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Abstract—Dynamic testing of analog-digital converters (ADC)
is a complex task. A possible approach is using a sine wave
because it can be generated with high precision. However, inthe
sine wave fitting method for the test of ADC’s, all the available
information is extracted from the measured data. Therefore,
the estimated ADC parameters (ENOB, linearity errors) are not
always accurate enough, and not detailed information is gained
about the nonlinearity of the ADC.

Generally, maximum likelihood (ML) estimation is a powerful
method for the estimation of unknown parameters. However,
currently it is not used for the processing of such data, because
of the difficulties of formulating it, furthermore because of the
numerically demanding task of the minimization of the ML cost
function [9].

We have succeeded in formulating the maximum likelihood
function for a sine wave excitation, and in minimizing it. The
number of parameters is frightening (all comparison levelsof
the ADC plus parameters of the sine wave plus variance of an
additive input noise), but proper handling allows to determine
the best values based on the data.

The proper definition of the ML function and formulation of
the numerical method are presented, with results using simulation
and measurement data. To our knowledge, this is the first case
to solve the full maximum likelihood problem.

I. I NTRODUCTION

In sine wave testing, the method recommended by the
standard IEEE-1241 [1] is least squares fit of the ADC output
data by an appropriate sine wave. This works more or less
well, but gives no detailed information about the differential
and integral nonlinearity of the ADC. Only global measures
like the ”effective number of bits” (ENOB) are returned.

However, in the measured data there is more information,
moreover, least squares fit is not completely proper. Tacitly,
it assumes that the quantization noise is independent and is
normally (at least symmetrically) distributed [3], [4]. This is
not true, therefore a better model of the ADC (quantization)
would certainly yield a better results.

If the input signal is indeed sinusoidal, even differentialnon-
linearity can be evaluated at each level. If we can formulatethe
likelihood cost function, the ”best” estimates of the parameters
of the sine wave and of the ADC can be determined.

The idea presented in this paper is that using appropriate
parameters (sine wave: sine/cosine amplitudes, frequency; DC
level; comparison levels of the ADC; standard deviation of an
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additive noise in the ADC) the proper maximum likelihood
problem can be formulated and solved. One observes the
quantized ADC outputs, defines the likelihood function, and
maximizes this via all the parameters. The key is use of the
simple model of Gaussian noise which allows connection of
the samples of the sine to the quantized samples.

At first sight, the problem looks frightening. Even for a
10-bit ADC, there are210 − 1 = 1023 comparison levels
to be estimated. This sounds large, but numerically, one can
make use of the fact that with reasonable noise, the output
values are only possible in a relatively small environment
of the input values. Therefore, maximization can be handled
”locally”, at least when the ADC comparison levels are treated;
the sine wave can be fitted in ”global” steps. Thus, numerically
demanding tasks can be reasonably reduced by alternately
using optimization steps.

The result is not only a better estimate of the sine wave,
but also a set of estimates of the comparison levels. Thus, a
more complex description of the ADC behavior is at hand.

In this paper the likelihood function to be maximized and
the appropriate cost function to be minimized are derived.
The advantage of this is that in statistics, the ML methods
have the “best” properties. The disadvantage is computation
complexity. In the case of least squares (LS), numerical
computation of the solution can be easily handled even if large
measurement data sets are used. To compute the maximum
of the ML cost function a numerical minimization method
is required. A general multidimensional optimization program
may be very slow. Therefore, special care needs to be taken
in the implementation.

The paper is organized as follows: section II describes the
model of measurement and introduces notations. In section
III maximum likelihood function of the estimation is derived.
The maximum of the ML function can be obtained by the
numerical optimization algorithm which is presented in section
IV. Section V demonstrates the working of the presented
algorithm by using simulated and measurement data.

II. M ATHEMATICAL MODEL

In this paper we consider a measurement model which
has a finite number of parameters. Our ultimate goal is to
estimate the parameters from measurement data. In this section



detailed description of the model is given. For all estimations
of parameters the symbolˆ is applied.

Here, the AD converter is modeled by a functionq : R 7→
{0, . . . , N − 1} which maps the analog input plus noise to
the set of digital output codes. The number of elements or
possible output codes isN . Moreover, it is also assumed that
other imperfections of an AD converter does not present.

Denoting the sampling frequency and time byfs and Ts,
respectively, it means that AD converter produces thelth
output code by using values ofx(lTs) andn(lTs) wheren(t)
denotes the noise process. The parameters of the model are the
code transition levels denoted byTk ∈ R (k = 1, . . . , N − 1)
and the noise varianceσ.

A. Transition Levels

The quantization is modeled by the sign function

sgn(x) =

{

1, if x ≥ 0,
−1, otherwise.

At a particular point of timet = tk the input-output relation-
ship yk = q(x(tk)) is defined as

yk = q(x(tk)) =
N − 1

2
+

1

2

N−1
∑

l=1

sgn(x(tk) − Tl)

=











0, if x(tk) < T1,

m, if Tm−1 ≤ x(tk) < Tm,

N − 1, if TN−1 ≤ x(tk).

