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ABSTRACT

Recently, the fixed-pole design of parallel second-order filters has been proposed to accomplish arbitrary fre-
quency resolution similarly to Kautz filters, at 2/3 of their computational cost. This paper relates the parallel
filter to the complex smoothing of transfer functions. Complex smoothing is a well-established method for
limiting the frequency resolution of audio transfer functions for analysis, modeling, and equalization pur-
poses. It is shown that the parallel filter response is similar to the one obtained by complex smoothing the
target response using a hanning window: a 1/8 octave resolution is achieved by using (/2 pole pairs per
octave in the parallel filter. Accordingly, the parallel filter can be either used as an efficient implementation
of smoothed responses, or, it can be designed from the unsmoothed responses directly, eliminating the need
of frequency-domain processing. In addition, the theoretical equivalence of parallel filters and Kautz filters is
developed, and the formulas for converting between the parameters of the two structures are given. Examples
of loudspeaker-room equalization are provided.

1. INTRODUCTION responses [4, 5, 6, 7, 8]. Because the systems to be equal-

Audio equalization using DSPs has been a subject of reZ€d are typically of very higher order (e.g., due to the
search for more than two decades. It generally means th@lgh modal density in room responses), the direct inver-
correction of the magnitude (and sometimes the phase'?:on _of th_e trangfer function is usyally not practlcal._A.s
response of an audio chain. Typical examples includdn€ final judge in sound quality is the human ear, it is
loudspeaker equalization based on anechoic measur8lore efficient to equalize only those aspects that lead to
ments [1, 2, 3], or the correction of loudspeaker-rooman audible error. A typical approach is to take into ac-
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count the quasi-logarithmic frequency resolution of thealternative has also appeared, allowing the reconsttuctio
human auditory system during equalizer design. of a smoothed impulse response via IFFT [9]. Smooth-

. - . ing of th mplex transfer function is in practice done
Besides efficiency and perceptual aspects, there is also ag of the complex t P

. . o ... by convolving it with a smoothing function, thus, it is
physmal reason for applymg logarithmic or logarithmic- equivalent to multiplying the impulse response with a
like freqqency resolutl_on. Namely,_an aydlo system qfteqime-domain window function.
has multiple outputs, like multiple listening positionsin
room, and the equalizer should maintain or improve theNote that in complex smoothing, the smoothing func-
sound quality at all positions. Transfer functions mea-tion is chosen to be a real (zero phase) function [9],
sured at different positions in space have more similaritywhich has an important consequence that is not very
at low frequencies than at high frequencies, due to thenuch discussed in the literature. Since the frequency-
different wavelengths of sound. An overly precise cor-domain smoothing function is real, the corresponding
rection at high frequencies for one measurement positiotime window will be symmetric arountl = 0, that is,
usually worsens the response at other points in spaces(—t) = w(¢). In continuous time, this should not
Accordingly, the direct inversion of measured transferpose any problems. However, in practice smoothing is
functions not only wastes computational resources, butlone on a discrete-time sequerig@:) of finite length
also leads to unacceptable results [5, 6]. N, and in this case theé < 0 part of the time do-

This paper demonstrates that fixed-pole parallel filterd 2N window appears at the end of the window sequence

can be efficiently used for the modeling or equalizationw(N —n) = w(n), (see_Flg. 2 (b) of [9)). A.‘S a result,

i gy then > N/2 part of h(n) is treated as negative times by
qf audio systems, as th_ey POSSES the _beneflc_lal prqpe{ﬁe discrete-time smoothing operatidrthus, it should
ties of complex smoothing, while require relatively it be zero for causal impulse responses. Therefore, the ini-

tle Processing power both for f||te_r|ng and for parame- half windoww (n) applied toh(n) before smoothing
ter estimation. The paper first reviews fractional-octave

smoothing in Sec. 2, then covers the related warped anahOUId be of lengttV'/2, and notV as suggested in [9].
Kautz filters in Sec. 3. Section 4 outlines the theory ofWhen the width of the frequency-domain smoothing
parallel filters and proves their equivalence with Kautzfunction depends on frequency, the operation equals to
filters. Section 5 relates parallel filter design to complexmultiplying the impulse response with window whose
smoothing, and Sec. 6 presents loudspeaker-room equaéngth is frequency dependent. In practice, this means
ization examples and comparison. Finally, Sec. 7 giveshat the original impulse response is windowed to shorter
practical implications and Sec. 8 concludes the paper. length at high frequencies compared to the low ones,
which also has some connections to how reflections
2. FRACTIONAL-OCTAVE SMOOTHING OF are processed in our auditory system [9]. Frequency-
TRANSFER FUNCTIONS dependent signal windowing, which is equivalent to
transfer function smoothing as noted above, has also
The quasi-logarithmic frequency resolution of humanbeer.] proposed in [10.]' .Naturally, _not only flxgd
hearing is also reflected in how transfer functions are disjrachor_\al-octave (Iogqnthmw), b.Ut arbitrary smootgnn.
. o . . resolution can be applied, including those corresponding
played in the audio field. From the earliest times, a loga-
e : .~ 1o Bark or ERB scales [9].
rithmic frequency scale is used, and often the magnitude
response is smoothed at a fractional-octave (e.g., thirfiote that the magnitude of the complex-smoothed trans-
octave) resolution. The motivation behind fractional- fer function will differ from that of the traditional mag-
octave smoothing is that the original transfer functionnitude or power smoothing, since some energy will be
is too detailed for visual evaluation and the smoothedost” in the high frequencies due to the shorter corre-
version gives a good estimate of the perceived timbresponding time window [9]. This effect can be eliminated
While this practice stems from analog signal analyzersif needed by the use of “equivalent complex smoothing”
typically all current digital spectrum analyzers for audio [9], where the magnitude of the smoothed transfer func-
offer this option. tion is corrected to match that of the power-smoothed

