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ABSTRACT

Recently, the fixed-pole design of parallel second-order filters has been proposed to accomplish arbitrary fre-
quency resolution similarly to Kautz filters, at 2/3 of their computational cost. This paper relates the parallel
filter to the complex smoothing of transfer functions. Complex smoothing is a well-established method for
limiting the frequency resolution of audio transfer functions for analysis, modeling, and equalization pur-
poses. It is shown that the parallel filter response is similar to the one obtained by complex smoothing the
target response using a hanning window: a 1/β octave resolution is achieved by using β/2 pole pairs per
octave in the parallel filter. Accordingly, the parallel filter can be either used as an efficient implementation
of smoothed responses, or, it can be designed from the unsmoothed responses directly, eliminating the need
of frequency-domain processing. In addition, the theoretical equivalence of parallel filters and Kautz filters is
developed, and the formulas for converting between the parameters of the two structures are given. Examples
of loudspeaker-room equalization are provided.

1. INTRODUCTION

Audio equalization using DSPs has been a subject of re-
search for more than two decades. It generally means the
correction of the magnitude (and sometimes the phase)
response of an audio chain. Typical examples include
loudspeaker equalization based on anechoic measure-
ments [1, 2, 3], or the correction of loudspeaker-room

responses [4, 5, 6, 7, 8]. Because the systems to be equal-
ized are typically of very higher order (e.g., due to the
high modal density in room responses), the direct inver-
sion of the transfer function is usually not practical. As
the final judge in sound quality is the human ear, it is
more efficient to equalize only those aspects that lead to
an audible error. A typical approach is to take into ac-
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count the quasi-logarithmic frequency resolution of the
human auditory system during equalizer design.

Besides efficiency and perceptual aspects, there is also a
physical reason for applying logarithmic or logarithmic-
like frequency resolution. Namely, an audio system often
has multiple outputs, like multiple listening positions ina
room, and the equalizer should maintain or improve the
sound quality at all positions. Transfer functions mea-
sured at different positions in space have more similarity
at low frequencies than at high frequencies, due to the
different wavelengths of sound. An overly precise cor-
rection at high frequencies for one measurement position
usually worsens the response at other points in space.
Accordingly, the direct inversion of measured transfer
functions not only wastes computational resources, but
also leads to unacceptable results [5, 6].

This paper demonstrates that fixed-pole parallel filters
can be efficiently used for the modeling or equalization
of audio systems, as they posses the beneficial proper-
ties of complex smoothing, while require relatively lit-
tle processing power both for filtering and for parame-
ter estimation. The paper first reviews fractional-octave
smoothing in Sec. 2, then covers the related warped and
Kautz filters in Sec. 3. Section 4 outlines the theory of
parallel filters and proves their equivalence with Kautz
filters. Section 5 relates parallel filter design to complex
smoothing, and Sec. 6 presents loudspeaker-room equal-
ization examples and comparison. Finally, Sec. 7 gives
practical implications and Sec. 8 concludes the paper.

2. FRACTIONAL-OCTAVE SMOOTHING OF
TRANSFER FUNCTIONS

The quasi-logarithmic frequency resolution of human
hearing is also reflected in how transfer functions are dis-
played in the audio field. From the earliest times, a loga-
rithmic frequency scale is used, and often the magnitude
response is smoothed at a fractional-octave (e.g., third
octave) resolution. The motivation behind fractional-
octave smoothing is that the original transfer function
is too detailed for visual evaluation and the smoothed
version gives a good estimate of the perceived timbre.
While this practice stems from analog signal analyzers,
typically all current digital spectrum analyzers for audio
offer this option.

While traditionally, smoothing has only been applied for
the magnitude response of audio systems, the complex

alternative has also appeared, allowing the reconstruction
of a smoothed impulse response via IFFT [9]. Smooth-
ing of the complex transfer function is in practice done
by convolving it with a smoothing function, thus, it is
equivalent to multiplying the impulse response with a
time-domain window function.

Note that in complex smoothing, the smoothing func-
tion is chosen to be a real (zero phase) function [9],
which has an important consequence that is not very
much discussed in the literature. Since the frequency-
domain smoothing function is real, the corresponding
time window will be symmetric aroundt = 0, that is,
w(−t) = w(t). In continuous time, this should not
pose any problems. However, in practice smoothing is
done on a discrete-time sequenceh(n) of finite length
N , and in this case thet < 0 part of the time do-
main window appears at the end of the window sequence
w(N − n) = w(n), (see Fig. 2 (b) of [9]). As a result,
then > N/2 part ofh(n) is treated as negative times by
the discrete-time smoothing operation,1 thus, it should
be zero for causal impulse responses. Therefore, the ini-
tial half windoww0(n) applied toh(n) before smoothing
should be of lengthN/2, and notN as suggested in [9].

When the width of the frequency-domain smoothing
function depends on frequency, the operation equals to
multiplying the impulse response with window whose
length is frequency dependent. In practice, this means
that the original impulse response is windowed to shorter
length at high frequencies compared to the low ones,
which also has some connections to how reflections
are processed in our auditory system [9]. Frequency-
dependent signal windowing, which is equivalent to
transfer function smoothing as noted above, has also
been proposed in [10]. Naturally, not only fixed
fractional-octave (logarithmic), but arbitrary smoothing
resolution can be applied, including those corresponding
to Bark or ERB scales [9].