(1)

Output sequence denoted byyk, k = 1, 2, . . . , M with ∀k :
yk ∈ {0, . . . , N − 1}. The negative and positive analog full
scale values are noted byVmin ∈ R andVmax ∈ R, respectively.
In the case of an ideal quantizer we can write that

Tideal,k = Q(k − 1) + Tideal,1 (2)

where Q ∈ R is the ideal width of a code which can be
calculated asQ = (Vmax − Vmin)/N and Tideal,k denotes the
kth transition level of an ideal quantizer. Fig. 1 explains
graphically the notations.

B. Additional Noise

The non-ideal measurement environment and the internal
noises are modeled by additional noise. The noise appears
in the analog domain and is assumed to have Gaussian
distribution with zero mean. The noise is denoted byN(t)
and the model is described by

yk = q(x(tk) + N(tk))

whereyk is a concrete realization of the stochastic function
q(x(tk) + N(tk)). The random variables are denoted byYk,
k = 0, . . . , N − 1. In our approach a white noise model is
used, so ift 6= s thenN(t) andN(s) are independent. For all
t: N(t) has normal distribution with zero mean and variance
σ. In this paperσ is assumed to be unknown.

Vmax

N − 1

2

1

0

...

Vmin

Q

Q

T2T1 TN−1

Fig. 1. N -bit ADC transfer function. The notation follows the standard IEEE-
1241.Tk, k = 1, . . . , N − 1 are the transition levels,Q is the ideal width
of a code andVmin, Vmax denote the analog minimum and analog maximum
values, respectively.
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Fig. 2. Example output of a 3-bit AD converter. Simulation parameters:
Vmin = 0, Vmax = 1, A = 0.5, B = 0, C = 0.5, f = 0.002, σ = 0.01,
Ts = 0.1.

C. Excitation Signal

Applying sine wave as excitation signal has advantages:
can be generated with high precision, determined by four
parameters (amplitude, frequency, phase, dc level). In this
paper the frequency is supposed to be known, so a linear fitting
can be performed. But the method can be easily extended to
unknown frequency.

The parametric model is

x(t) = A sin(2πft) + B cos(2πft) + C (3)

where the parameters areA ∈ R, B ∈ R, andC ∈ R.
An example can be seen in Fig. 2. The excitation signal

is a sine wave with linear parametersA = 0.5 V, B = 0 V,
C = 0.5 V and frequencyf = 0.002 Hz. Sampling frequency
of the 3-bit ideal converter is10 Hz andVmin = 0 V, Vmax = 1
V. The additive noise has Gaussian distribution with zero mean
and varianceσ = 0.01 V. Since the excitation signal frequency
is small compared to the sampling frequency the effect of the
additive noise close to the transition levels can be observed.
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Fig. 3. Demonstration of the effect of non-ideal transitionlevels. Green
line denote the output of an ideal quantizer. Blue line showsthe effect where
T2,ideal andT4,ideal are shifted by−0.4Q and0.2Q, respectively.

In Fig. 3 the effect of non-ideal transition levels is demon-
strated. The simulation is generated by using the same pa-
rameters like in the previous case. Two output sample se-
quences were generated. In the first one the ideal quantizer
was used. Secondly, a non-ideal quantizer was applied. Two
transition levels were modified:T2 = Q + T1 − 0.4Q and
T4 = 3Q + T1 + 0.2Q are used instead of (2). In the figure it
can be seen that modification of a transition level causes not
only shifting of the output samples along the horizontal axes
but also a different shape appears because the different value
of excitation signal at those time instants.

III. L IKELIHOOD FUNCTION

The likelihood function is the joint density function for all
observations. This probability function cannot be determined
in closed form. The result can be calculated from the so called
standard normal cumulative distribution function, given by

F (x, µ, σ) : R × R × R+ 7→ R

F (x, µ, σ) =
1

σ
√

2π

∫ x

−∞

e−
(u−µ)2

2σ2 du,

whereµ ∈ R the expected value, andσ ∈ R+ is the standard
deviation of the additive noise. The error function can be
expressed with the help of the standard normal cumulative
distribution function. Indeed,

F (x, µ, σ) =
1

2

[

1 + erf

(

x − µ

σ
√

2

)]

where

erf(x) =
2√
π

∫ x

0

e−z2

dz. (4)

It is a very important property that the derivative of the
function (4) can be obtained as

derf(x)

dx
=

2√
π

e−x2

.