While traditionally, smoothing has only been applied for — 1this is similar how DFT represents negative frequenciebérup-
the magnitude response of audio systems, the compleper half of the data set.
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version. Alternatively, the magnitude and phase of thesimilar results compared to FIR filters obtained by com-
transfer function can be smoothed separately [11]. plex smoothing, at a significantly lower computational

. . . cost [6]. However, the choice of the frequency profile of
Besides signal analysis, complex-smoothed trans; [6] d yPp

fer functi h b cul led f the “built in smoothing function” is limited in the case
er functions have been successiully appled 1or,¢\ypp filters, as the frequency transformation is con-
loudspeaker-room response equalization, where th

frolled by only one parametex:
complex-smoothed impulse response is used for FIR in- yonly P

verse filter design [12]. In addition, some kind of transfer This is illustrated in Fig. 1, where the minimum-phase

function smoothing (mostly magnitude smoothing) is ap-version of a loudspeaker-room response (a) is mod-
plied in most room equalization systems as a preproces¢led by 32nd order warped FIR filters with =

ing step before filter design (see, e.g., [3, 5, 8]), to avoid).55; 0.85; 0.95 parameters, displayed in (b), (c), and (d),

the problems of direct inversion mentioned in the Intro-respectively. While (a) solid line displays the target re-

duction. sponse after third-octave smoothirfigthe WFIR filters
are designed using the unsmoothed target response, to
3. WARPED AND KAUTZ FILTERS demonstrate the smoothing behaviour of WFIR filters. It

can be seen that the allocation of the frequency resolution
N ] ) ] is controlled by the\ parameter, and lower values lead
Traditional FIR and IIR filter design techniques or sys- g petter high frequency resolution, while larger ones in-
tem identification methods provide a linear frequencycrease the resolution at low frequencies. It can be also
resolution, as opposed to the quasi-logarithmic resoluseen that none of th parameters distribute the resolu-

tion of hearing. Therefore, in audio, often specializedjon evenly on the logarithmic frequency scale.
filter design methodologies are used. While there are

many different techniques that take into account the fre-
guency resolution of hearing, only those are addressed
here that have a direct connection to complex smooth-

ing’ or, equiva|ent|y, to frequency dependent Windowing_NOte that for Warped IR (W”R) filters no direct connec-
tions with complex smoothing can be made.

3.2. Kautz filters
The most commonly used perceptually motivated design

technique is based on frequency warping [13, 14]. Thfautz filters can be seen as the generalization of WFIR
basic idea of warped filters is that the unit del;ay1 in filters, where the allpass filters in the chain are not identi-
the traditional FIR or IIR filters is replaced by an allpass €@l [17, 18]. As a result, the frequency resolution can be

3.1. Warped filters

filter allocated arbitrarily by the choice of the filter poles. The
. P D Kautz structure is a linear-in-parameter model, where the
= D)= (1) basis functions are the orthonormalized versions of de-

caying exponentials. The transfer function of the Kautz

By a particular choice of tha parameter, it is possible

filter is:
to match the Bark or ERB scale closely [15]. Heris

. . . . N

The design of warped filters starts with warping the tar- -

get impulse responsk, (n), e.g., by the use of an all- H(z) = Zka’“(z)
. k . k=0

pass chain, which can be considered as the frequency-

dependent resampling of the impulse response. Then, & N X
warped FIR (WFIR) filters can be obtained by truncating - Z L ezt H 1—pz1 ]’ @)
or windowing the warped target resporisgn). It fol- k=0 g=0

lows directly from this design prmgple t.hat WFIR filters ™ 2yoe that there is no generally accepted standard how dtitaie
perform frequency-dependent windowing [10], becaus&moothing should be performed. In this paper, third-octmeothing
the traditional, fixed-length windowing operation is em- corresponds to convolving the transfer function with a agiwindow

; _ ; e ihaving the full width of 2/3-octave (i.e., its half width,,dhe distance
bedded in a frequency dependent resampllng and its II’{c:f its 0.5 points is third octave). This complies with theules of ana-

verse Operatio_n- Accordi_ngly, WFIR filters have bee_n log third-octave analyzers, where the half-power pointhefbandpass
used for magnitude equalization of room responses withilters have a third-octave distance [16].
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40 ‘ ‘ ‘ This is illustrated in in Fig. 1 (e), displaying the fre-

3 quency response of a Kautz filter designed to match the
unsmoothed target response of Fig. 1 (a), dashed line. It
can be seen that by placing 2/3 poles per octave (verti-
cal lines in Fig. 1), the resulting filter response approxi-
mates the third-octave smoothed transfer function, Fig. 1
(a) solid line. It is important to stress that the Kautz fil-
ter was designed from the unsmoothed response, thus, it
performs smoothing “automatically”. The present paper
provides a theoretical explanation to this phenomenon,
after proving the equivalence of Kautz and parallel filters
in Sec. 4.4.