Note that the magnitude of the complex-smoothed trans-
fer function will differ from that of the traditional mag-
nitude or power smoothing, since some energy will be
“lost” in the high frequencies due to the shorter corre-
sponding time window [9]. This effect can be eliminated
if needed by the use of “equivalent complex smoothing”
[9], where the magnitude of the smoothed transfer func-
tion is corrected to match that of the power-smoothed

1This is similar how DFT represents negative frequencies in the up-
per half of the data set.
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version. Alternatively, the magnitude and phase of the
transfer function can be smoothed separately [11].

Besides signal analysis, complex-smoothed trans-
fer functions have been successfully applied for
loudspeaker-room response equalization, where the
complex-smoothed impulse response is used for FIR in-
verse filter design [12]. In addition, some kind of transfer
function smoothing (mostly magnitude smoothing) is ap-
plied in most room equalization systems as a preprocess-
ing step before filter design (see, e.g., [3, 5, 8]), to avoid
the problems of direct inversion mentioned in the Intro-
duction.

3. WARPED AND KAUTZ FILTERS

Traditional FIR and IIR filter design techniques or sys-
tem identification methods provide a linear frequency
resolution, as opposed to the quasi-logarithmic resolu-
tion of hearing. Therefore, in audio, often specialized
filter design methodologies are used. While there are
many different techniques that take into account the fre-
quency resolution of hearing, only those are addressed
here that have a direct connection to complex smooth-
ing, or, equivalently, to frequency dependent windowing.

3.1. Warped filters

The most commonly used perceptually motivated design
technique is based on frequency warping [13, 14]. The
basic idea of warped filters is that the unit delayz−1 in
the traditional FIR or IIR filters is replaced by an allpass
filter

z−1 ← D(z) =
z−1 − λ

1− λz−1
. (1)

By a particular choice of theλ parameter, it is possible
to match the Bark or ERB scale closely [15].

The design of warped filters starts with warping the tar-
get impulse responseht(n), e.g., by the use of an all-
pass chain, which can be considered as the frequency-
dependent resampling of the impulse response. Then,
warped FIR (WFIR) filters can be obtained by truncating
or windowing the warped target responseh̃t(n). It fol-
lows directly from this design principle that WFIR filters
perform frequency-dependent windowing [10], because
the traditional, fixed-length windowing operation is em-
bedded in a frequency-dependent resampling and its in-
verse operation. Accordingly, WFIR filters have been
used for magnitude equalization of room responses with

similar results compared to FIR filters obtained by com-
plex smoothing, at a significantly lower computational
cost [6]. However, the choice of the frequency profile of
the “built in smoothing function” is limited in the case
of WFIR filters, as the frequency transformation is con-
trolled by only one parameterλ.

This is illustrated in Fig. 1, where the minimum-phase
version of a loudspeaker-room response (a) is mod-
eled by 32nd order warped FIR filters withλ =
0.55; 0.85; 0.95 parameters, displayed in (b), (c), and (d),
respectively. While (a) solid line displays the target re-
sponse after third-octave smoothing,2 the WFIR filters
are designed using the unsmoothed target response, to
demonstrate the smoothing behaviour of WFIR filters. It
can be seen that the allocation of the frequency resolution
is controlled by theλ parameter, and lower values lead
to better high frequency resolution, while larger ones in-
crease the resolution at low frequencies. It can be also
seen that none of theλ parameters distribute the resolu-
tion evenly on the logarithmic frequency scale.

Note that for warped IIR (WIIR) filters no direct connec-
tions with complex smoothing can be made.

3.2. Kautz filters

Kautz filters can be seen as the generalization of WFIR
filters, where the allpass filters in the chain are not identi-
cal [17, 18]. As a result, the frequency resolution can be
allocated arbitrarily by the choice of the filter poles. The
Kautz structure is a linear-in-parameter model, where the
basis functions are the orthonormalized versions of de-
caying exponentials. The transfer function of the Kautz
filter is:

H(z) =

N
∑

k=0

wkGk(z)

=

N
∑

k=0

wk





√

1− pkp∗k
1− pkz−1

k−1
∏

j=0

z−1 − p∗j
1− pjz−1



 , (2)

2Note that there is no generally accepted standard how third-octave
smoothing should be performed. In this paper, third-octavesmoothing
corresponds to convolving the transfer function with a hanning window
having the full width of 2/3-octave (i.e., its half width, or, the distance
of its 0.5 points is third octave). This complies with the results of ana-
log third-octave analyzers, where the half-power points ofthe bandpass
filters have a third-octave distance [16].
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Fig. 1: Loudspeaker-room response modeling compari-
son: (a) third-octave smoothed target response (dashed
line without smoothing), (b)-(d) 32nd order WFIR fil-
ters withλ = 0.55; 0.85; 0.95 parameters, (e) Kautz fil-
ter with 16 logarithmically spaced pole pairs (filter order
is 32), and (f) parallel filter with the same pole set as
for the Kautz filter. The vertical lines indicate the pole
frequencies of the Kautz and parallel filters.

whereGk(z) are the orthonormal Kautz functions deter-
mined by the pole setpk, andp∗k are the complex con-
jugate ofpk. The advantage of the orthonormality of
Gk(z) functions is that the weightswk can be determined
from the target responseht(n) by a scalar product

wk =

∞
∑

n=1

gk(n)ht(n), (3)

wheregk(n) are the inversez transform ofGk(z).

