convergence time and residual error [5].

Common applications for adaptive audio filters, such as
compensation, or noise reduction, contain an adaptive filter
that identifies a given signal path. Thus, as a first step for com-
paring logarithmic frequency resolution IIR filters in adaptive
context, this paper explores the identification capabilities of
the different IIR structures using LMS algorithm.

In this paper, the LMS algorithm is applied to the parallel
and Kautz filters, and the resulting adaptive IIR filters are
compared to each other and to the common FIR-LMS filters.

II. THE LMS ALGORITHM

The Least Mean Squares (LMS) algorithm is a stochastic
grade descent method where the coefficients are adapted based
on the current error in time [5]. It uses the estimate of the
mean square error (MSE) gradient vector from the available

Fig. 1. LMS-based adaptive filter used for identification.

data, to make successive corrections to the filter coefficients
in the direction of the negative of the gradient vector. This
iterative procedure eventually leads to minimum mean square
error.

The block scheme of the LMS filter can be found in Fig. 1.
The common input of the system to be identified and the
adaptive filter is denoted by u(k), and the outputs are marked
by y(k) and ŷ(k) respectively.

The output of the adaptive filter is computed as

ŷ(k) = w>(k)x(k). (1)

The recursive function for coefficient adaptation is the
following:

w(k + 1) = w(k)− µe(k)x(k), (2)

where w denotes the filter coefficients, k is the discrete time,
µ is the step-size parameter, x is the estimated gradient and e
is the output error, where e(k) = y(k)− ŷ(k).

The input vector x(k), which acts as the estimated gradient
vector, is unique for every filter structure. For FIR filters, it
is a delay line; for other structures it can be deduced using
Equation 1.

Note that each element of x(k) is a function of time, and
they span the space of the output function. Because they
act as base functions, their correlation has an impact on the
convergence time: the lower the eigenvalue spread of the
correlation matrix R, the faster the convergence [5].
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The estimated autocorrelation matrix of x(k) is calculated
as:

R̂ =
1

L

L∑

k=0

x(k) · x>(k), (3)

where L denotes the number of samples.
The main drawback of the LMS algorithm is that the gra-

dient vector scales with the input, which can cause instability
in the adaption. As a remedy, the Normalized-LMS (NLMS)
method is used, which normalizes the power of the input [5]:

w(k + 1) = w(k)− µ e(k)x(k)

α+ x>(k)x(k)
, (4)

where α is a small positive number used to avoid the denom-
inator to become zero.

In this paper we used the NLMS algorithm for realizing
adaptive filters.

III. ADAPTIVE IIR FILTERS

Adaptive IIR filters require fewer parameters compared to
FIR filters, however, early research showed that adaptively
varying both the poles and zeros can lead to suboptimal per-
formance caused by multimodal error surfaces [6] or because
they require satisfaction of a strict positive real condition [7].

Alternatively, the poles of the IIR filter can be fixed at pre-
determined values, which preserves the linearity in parameters
and leads to well-behaved adaptation properties [8].

In audio signal processing, fixed-pole filters are commonly
used. The Kautz (Fig. 3) and the fixed-pole parallel filters
(Fig. 2) are proven to have equivalent transfer functions when
designed off-line [3]. The main difference between them lies in
the computational demand (see Table I): the fixed-pole parallel
filter need approximately 47% less operations compared to
the Kautz filter. The tap outputs of the two filters span the
same space, but the base functions of the Kautz filter are
orthonormal [9]. This results in convergence properties similar
to that of FIR filters [8].

The general structure of the parallel second-order structure
can be found in Fig. 2. The second-order sections can be
implemented as either direct-form, or other structures [10].
Note that the structure of the second-order sections have direct
impact on the parameters, and thus, affects the convergence
properties if the second-order section is used in an adaptive
filter realization.

Adapting the aforementioned fixed-pole audio filters using
the LMS algorithm can be done by substituting the IIR filter
to the ∇ block in Fig. 1, with the output multiplications and
summation replaced by the adaptive linear combination of the
LMS algorithm. For example, in case of the Kautz filter in
Fig. 3 it means that the ci coefficients are the tuned parameters.