Magnitude [dB]

4. THE PARALLEL FILTER

Frequency [Hz]

Recently, a fixed-pole design method has been intro-
Fig. 1: Loudspeaker-room response modeling compari-duced for parallel second-order filters [19, 20]. It has
son: (a) third-octave smoothed target response (dashdzken shown that effectively the same results can be
line without smoothing), (b)-(d) 32nd order WFIR fil- achieved by the parallel filters as with Kautz filters for
ters withA = 0.55;0.85; 0.95 parameters, (e) Kautz fil- the same filter order, at 2/3 of their computational cost.
ter with 16 logarithmically spaced pole pairs (filter order
is 32), and (f) parallel filter with the same pole set as
for the Kautz filter. The vertical lines indicate the pole
frequencies of the Kautz and parallel filters.

Implementing IR filters in the form of parallel second-
order sections has been used traditionally because it has
better quantization noise performance and the possibility
of code parallelization. The parameters of the second-
order sections are usually determined from direct form
whereGy.(z) are the orthonormal Kautz functions deter- IIR filters by partial fraction expansion [21]. In contrast,
mined by the pole sei;, andp; are the complex con- here the poles are set to a predetermined (e.g., logarith-
jugate ofp,. The advantage of the orthonormality of mic) frequency scale, leaving the zeros as free parame-
G (z) functions is that the weights,, can be determined ters for optimization. As we shall see later, the motiva-

from the target respongeg(n) by a scalar product tion for fixing the poles is to gain control over the fre-
- quency resolution of the design.
wi = Y ge(n)hi(n), (3) 4.1. Problem formulation
_ ! Every transfer function of the forf/ (:=1) = B(z71)/
wheregy (n) are the inverse transform ofGy. (2). A(z~1) can be rewritten in the form of partial fractions:

It is impractical to implement Kautz filters by a series X o

of complex first-order allpass filters as in Eq. (2), and H(z-1) — 1 — 4
combining the complex pole pairs to second-order sec- (z7) = ;ck 1 —prpz—t + Z mz " (4)
tions yields lower computational complexity [17]. How-

ever, the combined cascade-parallel nature of the filtewherep, are the poles, forming either conjugate pairs
still requires more computation compared to filters im-or real valued, if the system has a real impulse response.
plemented in direct or cascade form with the same filterThe second sum in Eq. (4) is the FIR part of ordér
order. If the order of A(z~!) and B(z~!) is the same, then it

For determining the poles; of the Kautz filter, several redyces tq a constgnt coefficiént Note that Eq. (4) is
valid only if no multiple poles are present. In the case of

methods are discussed in [17], including some iterative le multiplicity. terms of hiaher order al )
techniques. For our purposes, the most interesting is thR0'€ multiplicity, terms ot higher order also appear.

one that sets the poles according to the required resaNow let us assume that we are trying to fit the filter
lution, e.g., by applying a logarithmic pole distribution. H(z~!) to a target response, but the poles of our IIR

m=0

AES 128™ Convention, London, UK, 2010 May 22—-25
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seriesf; and the sampling frequengy. The bandwidth

dy, of the kth second-order sectioAv;, is computed from

. % > the neighboring pole frequencies
| 1+a,z .+alzz > Output ) )
nput : Ay = D Pel for =2, K — 1]

1
T A'191 - 792 - 791
1+a,,7" +a,,2°
: Adg = Ig —Vg1 (7)

Equation (6b) sets the pole radji.| in such a way that
Optional the transfer functions of the parallel sections cross ap-
FIRpat — proximately at their -3dB point.

. ) 4.2. Filter design
Fig. 2: Structure of the parallel second-order filter.

First, we investigate how the parameters of the parallel
filter are also known. In this case Eq. (4) becomes lin-filter can be estimated to match a desired filter response.

ear in parameters, andb,,, thus, they can be estimated The s.implest way IS 1o find the coefficients in thg timg
by a simple least squares algorithm to match the requireg.oma'n' The impulse response of the parallel filter is
response. given by

The resulting filter can be implemented directly as in K M

(4), forming paralle! first-order complex filters, and the h(n) = di oux(n)+dy 1uk(n—1)+ Y byd(n—m)
estimation of the parameters can be carried out as de- k=1

scribed in [19]. However, it is more practical to com- _ i (8)
bine the complex pole pairs to a common denominatorVhereus (n) is the |1mpulse response of the transfer func-
This results in second-order sections with real valued cotion 1/(1 + ax127" + ax,227%), which is an exponen-
efficients, which can be implemented more efficiently. fi2lly decaying sinusoidal function, anidn) is the dis-
Those fractions of (4) that have real poles can be com¢réte unitimpulse.

bined yv|th. other real p_oles to form second-order IIR fil- Conceptually, filter design simply consists of creating a

ters, .yleldlng a canonical structure. Thus, the tranSfe(Neighted sum of the exponentially decaying sinusoidal

function becomes functions (and unit impulses if there is an FIR part) in
such a way that the resulting signal best approximates

K M
_ dio +dpaz! _
H 1y _ s s bm n .
(z79) ]; e ——" + ) bz the target impulse responag(n).