It is impractical to implement Kautz filters by a series
of complex first-order allpass filters as in Eq. (2), and
combining the complex pole pairs to second-order sec-
tions yields lower computational complexity [17]. How-
ever, the combined cascade-parallel nature of the filter
still requires more computation compared to filters im-
plemented in direct or cascade form with the same filter
order.

For determining the polespk of the Kautz filter, several
methods are discussed in [17], including some iterative
techniques. For our purposes, the most interesting is the
one that sets the poles according to the required reso-
lution, e.g., by applying a logarithmic pole distribution.

This is illustrated in in Fig. 1 (e), displaying the fre-
quency response of a Kautz filter designed to match the
unsmoothed target response of Fig. 1 (a), dashed line. It
can be seen that by placing 2/3 poles per octave (verti-
cal lines in Fig. 1), the resulting filter response approxi-
mates the third-octave smoothed transfer function, Fig. 1
(a) solid line. It is important to stress that the Kautz fil-
ter was designed from the unsmoothed response, thus, it
performs smoothing “automatically”. The present paper
provides a theoretical explanation to this phenomenon,
after proving the equivalence of Kautz and parallel filters
in Sec. 4.4.

4. THE PARALLEL FILTER

Recently, a fixed-pole design method has been intro-
duced for parallel second-order filters [19, 20]. It has
been shown that effectively the same results can be
achieved by the parallel filters as with Kautz filters for
the same filter order, at 2/3 of their computational cost.

Implementing IIR filters in the form of parallel second-
order sections has been used traditionally because it has
better quantization noise performance and the possibility
of code parallelization. The parameters of the second-
order sections are usually determined from direct form
IIR filters by partial fraction expansion [21]. In contrast,
here the poles are set to a predetermined (e.g., logarith-
mic) frequency scale, leaving the zeros as free parame-
ters for optimization. As we shall see later, the motiva-
tion for fixing the poles is to gain control over the fre-
quency resolution of the design.

4.1. Problem formulation

Every transfer function of the formH(z−1) = B(z−1)/
A(z−1) can be rewritten in the form of partial fractions:

H(z−1) =

K
∑

k=1

ck
1

1− pkz−1
+

M
∑

m=0

bmz−n, (4)

wherepk are the poles, forming either conjugate pairs
or real valued, if the system has a real impulse response.
The second sum in Eq. (4) is the FIR part of orderM .
If the order ofA(z−1) andB(z−1) is the same, then it
reduces to a constant coefficientb0. Note that Eq. (4) is
valid only if no multiple poles are present. In the case of
pole multiplicity, terms of higher order also appear.

Now let us assume that we are trying to fit the filter
H(z−1) to a target response, but the poles of our IIR
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Fig. 2: Structure of the parallel second-order filter.

filter are also known. In this case Eq. (4) becomes lin-
ear in parametersck andbm, thus, they can be estimated
by a simple least squares algorithm to match the required
response.

The resulting filter can be implemented directly as in
(4), forming parallel first-order complex filters, and the
estimation of the parameters can be carried out as de-
scribed in [19]. However, it is more practical to com-
bine the complex pole pairs to a common denominator.
This results in second-order sections with real valued co-
efficients, which can be implemented more efficiently.
Those fractions of (4) that have real poles can be com-
bined with other real poles to form second-order IIR fil-
ters, yielding a canonical structure. Thus, the transfer
function becomes

H(z−1) =
K

∑

k=1

dk,0 + dk,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M
∑

m=0

bmz−n

(5)
whereK is the number of second order sections. The
filter structure is depicted in Fig. 2.

In the context of approximating complex smoothing, the
pole frequenciesfk should be set according to the re-
quired frequency resolution. Accordingly, the poles of
the parallel filter,pk, are computed by the following for-
mulas:

ϑk =
2πfk

fs
(6a)

pk = e−
∆ϑ

k

2 e±jϑk , (6b)

whereϑk are the pole frequencies in radians given by
the predetermined (e.g., logarithmic) analog frequency

seriesfk and the sampling frequencyfs. The bandwidth
of the kth second-order section∆ϑk is computed from
the neighboring pole frequencies

∆ϑk =
ϑk+1−ϑk−1

2
for k = [2, .., K − 1]

∆ϑ1 = ϑ2 − ϑ1

∆ϑK = ϑK − ϑK−1 (7)

Equation (6b) sets the pole radii|pk| in such a way that
the transfer functions of the parallel sections cross ap-
proximately at their -3dB point.

4.2. Filter design

First, we investigate how the parameters of the parallel
filter can be estimated to match a desired filter response.
The simplest way is to find the coefficients in the time
domain. The impulse response of the parallel filter is
given by

h(n) =

K
∑

k=1

dk,0uk(n)+dk,1uk(n−1)+

M
∑

m=0

bmδ(n−m)

(8)
whereuk(n) is the impulse response of the transfer func-
tion 1/(1 + ak,1z

−1 + ak,2z
−2), which is an exponen-

tially decaying sinusoidal function, andδ(n) is the dis-
crete unit impulse.