IV. ORTHOGONAL SECOND-ORDER SECTION

In order to improve convergence, we present a new second-
order structure (Fig. 4), which, to our knowledge, has not
been presented before. The new structure is equivalent to a
second-order Kautz filter, therefore its two tap outputs are

TABLE I
NUMBER OF ARITHMETIC OPERATIONS REQUIED FOR THE TESTED

ADAPTIVE IIR FILTERS HAVING N CONJUGATE-COMPLEX POLE PAIRS
IMPLEMENTED USING DIRECT-FORM 2 (DF2) OR ORTHOGONAL

SECOND-ORDER SECTIONS.

Multiplication Addition
Fixed-pole parallel filter (DF2) 6N 3N − 1
Fixed-pole parallel filter (orth.) 6N 5N − 1

Kautz filter (DF2) 9N + 2 8N + 1

Fig. 2. Parallel second-order filter. Note that in our investigations we omitted
the constant K section.

orthogonal. As this structure is more complex than the direct-
form implementation, its usage in parallel filters result in
computational demand between the direct-form parallel filter
and the Kautz filter.

The parameters a1 and a2 are the same as in the direct form.
The p and q coefficients can be computed from the direct-form
parameters b0 and b1 with the following formulas:

p =
b0 − b1

2
, (5)

q =
b0 + b1

2
. (6)

The estimates of the autocorrelation matrices can be found
in Fig. 5. It can be seen that the orthonormal property of the
Kautz filter results in a unity autocorrelation matrix. In fixed-
pole parallel filters however, the neighboring tap outputs have
high levels of cross-correlation. This effect is lower when the
orthogonal second-order sections are used: only the tap outputs
of the different sections are correlated, resulting in a periodic
pattern.

V. NORMALIZING THE TAP OUTPUTS

The convergence rate of the LMS algorithm is related
to the eigenvalues of the R matrix [5]. It is shown that
if the eigenvalue spread of the R matrix is the minimum
over all possible matrices, the maximum convergence rate
can be achieved. As a consequence, the tap outputs of the
filter (denoted by X(k)) having the same output power is a
necessary condition. This criterion is inherently satisfied for
orthonormal filters [8], but not for fixed-pole second-order
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Fig. 3. Kautz filter structure.

filters. Therefore, the tap outputs of the second-order sections
need to be scaled.

To determine the normalizing coefficients, we compute the
impulse responses between the input and the tap outputs. The
scaling factors are then determined by the sum of squares of
the impulse responses:

si =
1

∞∑
k=0

(
hi(k)

)2 , (7)

where hi denotes the impulse response between the filter input
and the i-th filter tap output. Using this scaling, the tap outputs
will have the same power when the input is white noise.

VI. COMPARISONS

In our investigation we used the NLMS algorithm as a
method for system identification (Fig. 1). The input was
a white noise uniformly distributed in range [−1;+1]. The
system to be identified was implemented using a 10000-
tap long FIR filter, whose coefficients were based on actual
impulse response measurements.

Fig. 4. Orthogonal second-order structure, with normalizing terms s1 and s2.
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Fig. 5. Visualization of R̂ matrices. Top left: parallel filter with direct-
form sections; top right: parallel filter with orthogonal second-order sections;
bottom left: Kautz filter.

The filters to be compared are fixed-pole second-order
parallel filters (without FIR section), implemented using both
direct-form and improved second-order sections, a Kautz filter
and as a reference, a FIR filter. The IIR filters have 20
conjugate complex pole pairs, placed along a logarithmic scale
between 20 Hz and 20 kHz, assuming 44.1 kHz sampling
frequency. The quality factors of the poles were chosen that
the neighboring sections had their magnitude response cross
at their -3 dB point [11]. The FIR filter has 40 taps, thus the
filters have the same amount of free parameters.

The mean square error (MSE) of adapted filter parameters
are computed on a logarithmic scale: the error, denoted by e(k)
in Fig. 1, has its DFT spectrum sampled at certain frequencies
having logarithmic distribution. The samples are then squared
and summed from 20 Hz to 20 kHz, assuming fs = 44.1 kHz
sampling rate:

E(jω) = DFT{e(k)}, (8)

MSE =

f=20kHz∑

f=20Hz

∣∣E(j2πf/fs)
∣∣2. (9)

For comparison, the MSE was calculated for all structures at
every 256 samples and then plotted.