m=0

m=0

(5) Because (8)is linear in parameters, it can be written in a
where K is the number of second order sections. Thematrix form:
filter structure is depicted in Fig. 2. h = Mp 9)

In the context of approximating complex smoothing, the
pole frequencied). should be set according to the re-
quired frequency resolution. Accordingly, the poles of
the parallel filterpy,, are computed by the following for-

wherep = [di,0,d1,1,...dK0,dK,1, bo...ba)7 is @
column vector composed of the free parameters. The
columns of the modeling signal matri¥ contain the
modeling signals, which are;(n) and their delayed

mulas: counterparts:,(n — 1), and for the FIR part, the unit
9 = 27 [ (6a) impulsed(n) and its delayed versions up &n — M).
fs Finally, h = [h(0)...h(N)]T is a column vector com-
P e*#eiﬂ”, (6b) posed of the resulting impulse response. The problem

reduces to finding the optimal parametpgs; such that
whereJ;, are the pole frequencies in radians given byh = Mp,, is closest to the target resporise If the
the predetermined (e.g., logarithmic) analog frequencyerror function is evaluated in the mean squares sense, the

AES 128™ Convention, London, UK, 2010 May 22-25
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optimum is found by the well known LS solution as
h(n) = heq(n) * hs(n) =
Popt = Mth (10a) K
Mt = (MHM)—IMH (10b) Z diour(n) * hs(n) + dg1uk(n — 1) * hg(n)+
k=1
M
where M " is the Moore-Penrose pseudoinverse, and Z bmd(n —m) x hg(n) =
MH* is the conjugate transposeNf. Note that if the fre- m=0
guency resolution — thus the pole set and modeling ma- X M
trix M — is fixed, the pseudo-inverdd* can be precom- Z dr,05%(n) +dy1sk(n — 1) + Z bihs(n —m)
puted and stored, so the parameter estimation reduces te=1 m=0
a matrix multiplication according to Eq. (10a). (11)

where « denotes convolution. The signal(n) =
) ] ) ) ur(n) * hs(n) is the system respongg(n) filtered by
In Fig. 1 (f), a parallel filter design example is presented,; (14 ap12-" + ap22-2). It can be seen that (11) has

for the same loudspeaker-room target response as fq e same structure as (8). Therefore, the paraméiers
warped and Kautz filters in Sec. 3. The same Iogarithmicdk 1, andb,, can be estimated in the same way as pre-

pole setis used as for the Kautz filter. It can be seen thafgneq in the previous section. Similarly, writing this in
the parallel filter (f) results in the same filter response as, matrix form yields

the Kautz filter (e).
h = Meqp (12)

4.3. Direct equalizer design where the columns of the new signal modeling matrix
M., containsy(n), sx(n — 1), and the system response
hs(n) and its delayed versions up &g(n — M). Then,
the optimal set of parameters is again obtained by

Equalizing a system (such as a loudspeaker) by the par- — Mth 13a
allel filter can be done by first inverting the system re- Popt “ ‘ o (133)
sponse and designing the parallel filter as outlined in the MY = (MIM)'ML. (13b)

previous section. However, it is more practical to de- ) ) )

sign the equalizer directly without inverting the system4-4- Equivalence with Kautz filters

response [20], since this simplifies the design and avoids

many problems presented by the direct inversion of théVhile it was clear from simulations and theoretical rea-

measured transfer function. soning [20] that Kautz and parallel filters result in the
same filter response for the same pole set (see also
Fig. 1), a formal proof has not been provided previously.

Designing an equalizer requires that the resulting reThe proof presented here is based on the partial fraction

sponseh(n), which is the convolution of the equalizer expansion of the Kautz basis functions. According to

responseéi.,(n) and the system responkgn), is close  Eg. (2), thekth basis function of the Kautz filter is

to the target respongg(n) (which can be a unitimpulse, B

for example). By looking at Fig. 2, the basic idea of Grlz) = V1 = prpy, kl—[l 2 -p (14)

equalizer design is the following: imagine the system re- 1 —prz=t i=0 1—pjz=V

sponséeis(n) is fed to the input of the parallel filter, and o ] ]

the weightsdy, o, di.1, andb,, should be set in such a which is akth order filter. In the case of no multiple

way that the summed output best approximates the targ@°!€s, which is easily satisfied when the pole set is pre-
impulse responsé; (n). determined, Eg. (14) can be written in a partial fraction

form

1

k
Gr(z™") = ch,ii (15)
i=1

Accordingly, the output of the parallel filter is computed 1—piz=V

AES 128™ Convention, London, UK, 2010 May 22-25
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where thek coefficientsc, ; are found by the usual pro- high (> 100) filter orders. Note that in the case of di-
cedure of partial fraction expansion [21] in a closed form:rect equalizer design of Sec. 4.3 this procedure does not
provide any computational benefits compared to the LS

k k—1 H H
_ 1 . design of Eq. (13), since for that case the scalar product
Cryi = /1 — prpy, H Pi— D H(l —pjpi)- (16) o Eg. (3) cannot be used and also the Kautz filter has to
j=1.#1 i=1 be designed by a LS equation [18].