Conceptually, filter design simply consists of creating a
weighted sum of the exponentially decaying sinusoidal
functions (and unit impulses if there is an FIR part) in
such a way that the resulting signal best approximates
the target impulse responseht(n).

Because (8) is linear in parameters, it can be written in a
matrix form:

h = Mp (9)

wherep = [d1,0, d1,1, . . . dK,0, dK,1, b0 . . . bM ]T is a
column vector composed of the free parameters. The
columns of the modeling signal matrixM contain the
modeling signals, which areuk(n) and their delayed
counterpartsuk(n − 1), and for the FIR part, the unit
impulseδ(n) and its delayed versions up toδ(n −M).
Finally, h = [h(0) . . . h(N)]T is a column vector com-
posed of the resulting impulse response. The problem
reduces to finding the optimal parameterspopt such that
h = Mpopt is closest to the target responseht. If the
error function is evaluated in the mean squares sense, the
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optimum is found by the well known LS solution

popt = M+ht (10a)

M+ = (MHM)−1MH (10b)

where M+ is the Moore-Penrose pseudoinverse, and
MH is the conjugate transpose ofM. Note that if the fre-
quency resolution – thus the pole set and modeling ma-
trix M – is fixed, the pseudo-inverseM+ can be precom-
puted and stored, so the parameter estimation reduces to
a matrix multiplication according to Eq. (10a).

In Fig. 1 (f), a parallel filter design example is presented
for the same loudspeaker-room target response as for
warped and Kautz filters in Sec. 3. The same logarithmic
pole set is used as for the Kautz filter. It can be seen that
the parallel filter (f) results in the same filter response as
the Kautz filter (e).

4.3. Direct equalizer design

Equalizing a system (such as a loudspeaker) by the par-
allel filter can be done by first inverting the system re-
sponse and designing the parallel filter as outlined in the
previous section. However, it is more practical to de-
sign the equalizer directly without inverting the system
response [20], since this simplifies the design and avoids
many problems presented by the direct inversion of the
measured transfer function.

Designing an equalizer requires that the resulting re-
sponseh(n), which is the convolution of the equalizer
responseheq(n) and the system responsehs(n), is close
to the target responseht(n) (which can be a unit impulse,
for example). By looking at Fig. 2, the basic idea of
equalizer design is the following: imagine the system re-
sponsehs(n) is fed to the input of the parallel filter, and
the weightsdk,0, dk,1, andbm should be set in such a
way that the summed output best approximates the target
impulse responseht(n).

Accordingly, the output of the parallel filter is computed

as

h(n) = heq(n) ∗ hs(n) =

K
∑

k=1

dk,0uk(n) ∗ hs(n) + dk,1uk(n− 1) ∗ hs(n)+

M
∑

m=0

bmδ(n−m) ∗ hs(n) =

K
∑

k=1

dk,0sk(n) + dk,1sk(n− 1) +

M
∑

m=0

bmhs(n−m)

(11)

where ∗ denotes convolution. The signalsk(n) =
uk(n) ∗ hs(n) is the system responsehs(n) filtered by
1/(1 + ak,1z

−1 + ak,2z
−2). It can be seen that (11) has

the same structure as (8). Therefore, the parametersdk,0,
dk,1, andbm can be estimated in the same way as pre-
sented in the previous section. Similarly, writing this in
a matrix form yields

h = Meqp (12)

where the columns of the new signal modeling matrix
Meq containsk(n), sk(n − 1), and the system response
hs(n) and its delayed versions up tohs(n −M). Then,
the optimal set of parameters is again obtained by

popt = M+
eqht (13a)

M+
eq = (MH

eqM)−1MH
eq. (13b)

4.4. Equivalence with Kautz filters

While it was clear from simulations and theoretical rea-
soning [20] that Kautz and parallel filters result in the
same filter response for the same pole set (see also
Fig. 1), a formal proof has not been provided previously.
The proof presented here is based on the partial fraction
expansion of the Kautz basis functions. According to
Eq. (2), thekth basis function of the Kautz filter is

Gk(z) =

√

1− pkp∗k
1− pkz−1

k−1
∏

j=0

z−1 − p∗j
1− pjz−1

, (14)

which is akth order filter. In the case of no multiple
poles, which is easily satisfied when the pole set is pre-
determined, Eq. (14) can be written in a partial fraction
form

Gk(z−1) =

k
∑

i=1

ck,i
1

1− piz−1
, (15)
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where thek coefficientsck,i are found by the usual pro-
cedure of partial fraction expansion [21] in a closed form:

ck,i =
√

1− pkp∗k

k
∏

j=1,j 6=i

1

pi − pj

k−1
∏

j=1

(1−p∗jpi). (16)

By noting that the partial fraction form of Eq. (15) is the
same as the complex form of the parallel filter Eq. (4)
without the FIR part (M=0), it is clear that the Kautz ba-
sis functions can be reconstructed by the parallel filter
exactly. As the Kautz filter response is the linear combi-
nation of the Kautz basis functionsGk(z), it is straight-
forward to convert a Kautz filter into a parallel filter. If
the parameters of the Kautz filter are ginven in a vector
w = [w1, . . . , wK ]T , the parameter vector of the parallel
filter c = [c1, . . . , cK ]T can be obtained by the matrix
multiplication

c = Kw (17)

where the conversion matrixK is given as

Ki,k =
√

1− pkp∗k

k
∏

j=1,j 6=i

1

pi − pj

k−1
∏

j=1

(1− p∗jpi)

for i ≤ k,

Kk,i = 0 for i > k (18)

SinceK is tridiagonal, and for simple poles it does not
have zero values in its diagonal, it is nonsingular. As a
result, the inverse matrixK−1 can be computed that can
be used to convert the parallel filter parameters to Kautz
parameters (w = K−1c).