In our investigation, we used two example transfer functions
for testing the algorithms: a minimumphase one-way loud-
speaker (Fig. 6 top) and a larger, two-way loudspeaker with
non-minimumphase response (Fig. 6 bottom). In the figures,
we marked the result of the off-line LS design as well as the
magnitude response of the adaptive fixed-pole parallel filter
that is implemented using orthogonal second-order sections.
Note that the transfer function of the adaptive Kautz is omitted
because it fits the LS solution after the simulation time (65536
samples).
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Fig. 6. Magnitude plots of the example transfer functions (black lines).
Top: minimumphase one-way loudspeaker; bottom: non-minimumphase two-
way loudspeaker. The LS approximations are plotted using red lines. The
magnitude responses of the fixed-pole parallel filters using orthogonal second-
order sections, after 65536 samples, are also plotted (blue lines).
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Fig. 7. MSE by time, for a minimumphase one-way loudspeaker response.

The MSE plots of the systems identifying the example
transfer functions can be found in Fig. 7 and 8. For each
of the filters, the µ step-size parameter is tuned in a way
that the curves would have the best fit with each other on
the first 12800 samples. As reference, the MSE of offline
designed filters, based on the LS approximation, are shown
on the figures using dashed and dotted horizontal lines.

According to figures 7 and 8, the Kautz filter has the best
convergence: for the minimumphase system its MSE is on par
with the LS approximation, and for the non-minimumphase
system it has the fastest convergence among the tested struc-
tures.
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Fig. 8. MSE by time, for a non-minimumphase two-way loudspeaker
response.

VII. CONCLUSION

This paper compared the LMS-based adaptive implementa-
tions of the most common fixed-pole IIR filters used in audio.
As a result, we recommend to use the Kautz structure in LMS-
based adaptive audio filters, if its computational demand can
be satisfied.

Future research includes the usage of other filter structures:
the delayed fixed-pole parallel filter, a modified Kautz structure
with FIR component, and the resonator-based filter.

REFERENCES

[1] V. Välimäki and J. D. Reiss, “All about audio equalization: Solutions
and frontiers,” Applied Sciences, vol. 6, no. 5, 2016, art. no. 129, doi:
https://doi.org/10.3390/app6050129.

[2] A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U. K. Laine,
and J. Huopaniemi, “Frequency-warped signal processing for audio
applications,” J. Audio Eng. Soc., vol. 48, no. 11, pp. 1011–1031, Nov.
2000.

[3] B. Bank, “Audio equalization with fixed-pole parallel filters: An efficient
alternative to complex smoothing,” J. Audio Eng. Soc., vol. 61, no. 1/2,
pp. 39–49, Jan. 2013.

[4] T. Paatero and M. Karjalainen, “Kautz filters and generalized frequency
resolution: Theory and audio applications,” J. Audio Eng. Soc., vol. 51,
no. 1–2, pp. 27–44, Jan./Feb. 2003.

[5] S. S. Haykin, B. Widrow, and B. Widrow, Least-mean-square adaptive
filters. Wiley Online Library, 2003, vol. 31.

[6] S. Stearns, “Error surfaces of recursive adaptive filters,” IEEE Transac-
tions on Circuits and Systems, vol. 28, no. 6, pp. 603–606, 1981.

[7] C. Johnson, M. Larimore, J. Treichler, and B. Anderson, “Sharf conver-
gence properties,” IEEE Transactions on Circuits and Systems, vol. 28,
no. 6, pp. 499–510, 1981.

[8] G. A. Williamson and S. Zimmermann, “Globally convergent adaptive
iir filters based on fixed pole locations,” IEEE transactions on signal
processing, vol. 44, no. 6, pp. 1418–1427, 1996.

[9] J. Cousseau, G. Sentoni, P. Diniz, and O. Agamennoni, “On orthogonal
parallel realization for adaptive iir filters,” in Proceedings of Third
International Conference on Electronics, Circuits, and Systems, vol. 2.
IEEE, 1996, pp. 856–859.

[10] K. Horváth and B. Bank, “Optimizing the numerical noise of parallel
second-order filters in fixed-point arithmetic,” Journal of the Audio
Engineering Society, vol. 67, no. 10, pp. 763–771, 2019.

[11] B. Bank, “Audio equalization with fixed-pole parallel filters: An efficient
alternative to complex smoothing,” in Proc. 128th AES Conv., Preprint
No. 7965, London, UK, May 2010.

7