By noting that the partial fraction form of Eq. (15) is the

same as the complex form of the parallel filter Eq. (4)°- AN EFFICIENT ALTERNATIVE TO COMPLEX
without the FIR part (M=0), it is clear that the Kautz ba- SMOOTHING

sis functions can be reconstructed by the parallel filter

eXaCtly' As the Kautz f|I_ter response Is the_ Imear_ Combl'By observing the results of parallel and Kautz filters (see
nation of the Kautz basis fur_‘Ct'O@k(Z)’ Itis stra_lght- Fig. 1 (e) and (f)), it is apparent that the effect of filter
forward to convert a Kautz filter into a parallel filter. If design is similar to that of the fractional-octave complex-
the parameters of the Kautz filter are ginven in a VeCtolg, o ywhing of transfer functions. However, the theoreti-
w= [wr, s wi] thTe parameterv_ector ofthe paral!el cal reasons for this similarity have remained unexplored.
filter ¢ = [c1,...,cx]" can be obtained by the matrix |, yig paper, the case of the parallel filter is investigated
multiplication but since it results in exactly the same filter response as
c=Kw (A7) the Kautz filter (as it was proven in Sec. 4.4), the obser-

where the conversion matrk is given as vations can be generalized for the Kautz filter as well.

5.1. Linear pole distribution

k k—1
1 *
Kix=+1-ppp ] P— [T =pp)
g=1.j#i 7=t We start our analysis with the simplest case, wherddhe
for i <k, poles of the parallel filter are distributed evenly on a cir-

Ki;=0 for i >k (18) cle of radiusk < 1. After some algebra, it is relatively
straightforward to demonstrate that the transfer function
SinceK is tridiagonal, and for simple poles it does not of the parallel filter with such a pole distribution is actu-
have zero values in its diagonal, it is nonsingular. As aally equivalentto a comb filter and(& — 1)th order FIR
result, the inverse matriK —! can be computed that can filter B(z~1!) in series:
be used to convert the parallel filter parameters to Kautz
parametersw = K~ 'c). K 1

| N P S P —
Basically, we have shown that the basis functions of the =1 Rei2mk/K 41 1—2KREK
~B(z"Y). (19)

parallel and Kautz filters span the same approximation
space, and converting between the two filters is merely a
base change. Therefore, approximating a target respon
using any error norm (e.g., the, norm in least-squares
design) will lead to exactly the same filter response in
both cases.

?r? practice,R¥ < 1, therefore, the transfer function can
be approximated by the FIR part only. Since the coeffi-
cients of the FIR filterB(z 1) can be computed as the
linear combination of the parameters of the parallel filter
Besides its theoretical importance, the possibility of-con ¢, designing the filter in the FIR form is equivalent to
verting the Kautz parameters to the parallel filter para-designing itin its original parallel form. When designing
meters allows a computationally more efficient designthe parallel filter according to Eq. (10), the mean-squared
of the parallel filter. Namely, first a Kautz filter is de- error between the target impulse respohge:) and the
signed by the scalar product of Eq. (3), then the parafilter responsé:(n) is minimized. In the equivalent FIR
meters are converted by Eqgs. (17) and (18). While thisdesign, the mean-squared error is minimal if the K coef-
seems to be conceptually more complicated, the numbdicients of the FIR filter are chosen to be equal to the first
of required arithmetic operations is reduced compared td{ samples of the target resporisgn). Therefore, the
the LS design of Eq. (10), so it is a useful alternative forresulting impulse respong€n) is the truncated version

AES 128™ Convention, London, UK, 2010 May 22—-25
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of the target responge (n), which is equivalent to mul-
tiplying the target response with a rectangular window
w(n) of lengthK.

Re{h(n)}

Note that this window is defined only for positive times
n > 0 (itis a half window), in contrast to the symmetric
window used in complex smoothing (see Sec. 2). Sinct
for causal impulse responségn) = 0 for n < 0, we
may think of extending the window(n) to negative
times by settingv(—n) = w(n), without influencing the
resulth(n) = hy(n)w(n). This has the advantage that
now the results will be directly comparable with those of
complex smoothing.

Re{h(n)}

Re{h(n)}

Accordingly, designing a parallel filter with a linear pole 0 1 20 20 20 50
distribution is equivalent to multiplying the target re- n [samples]

sponse with a symmetric rectangular window of total

length2 K —1. In the frequency domain, this correspondsFig. 3: Modeling a complex exponential-7o™ with

to convolving the transfer function withsanclike (peri-  a parallel filter having stepwise linear frequency resolu-

odic sinc) function: tion: (a)¥y = 1/4m, (b) ¥ = 1/27, and (c)dy = 3/4.
oK1 The dashed line is the target resporsé’e” and the
H(9) = Hy(9) + sm.(—% ) (20) solid line is the resultmg parallel filter impulse response
sin (39) Only real parts of the signals are shown.

which is clearly a form of transfer function smoothing. ) ] o
Actually, it corresponds to “filtering” the transfer func- Smoothing, a natural choice for such a test function is the

tion with an ideal lowpass filter. It can also be seen that0asis function of the Fourier transform/e", whered,

the smoothing function does not depend on frequency$ the angular frequency of the complex exponential. In
as expected from linear frequency resolution. Note thath® frequency domain, this is equivalent&o) — o),

the main lobe of theinclike function in Eq. 20 approx- Which is a Dirac delta function at positiafy. Accord-
imates a hanning window quite closely. The width of thengly, in the frequency domain, we are computing the
main lobe isir/(2K — 1) ~ 2/ K, therefore, the effect “|mpulse_ response” of the smqothn_"ng operation, that is,
will be similar to smoothing the transfer function with We obtain the smoothing function directly.