Basically, we have shown that the basis functions of the
parallel and Kautz filters span the same approximation
space, and converting between the two filters is merely a
base change. Therefore, approximating a target response
using any error norm (e.g., theL2 norm in least-squares
design) will lead to exactly the same filter response in
both cases.

Besides its theoretical importance, the possibility of con-
verting the Kautz parameters to the parallel filter para-
meters allows a computationally more efficient design
of the parallel filter. Namely, first a Kautz filter is de-
signed by the scalar product of Eq. (3), then the para-
meters are converted by Eqs. (17) and (18). While this
seems to be conceptually more complicated, the number
of required arithmetic operations is reduced compared to
the LS design of Eq. (10), so it is a useful alternative for

high (> 100) filter orders. Note that in the case of di-
rect equalizer design of Sec. 4.3 this procedure does not
provide any computational benefits compared to the LS
design of Eq. (13), since for that case the scalar product
of Eq. (3) cannot be used and also the Kautz filter has to
be designed by a LS equation [18].

5. AN EFFICIENT ALTERNATIVE TO COMPLEX
SMOOTHING

By observing the results of parallel and Kautz filters (see
Fig. 1 (e) and (f)), it is apparent that the effect of filter
design is similar to that of the fractional-octave complex-
smoothing of transfer functions. However, the theoreti-
cal reasons for this similarity have remained unexplored.
In this paper, the case of the parallel filter is investigated,
but since it results in exactly the same filter response as
the Kautz filter (as it was proven in Sec. 4.4), the obser-
vations can be generalized for the Kautz filter as well.

5.1. Linear pole distribution

We start our analysis with the simplest case, where theK
poles of the parallel filter are distributed evenly on a cir-
cle of radiusR < 1. After some algebra, it is relatively
straightforward to demonstrate that the transfer function
of the parallel filter with such a pole distribution is actu-
ally equivalent to a comb filter and a(K−1)th order FIR
filter B(z−1) in series:

K
∑

k=1

ck

1−Rej2πk/Kz−1
= B(z−1)

1

1− z−KRK

≈ B(z−1). (19)

In practice,RK ≪ 1, therefore, the transfer function can
be approximated by the FIR part only. Since the coeffi-
cients of the FIR filterB(z−1) can be computed as the
linear combination of the parameters of the parallel filter
ck, designing the filter in the FIR form is equivalent to
designing it in its original parallel form. When designing
the parallel filter according to Eq. (10), the mean-squared
error between the target impulse responseht(n) and the
filter responseh(n) is minimized. In the equivalent FIR
design, the mean-squared error is minimal if the K coef-
ficients of the FIR filter are chosen to be equal to the first
K samples of the target responseht(n). Therefore, the
resulting impulse responseh(n) is the truncated version
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of the target responseht(n), which is equivalent to mul-
tiplying the target response with a rectangular window
w(n) of lengthK.

Note that this window is defined only for positive times
n ≥ 0 (it is a half window), in contrast to the symmetric
window used in complex smoothing (see Sec. 2). Since
for causal impulse responsesh(n) = 0 for n < 0, we
may think of extending the windoww(n) to negative
times by settingw(−n) = w(n), without influencing the
resulth(n) = ht(n)w(n). This has the advantage that
now the results will be directly comparable with those of
complex smoothing.

Accordingly, designing a parallel filter with a linear pole
distribution is equivalent to multiplying the target re-
sponse with a symmetric rectangular window of total
length2K−1. In the frequency domain, this corresponds
to convolving the transfer function with asinc-like (peri-
odic sinc) function:

H(ϑ) = Ht(ϑ) ∗
sin

(

2K−1
2

ϑ
)

sin
(

1
2
ϑ
) (20)

which is clearly a form of transfer function smoothing.
Actually, it corresponds to “filtering” the transfer func-
tion with an ideal lowpass filter. It can also be seen that
the smoothing function does not depend on frequency,
as expected from linear frequency resolution. Note that
the main lobe of thesinc-like function in Eq. 20 approx-
imates a hanning window quite closely. The width of the
main lobe is4π/(2K−1) ≈ 2π/K, therefore, the effect
will be similar to smoothing the transfer function with
a 2π/K wide symmetric hanning window, where2π/K
equals to the distance of pole frequencies∆ϑ.

5.2. Stepwise linear pole distribution

Next, let us consider a more interesting case, when the
pole density is different in the various regions of the fre-
quency range, but it is is constant within each region.
In this case, it is not possible to derive the smoothing
function in a closed form, as in Sec. 5.1. Therefore, a
different approach is taken.

Since the parameters of the parallel filter are determined
by a linear LS design, the superposition principle holds.
This means that if we decompose the target response
ht(n) as a sum of some test functions, the filter response
h(n) will be equal to the sum of filter responses designed
for the test functions separately. Since we would like to
gain some insight to the frequency-dependent nature of
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Fig. 3: Modeling a complex exponentiale−jϑ0n with
a parallel filter having stepwise linear frequency resolu-
tion: (a)ϑ0 = 1/4π, (b)ϑ0 = 1/2π, and (c)ϑ0 = 3/4π.
The dashed line is the target responsee−jϑ0n and the
solid line is the resulting parallel filter impulse response.
Only real parts of the signals are shown.

smoothing, a natural choice for such a test function is the
basis function of the Fourier transforme−jϑ0n, whereϑ0

is the angular frequency of the complex exponential. In
the frequency domain, this is equivalent toδ(ϑ − ϑ0),
which is a Dirac delta function at positionϑ0. Accord-
ingly, in the frequency domain, we are computing the
“impulse response” of the smoothing operation, that is,
we obtain the smoothing function directly.

If the ovarlap of the basis functions of the parallel fil-
ter is not too large, our test functione−jϑ0n will be ap-
proximated by parallel sections whose center frequency
is near toϑ0, while the contribution of the other sections
will be negligible. Therefore, we expect that the width of
the smoothing function in the frequency domain, and the
length of the corresponding window function in the time
domain will only depend on thelocal pole density near
ϑ0.

From Sec. 5.1 we may stipulate that if the the distance
of the poles is∆ϑ in some frequency region, the “width”
of the smoothing function in that region should be∆ϑ,
and signals in that frequency range should be windowed
to a length2π/∆ϑ (or, the equivalent symmetric time
window should have the length4π/∆ϑ− 1).
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Fig. 4: Smoothing functions corresponding to the cases
of Fig. 3 (a)-(c). The dotted vertical lines display the pole
frequencies of the parallel filter. The dashed lines show
the1/|ϑ− ϑ0| envelope of the transfer functions.

This is illustrated in Figs. 3 and 4, displaying a parallel
filter design with 30 poles (15 pole pairs) around the unit
circle. The pole frequencies are chosen in such a way
that 20 poles are distributed evenly in the lower half of
the frequency range|ϑ| ≤ π/2, while 10 poles are spread
in the upper rangeπ/2 < |ϑ| ≤ π. That is, the pole
frequency distance∆ϑ1 = 1/20π is the half in the low
range compared to the high one∆ϑ2 = 1/10π (see the
dotted vertical lines in Fig. 4).

In Fig. 3 the target impulse responsese−jϑ0n are dis-
played by dashed lines, and the resulting parallel filter
responses by solid lines. Note that the target and filter
responses are complex, here only the real parts of the
signals are shown, since the imaginary parts would show
a similar behavior. Figure 3 (a) shows a case when the
frequency of the exponential test function is in the high
pole density region, while in (c) the frequency is in the
low pole density region of the filter. As expected, the re-
sulting impulse response (solid line) is “windowed” to a
longer length in the first case compared to the second
case. The theoretically computed half window length
2π/∆ϑ is 40 and 20 for (a) and (c), which is in a good
agreement with what can be observed in practice. Fig-
ure 3 (b) displays an intermediate case when the fre-
quency of the test signal is exactly at the boundary of

the two pole density regions. This results in a more mild
windowing, where the window length is somewhere in
between the (a) and (c) cases.

The same phenomenon can also be observed in the fre-
quency domain in Fig. 4, for the same cases. The solid
lines display the transfer functions of the resulting fil-
ters trying to approximate the test functione−jϑ0n, again
with (a)ϑ0 = 1/4π, (b) ϑ0 = 1/2π, and (c)ϑ0 = 3/4π.
Note that the frequency responses were computed by
extending the parallel filter responses to negative times
h(−n) = h∗(n), to comply with the symmetric windows
used in complex smoothing. Accordingly, the frequency
responses displayed in Fig. 4 are real (zero phase) func-
tions, and can be directly compared by the smoothing
windows used in complex smoothing. In Fig. 4, the dot-
ted vertical lines show the pole frequencies of the parallel
filter. It can be seen in (a) and (c), that the width of the
main lobe equals to the pole distance∆ϑ in that region,
and so is the periodicity. Locally, the smoothing func-
tion has a sinc-like shape, similarly to the case of the lin-
ear pole distribution of Sec. 5.1. The dashed lines show
the theoretical1/|ϑ− ϑ0| envelope of the sinc function.
Again, (b) is a borderline case where the envelope still
follows that of a regular sinc function, but the periodic-
ity is different at the left and right side, coming from the
different pole densities.

5.3. Logarithmic pole distribution

As a final example, let us consider a case with log-
arithmic frequency resolution, when the parallel filter
has three poles in each octave, having all together 31
pole pairs from 20 to 20480 Hz. The test function is
again a complex exponential, withϑ0 = 2πf0/fs, where
f0 = 1050 Hz is the frequency of the exponential, and
fs = 44.1 kHz is the sampling frequency. The time do-
main (real part) and frequency domain responses are dis-
played in Fig. 5 (a) and (b), respectively. Note the linear
frequency axis in (b).