a2 /K wide symmetric hanning window, wheger/K If the ovarlap of the basis functions of the parallel fil-
equals to the distance of pole frequencias ter is not too large, our test functiarm’?o™ will be ap-
proximated by parallel sections whose center frequency
is near tady, while the contribution of the other sections
Next, let us consider a more interesting case, when th@ill be negligible. Therefore, we expect that the width of
pole density is different in the various regions of the fre-the smoothing function in the frequency domain, and the
quency range, but it is is constant within each regionjength of the corresponding window function in the time

In this case, it is not possible to derive the smoothingdomain will only depend on thical pole density near
function in a closed form, as in Sec. 5.1. Therefore, ay,,.

different approach is taken.

5.2. Stepwise linear pole distribution

From Sec. 5.1 we may stipulate that if the the distance
Since the parameters of the parallel filter are determinedf the poles isA# in some frequency region, the “width”
by a linear LS design, the superposition principle holds.of the smoothing function in that region should he,
This means that if we decompose the target responsand signals in that frequency range should be windowed
hi(n) as a sum of some test functions, the filter responséo a length2z /A (or, the equivalent symmetric time
h(n) will be equal to the sum of filter responses designedvindow should have the lengthr /A9 — 1).

for the test functions separately. Since we would like to

gain some insight to the frequency-dependent nature of
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the two pole density regions. This results in a more mild
windowing, where the window length is somewhere in
between the (a) and (c) cases.

The same phenomenon can also be observed in the fre-
quency domain in Fig. 4, for the same cases. The solid
lines display the transfer functions of the resulting fil-
ters trying to approximate the test functierv’o”, again

with (a) Yo = 1/47T, (b) Yo = 1/27T, and (C)ﬂ() = 3/47T

Note that the frequency responses were computed by
extending the parallel filter responses to negative times
h(—n) = h*(n), to comply with the symmetric windows
used in complex smoothing. Accordingly, the frequency
responses displayed in Fig. 4 are real (zero phase) func-
tions, and can be directly compared by the smoothing
windows used in complex smoothing. In Fig. 4, the dot-

Fig. 4- S hing f . di h ted vertical lines show the pole frequencies of the parallel
Ig. 4: Smoothing functions corresponding to the caseg;yar it can be seen in (a) and (c), that the width of the

of Fig. 3 (a)-(c). The dotted vertical lines display the polemain lobe equals to the pole distandé in that region,

frequencies of the parallel filter. The dashe_d lines shov%md so is the periodicity. Locally, the smoothing func-

the1/|d — do| envelope of the transfer functions. tion has a sinc-like shape, similarly to the case of the lin-
ear pole distribution of Sec. 5.1. The dashed lines show
the theoretical /|¢ — ¥o| envelope of the sinc function.
Again, (b) is a borderline case where the envelope still

This is illustrated in Figs. 3 and 4, displaying a parallel P0llows that of a regular sinc function, but the periodic-
filter design with 30 poles (15 pole pairs) around the unit'tY is different at th(.elleft and right side, coming from the
circle. The pole frequencies are chosen in such a waflifferent pole densities.

that 20 poles are distributed evenly in the lower half of5 3 | ogarithmic pole distribution

the frequency range¥| < «/2, while 10 poles are spread _ . )
in the upper ranger/2 < |d| < m. Thatis, the pole As a final example, let us consider a case with log-

frequency distancéd; = 1/20x is the half in the low arithmic frequency resolution, when the parallel filter

range compared to the high ofe), = 1/10 (see the has three poles in each octave, having all together 31
dotted vertical lines in Fig. 4). pole pairs from 20 to 20480 Hz. The test function is

] ) o ) again a complex exponential, withy = 27 fy/ fs, where
In Fig. 3 the target impulse responses’”" are dis- ¢ _ 1050 Hz is the frequency of the exponential, and
played by dashed lines, and the resulting parallel f|IterfS = 44.1 kHz is the sampling frequency. The time do-
responses by solid lines. Note that the target and filteg,5ip (real part) and frequency domain responses are dis-

responses are complex, here only the real parts of thgjayed in Fig. 5 (a) and (b), respectively. Note the linear
signals are shown, since the imaginary parts would ShOVYrequency axis in (b).

a similar behavior. Figure 3 (a) shows a case when the o ]
frequency of the exponential test function is in the high!t can be seen in Fig. 5 (a) that now the target function
pole density region, while in (c) the frequency is in the i “windowed" quite mildly and it has a low frequency
low pole density region of the filter. As expected, the re-t@il- In the frequency domain (Fig. 5 (b)) the density of
sulting impulse response (solid line) is “windowed” to a the notches of theinclike function (solid line) follow
longer length in the first case compared to the secondhat of the pole distribution (dotteq vertlcal_llnes_). How-
case. The theoretically computed half window length®Ver, the enve!ope of the smothlng function still shows
27 /AY is 40 and 20 for (a) and (c), which is in a good the 1/9 b_ehawou_r, corresponding to the envelope of a
agreement with what can be observed in practice. Figf€gular sinc function.

ure 3 (b) displays an intermediate case when the fre-

guency of the test signal is exactly at the boundary of
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Fig. 5: Modeling an exponential test functigim 7o o _ . . . .
with a parallel filter having logarithmic frequency res- T19- 6: The smoothing function of Fig. 5 (b) displayed in

olution: (a): the real parts of the target impulse respons@ l09arithmic frequency axis (solid ine). The dashed line

(dashed line) and the paralle! filter response (solid ling)SNOWs the approximatingldgsinc function Eq. (21).