It can be seen in Fig. 5 (a) that now the target function
is “windowed” quite mildly and it has a low frequency
tail. In the frequency domain (Fig. 5 (b)) the density of
the notches of thesinc-like function (solid line) follow
that of the pole distribution (dotted vertical lines). How-
ever, the envelope of the smoothing function still shows
the 1/ϑ behaviour, corresponding to the envelope of a
regular sinc function.
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Fig. 5: Modeling an exponential test functione−jϑ0n

with a parallel filter having logarithmic frequency res-
olution: (a): the real parts of the target impulse response
(dashed line) and the parallel filter response (solid line),
(b): the smoothing function of the parallel filter (solid
line) and its1/|ϑ − ϑ0| envelope. The vertical dotted
lines display the pole frequencies.

Figure 6 solid line displayes the same frequency response
on a logarithmic frequency scale. Now it is easy to note
that the periodicity of the window function is exactly log-
arithmic. The smoothing function may be approximated
by a “logsinc” function

S(ϑ) = C
sin(2πβ log2(

ϑ
ϑ0

))

ϑ− ϑ0

, (21)

whereC is a positive constant, andβ is the pole per oc-
tave density (in our case,β = 3). This function is dis-
played by a dashed line in Fig. 6, matching the filter re-
sponse very precisely.

Naturally, further examples could be presented with, e.g.,
stepwise logarithmic pole distribution, or that of follow-
ing the Bark or ERB scale, but according to the above ex-
amples, the reader should already have an intuition about
the smoothing behavior of the parallel filter.

6. DESIGN EXAMPLES AND COMPARISON

An example for loudspeaker-room response modeling
has already been displayed in Fig. 1. Now we are de-
signing an equalizer for the same system response. The
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Fig. 6: The smoothing function of Fig. 5 (b) displayed in
a logarithmic frequency axis (solid line). The dashed line
shows the approximating “logsinc” function Eq. (21).
The vertical dotted lines display the pole frequencies.

target response is a second-order high-pass filter with a
cutoff frequency of 50 Hz, and the frequency resolution
of the design is third octave.

The system responsehs(n) is displayed in Fig. 7 (a),
1/12 octave smoothed for clarity. It’s third-octave com-
plex smoothed versionhcs(n) is displayed in Fig. 7 (a),
which is used for a 2500 tap FIR equalizer design by a
least-squares system identification approach [12]. In this
case, the parameters are estimated in such a way so that
the complex-smoothed system responsehcs(n) filtered
by the FIR filter best approximates the target response
ht(n) in the LS sense. The system response equalized
by this FIR filter is shown in Fig. 7 (b), while the transfer
function of the FIR equalizer itself can be seen in Fig. 8
(b). The FIR filter smooths the overall response quite
nicely while avoids equalizing the narrow peaks and dips
that would happen when designing from the unsmoothed
system response (direct inversion).

However, the computational complexity of the 2500 tap
FIR filter is too large compared to the simple task it
should accomplish. A straightforward option for de-
creasing the computational complexity is to estimate a
warped IIR filter based on the complex-smoothed system
response. Figure 7 (c) displays the loudspeaker-room re-
sponse equalized by such a WIIR filter having an order of
32 andλ = 0.75. The transfer function of the WIIR filter
is shown in Fig. 8 (c). It can be seen in Figs. 7 and 8 that
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the results are almost the same as for the FIR filter, ex-
pect at very low frequencies. Note that the low frequency
precision could be increased by using largerλ values, but
that often results in unstable filters in practice. Also note
that the case of strictly logarithmic frequency resolution
coming from third-octave smoothing is a relatively easy
task for the WIIR filter, since it is quite close to its natural
frequency resolution. For arbitrary frequency resolution
profiles (such as having much higher resolution at low
frequencies compared to the high ones), the performance
of the WIIR filter would be less than satisfactory.

Figure 7 (d) shows the loudspeaker-room response equal-
ized by a 16 section parallel filter, having the same total
filter order as the WIIR filter of (c). The parallel filter
was designed by the direct method presented in Sec. 4.3,
by using theunsmoothedsystem response (we note again
that the FIR and WIIR examples were designed using the
complex-smoothedsystem response). To achieve the re-
quired third-octave resolution, three poles are placed in
each two octaves (the pole density is 3/2 pole/octave).
The resulting equalizer performance is as good as for the
FIR and IIR case, while the design is much simplified,
since there is no need for smoothing the target response.
This is because the smoothing is done “automatically”,
as already discussed in Sec. 2. In addition, the procedure
always results in a stable filter, and is equally efficient at
arbitrary (i.e., not strictry logaritmic) frequency resolu-
tion, on the contrary to the WIIR design.

Figure 9 shows two additional examples illustrating
some of the capabilities of the parallel filter using arbi-
trary pole distributions. Often it is desired that the low
frequencies of the loudspeaker-room response are more
precisely equalized compared to the high ones. This is
now achieved by a parallel filter having 6 poles per oc-
tave below 320 Hz (corresponding to twelfth-octave res-
olution), and 3/2 pole per octave above (third-octave res-
olution). The equalized response is displayed in Fig. 9
(b), while the transfer function of the equalizer is shown
in (d), together with the pole frequencies as vertical dot-
ted lines. One can see that the 34 section parallel filter
achieves a quite flat frequency response.
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Fig. 7: Loudspeaker-room equalization: (a) the unequal-
ized system response, (b) equalized by a 2500 tap FIR
filter estimated using the third-octave complex-smoothed
system response, (c) 32nd order WIIR filter estimated us-
ing the third-octave complex-smoothed system response,
and (d) a 16 section (32nd order) parallel filter designed
using theunsmoothedsystem response. All responses
smoothed to a 1/12 octave resolution for clarity.