(b): the smoothing function of the parallel filter (solid "€ vertical dotted lines display the pole frequencies.

line) and its1/|Y¥ — vy| envelope. The vertical dotted

lines display the pole frequencies. target response is a second-order high-pass filter with a
cutoff frequency of 50 Hz, and the frequency resolution
of the design is third octave.

The system responde(n) is displayed in Fig. 7 (a),
Figure 6 solid line displayes the same frequency responsgy12 octave smoothed for clarity. It's third-octave com-
on a logarithmic frequency scale. Now it is easy to notepjex smoothed versioh.(n) is displayed in Fig. 7 (a),
that the periodicity of the window function is exactly 10g- \which is used for a 2500 tap FIR equalizer design by a
arithmic. The smoothing function may be approximatedeast-squares system identification approach [12]. In this

by a “logsinc’ function case, the parameters are estimated in such a way so that
sin(27 3 1og2($l)) the complex_—smoothed system respohsgn) filtered
S =C o o) (21) by the FIR filter best approximates the target response
— Yo

hi(n) in the LS sense. The system response equalized
whereC is a positive constant, anglis the pole per oc- by this FIR filter is shown in Fig. 7 (b), while the transfer
tave density (in our case; = 3). This function is dis-  function of the FIR equalizer itself can be seen in Fig. 8
played by a dashed line in Fig. 6, matching the filter re-(b). The FIR filter smooths the overall response quite
sponse very precisely. nicely while avoids equalizing the narrow peaks and dips
Naturally, further examples could be presented with, e.g.that would happen when designing from the unsmoothed
stepwise logarithmic pole distribution, or that of follow- SyStém response (direct inversion).

ing the Bark or ERB scale, but according to the above exHowever, the computational complexity of the 2500 tap
amples, the reader should already have an intuition abow|R filter is too large compared to the simple task it

the smoothing behavior of the parallel filter. should accomplish. A straightforward option for de-
creasing the computational complexity is to estimate a
6. DESIGN EXAMPLES AND COMPARISON warped IIR filter based on the complex-smoothed system

response. Figure 7 (c) displays the loudspeaker-room re-
An example for loudspeaker-room response modelingponse equalized by such a WIIR filter having an order of
has already been displayed in Fig. 1. Now we are de32 and\ = 0.75. The transfer function of the WIIR filter
signing an equalizer for the same system response. Thie shown in Fig. 8 (c). It can be seen in Figs. 7 and 8 that
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the results are almost the same as for the FIR filter, ex ;4|
pect at very low frequencies. Note that the low frequency
precision could be increased by using largealues, but or
that often results in unstable filters in practice. Also note _;4
that the case of strictly logarithmic frequency resolution .
coming from third-octave smoothing is a relatively easy =29
task for the WIIR filter, since it is quite close to its natural S _gql
frequency resolution. For arbitrary frequency resolution%
profiles (such as having much higher resolution at low = —40r
frequencies compared to the high ones), the performanc  -sg.
of the WIIR filter would be less than satisfactory. o
Figure 7 (d) shows the loudspeaker-room response eque
ized by a 16 section parallel filter, having the same tota
filter order as the WIIR filter of (c). The parallel filter
was designed by the direct method presented in Sec. 4.3,
by using theunsmoothedystem response (we note again rig 7. | gudspeaker-room equalization: (a) the unequal-
that the FIR and WIIR examples were design_ed using the, o g4 system response, (b) equalized by a 2500 tap FIR
complex-smootheslystem response). To achieve the re-fier estimated using the third-octave complex-smoothed
quired third-octave resolution, three poles are placed IRy stem response, (c) 32nd order WIIR filter estimated us-
each two octaves (the pole density is 3/2 pole/octave)ing the third-octave complex-smoothed system response,
The resulting equalizer performance is as good as for thg 4 (d) a 16 section (32nd order) parallel filter designed

F_IR and IIR_ case, while the design is much simplified,using theunsmoothedsystem response. All responses
since there is no need for smoothing the target responsggothed to a 1/12 octave resolution for clarity.
This is because the smoothing is done “automatically”,

as already discussed in Sec. 2. In addition, the procedure

always results in a stable filter, and is equally efficient atFigure 9 (c) displays an example when only the problem-
arbitrary (i.e., not strictry logaritmic) frequency resel atic low frequency region is equalized by seven second-
tion, on the contrary to the WIIR design. order sections. In this case, the seven pole pairs are log-
arithmically distributed between 20 and 320 Hz, corre-
sponding to a third-octave resolution (see dotted verti-
cal lines in Figure 9 (e)), and a zero-order FIR part (the
constant coefficienby in Fig. 2) is also utilized. The
transfer function of the equalizer is shown in Fig. 9. It
is important to note that the equalizer is designed from
the unsmoothed loudspeaker-room response exactly as in
the previous cases, and there is no need to do any addi-
tional processing, like flattening the response above the
frequency region of the equalization, etc.

_70,

Frequency [Hz]

Figure 9 shows two additional examples illustrating
some of the capabilities of the parallel filter using arbi-
trary pole distributions. Often it is desired that the low
frequencies of the loudspeaker-room response are more
precisely equalized compared to the high ones. This is

now achieved by a parallel filter having 6 poles per oc-
tave below 320 Hz (corresponding to twelfth-octave res-
olution), and 3/2 pole per octave above (third-octave res—7' DISCUSSION

olution). The equalized response is displayed in Fig. 9

(b), while the transfer function of the equalizer is shownWe have seen in Sec. 2 that designing a parallel filter is
in (d), together with the pole frequencies as vertical dot-equivalent to smoothing the target response by a sinc-
ted lines. One can see that the 34 section parallel filtelike function, and in the examples of Sec. 6 that the

achieves a quite flat frequency response. smoothing behavior is also present in direct equalizer
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Fig. 8: Equalizer responses for the Ioudspeaker—roonFig- 9: lllustrating the possibilities using various pole
equalization of Fig. 7: (a) the third-octave smootheddistributions in the parallel filter: (a) the unequalized
system response used for designing the FIR and WiIRoudspeaker-room response, (b) equalized by a parallel
equalizers, the transfer functions of the (b) FIR and (C)filter having four times higher pole density below 320 Hz

WIIR equalizers, (d) and the transfer function of the par-then above, (c) equalized by a parallel filter having poles
allel filter. only below 320 Hz. The transfer functions of the equal-

izers for the cases (b) and (c) are displayed in (d) and (e),
respectively. The dotted vertical lines display the pole
frequencies of the corresponding equalizers. Curves (a)—
(c) are smoothed to a 1/12 octave resolution for clarity.

design. The width of the main lobe of the sinc func-
tion equals to the pole frequency distance in that region
Moreover, the main lobe of the sinc function closely ap-
proximates a hanning window, a window function com-
monly used in transfer function smoothing. For obtain-2) Design of parallel filters together with transfer

ing a givenA f resolution at some frequency region, the function smoothing: In this case, the parallel filter is de-
distance of the analog pole frequencies of the parallel filsigned by using the smoothed frequency response. This
ter should b@A f, since that corresponds to smoothing does not make too much sense for complex-smoothed re-
by a2A f wide hanning window. In the logarithmic fre- sponses, since almost the same results could be achieved
quency scale, ifi/3 octave resolution is desired/2  without prior smoothing. However, if the system re-

pole pairs have to be placed in each octave. sponse is smoothed by some nonlinear processing (e.g.,
In practice, the fixed-pole parallel filters can be used in€liminating the dips below certain threshold, or by the
two ways in relation to complex smoothing: use of an auditory model), then the parallel filter can be

i i . used as an efficient implementation of the smoothed re-
1) Design of parallel filters instead of transfer func-  gngnse. In this case, the local pole density of the parallel
tion smoothing: In this case, the system is modeled or e should be set according to the local resolution of the
equalized by the parallel filter without any frequency- gmgothed transfer function. (Note that for implementing
domain processing. Thus, the parallel filter is used bothyready smoothed responses the warped IR filter is also
as the final implementation structure and a means of grong contender, but it may result in unstable filters,
achieving complex smoothing. Here, the resolution iSyng may provide unsatisfactory results for such smooth-

controlled by the choice of the pole frequencies. The ﬁ"ing profiles that are not close to the natural frequency
ter is optimal in the sense that the filter order will corre- .o tion of the warped filter.)

spond to the obtained resolution. An additonal advantage
of this approach that the parameter estimation is simpli-
fied since there is no need to implement the complex-
smoothing operation.
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8. CONCLUSION

Transfer function smoothing is a well-established
method for displaying, modeling and equalizing the fre-
guency responses of audio systems, coming from both[z]
perceptual and physical considerations. This paper has
demonstrated that the impulse response of the parallel
filter is similar to the response obtained by the complex
smoothing of the target response. As a result, the par-
allel filter can be either used as an efficient implementa- [3]
tion of already smoothed responses, or, it can be designed
from the unsmoothed responses directly, eliminating the
need of frequency-domain processing, since it performs
smoothing “automatically”. [4]

The obtained frequency resolution is not limited to
the logarithmic scale, but arbitrary resolution can be
achieved by the suitable choice of pole frequencies. The
formulas for computing the pole angles and radii from [5]
analog pole frequencies were also given.

The theoretical equivalence of parallel filters and Kautz
filters has also been developed, and the formulas for
converting between the parameters of the two structures(6]
were presented. This implies that the favorable smooth-
ing properties are also possessed by the Kautz filter. In
addition, the conversion formulas can be used for obtain-
ing the parameters of the parallel filter from the Kautz
parameters, resulting in a design procedure that requires
less arithmetic operations compared to the straightfor- 7]
ward LS design.

While only loudspeaker-room equalization examples
have been provided, the parallel filter can be successfully
used also in other fields where the flexible allocation of
frequency resolution is beneficial. So far, it has been ap- 8
plied to modeling the body radiation [19] and bridge ad- [8]
mittance [22] of musical instruments for sound synthesis,
and the modeling of the direction dependent radiation of
guitar speakers [23], and it is hoped that other applica-
tions will soon follow.
9
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