Figure 9 (c) displays an example when only the problem-
atic low frequency region is equalized by seven second-
order sections. In this case, the seven pole pairs are log-
arithmically distributed between 20 and 320 Hz, corre-
sponding to a third-octave resolution (see dotted verti-
cal lines in Figure 9 (e)), and a zero-order FIR part (the
constant coefficientb0 in Fig. 2) is also utilized. The
transfer function of the equalizer is shown in Fig. 9. It
is important to note that the equalizer is designed from
the unsmoothed loudspeaker-room response exactly as in
the previous cases, and there is no need to do any addi-
tional processing, like flattening the response above the
frequency region of the equalization, etc.

7. DISCUSSION

We have seen in Sec. 2 that designing a parallel filter is
equivalent to smoothing the target response by a sinc-
like function, and in the examples of Sec. 6 that the
smoothing behavior is also present in direct equalizer
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Fig. 8: Equalizer responses for the loudspeaker-room
equalization of Fig. 7: (a) the third-octave smoothed
system response used for designing the FIR and WIIR
equalizers, the transfer functions of the (b) FIR and (c)
WIIR equalizers, (d) and the transfer function of the par-
allel filter.

design. The width of the main lobe of the sinc func-
tion equals to the pole frequency distance in that region.
Moreover, the main lobe of the sinc function closely ap-
proximates a hanning window, a window function com-
monly used in transfer function smoothing. For obtain-
ing a given∆f resolution at some frequency region, the
distance of the analog pole frequencies of the parallel fil-
ter should be2∆f , since that corresponds to smoothing
by a2∆f wide hanning window. In the logarithmic fre-
quency scale, if1/β octave resolution is desired,β/2
pole pairs have to be placed in each octave.

In practice, the fixed-pole parallel filters can be used in
two ways in relation to complex smoothing:

1) Design of parallel filters instead of transfer func-
tion smoothing: In this case, the system is modeled or
equalized by the parallel filter without any frequency-
domain processing. Thus, the parallel filter is used both
as the final implementation structure and a means of
achieving complex smoothing. Here, the resolution is
controlled by the choice of the pole frequencies. The fil-
ter is optimal in the sense that the filter order will corre-
spond to the obtained resolution. An additonal advantage
of this approach that the parameter estimation is simpli-
fied since there is no need to implement the complex-
smoothing operation.
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Fig. 9: Illustrating the possibilities using various pole
distributions in the parallel filter: (a) the unequalized
loudspeaker-room response, (b) equalized by a parallel
filter having four times higher pole density below 320 Hz
then above, (c) equalized by a parallel filter having poles
only below 320 Hz. The transfer functions of the equal-
izers for the cases (b) and (c) are displayed in (d) and (e),
respectively. The dotted vertical lines display the pole
frequencies of the corresponding equalizers. Curves (a)–
(c) are smoothed to a 1/12 octave resolution for clarity.

2) Design of parallel filters together with transfer
function smoothing: In this case, the parallel filter is de-
signed by using the smoothed frequency response. This
does not make too much sense for complex-smoothed re-
sponses, since almost the same results could be achieved
without prior smoothing. However, if the system re-
sponse is smoothed by some nonlinear processing (e.g.,
eliminating the dips below certain threshold, or by the
use of an auditory model), then the parallel filter can be
used as an efficient implementation of the smoothed re-
sponse. In this case, the local pole density of the parallel
filter should be set according to the local resolution of the
smoothed transfer function. (Note that for implementing
already smoothed responses the warped IIR filter is also
a strong contender, but it may result in unstable filters,
and may provide unsatisfactory results for such smooth-
ing profiles that are not close to the natural frequency
resolution of the warped filter.)
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8. CONCLUSION

Transfer function smoothing is a well-established
method for displaying, modeling and equalizing the fre-
quency responses of audio systems, coming from both
perceptual and physical considerations. This paper has
demonstrated that the impulse response of the parallel
filter is similar to the response obtained by the complex
smoothing of the target response. As a result, the par-
allel filter can be either used as an efficient implementa-
tion of already smoothed responses, or, it can be designed
from the unsmoothed responses directly, eliminating the
need of frequency-domain processing, since it performs
smoothing “automatically”.

The obtained frequency resolution is not limited to
the logarithmic scale, but arbitrary resolution can be
achieved by the suitable choice of pole frequencies. The
formulas for computing the pole angles and radii from
analog pole frequencies were also given.

The theoretical equivalence of parallel filters and Kautz
filters has also been developed, and the formulas for
converting between the parameters of the two structures
were presented. This implies that the favorable smooth-
ing properties are also possessed by the Kautz filter. In
addition, the conversion formulas can be used for obtain-
ing the parameters of the parallel filter from the Kautz
parameters, resulting in a design procedure that requires
less arithmetic operations compared to the straightfor-
ward LS design.

While only loudspeaker-room equalization examples
have been provided, the parallel filter can be successfully
used also in other fields where the flexible allocation of
frequency resolution is beneficial. So far, it has been ap-
plied to modeling the body radiation [19] and bridge ad-
mittance [22] of musical instruments for sound synthesis,
and the modeling of the direction dependent radiation of
guitar speakers [23], and it is hoped that other applica-
tions will soon follow.
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