A. The Probability Function

To obtain the likelihood function, we need to evaluate the
probability of each sample. From (1) we have

P (Yk = 0) = F (T1, x(k), σ)

=
1

2

[

1 + erf

(

T1 − x(tk)

σ
√

2

)]

(5)

P (Yk = N − 1) = 1 − F (TN−1, x(tk), σ)

=
1

2

[

1 − erf

(

TN−1 − x(tk)

σ
√

2

)]

(6)

P (Yk = l) = F (Tl, x(tk), σ) − F (Tl−1, x(tk), σ)

=
1

2

[

erf

(

Tl − x(tk)

σ
√

2

)

− erf

(

Tl−1 − x(tk)

σ
√

2

)]

(7)

where1 < l < N − 1, andx(tk) denotes the exact value of
the input at thekth sample. The functionx(tk) depends also
on the input signals. Its value can be numerically evaluated
for each parameter set.

B. Cost Function

The cost function can be derived from the probability
function. The overall probability is

Pfinal =

M
∏

k=1

P (Yk = yk) (8)

whereyk, k = 1, . . . , M are the measured output symbols and
M is the number of output symbols. The cost function results
by taking the negative logarithm of (8):

CML (p) = − log Pfinal = −
M
∑

k=1

log P (Yk = yk). (9)

Maximum likelihood estimation finds the minimum of the cost
function CML (p) as a function ofp. The parameters are the
transition levelsTl (l = 1, . . . , N−1), variance of the noiseσ2

and parameters of the sine wave (A, B, C). It can be seen that
the cost function is highly non-linear in parameters. In order
to simplify the notation the parameter vectorp is introduced.
It contains all the parameters listed above.

p[1] = A, p[2] = B, p[3] = C, p[4] = σ,

p[5 : N + 3] = [T1, . . . , TN−1].

The length of the vectorp is N + 3. Is is worth noting that
p ∈ R

N+3 but not all points in the parameter space determine
a valid parameter vector. In the paper we apply the following
restrictions:

• the set of transition levels is ordered, i.e.

T1 ≤ T2 ≤ . . . ≤ TN−1

with Tl ∈ R, l = 1, . . . , N − 1,
• variance of the noise is not zero,σ > 0.

These restrictions give the domain of the cost function (9):

CML (p) : R
3 × R+ × R

N−1
ord 7→ R (10)

whereR
N−1
ord denotes the ordered subset ofR

N−1 and the set
R+ contains the positive real numbers.



IV. N UMERICAL OPTIMIZATION

Extreme values of the cost function (9), which is highly
non-linear in parameters, is determined by a gradient descent
method. The algorithm, which is presented below in details,is
a special mixture of the so-called conjugate gradient method
and backtracking line search [2], [7]. So it requires to havethe
derivative function during computation of iterative steps. First,
the general method is presented, then special modifications
which are necessary to handle the restrictions are introduced.

Instead of calculating the full derivative of∇CML (p) only
partial derivatives are used. This is similar to the conjugate gra-
dient method. The backtracking line search is also evaluated
with using partial derivatives. Since the number of parameters
is very large the whole set is divided into smaller number
of subgroups. The subgroups are defined by indexes of the
parameter vectorp. Because of the construction ofp the whole
set of the indexes is

L = {1, . . . , N + 3}. (11)

The indexes correspond to the domain of the cost function
(10). In every step of the numerical minimization the setL is
divided into disjoint subsets such that

L = L1 ∪ L2 ∪ . . . ∪ Lm

where m ≥ 3. Using this notation the applied numerical
method is the following:

1) Calculate a starting pointp.
2) Generate the disjoint subsets of (11),n = 1.
3) Determine a descent direction∆pn = −∇Ln

CML (p)
based onLn.

4) Backtracking line search.
5) Update:p = p + τ∆p.
6) n = n + 1, if n ≤ m then goto 3.
7) If stopping criterion is not satisfied goto step 2.
8) Stop.

Assuming thatx ∈ R
N , X ⊂ {1, . . . , N} andf(p) : R

N 7→ R

the notation∇Xf(p) is defined as a special gradient vector.
∇Xf(p) ∈ R

N and

∇Xf(p)[k] =







∂f(p)

∂p[k]
, if k ∈ X,

0, otherwise.

The backtracking line search is the following. Its input
arguments are a descent direction∆p, ∇Ln

CML (p) and α ∈
(0, 0.5), β ∈ (0, 1). The algorithm is very simple:

1) τ := 1.
2) Evaluate

CML (p + τ∆p) > CML (p) + ατ∇Ln
CML (p)T ∆p.

3) If it is true, thenτ = βτ and goto 2.
4) Stop.
The derivate function of the logarithm of the cost function

(9) can be obtained as

∇Ln
CML (p) = −

M
∑

l=1

1

P (Yl = yl)
∇Ln

P (Yl = yl).

The probabilitiesP (Yl = yl) can be calculated using expres-
sion (5), (6) and (7). In calculation of∇Ln

P (Yl = yl) the
following observation helps: ifLn can be decomposed into
two disjoint, non-empty subsetsLn = Ln1 ∪ Ln2 then

∇Ln
P (Yl = yl) = ∇Ln1

P (Yl = yl) + ∇Ln2
P (Yl = yl).

It is true because of the construction∇Xf(p). We can
conclude that∇Ln

CML (p)[k] = 0 if k /∈ Ln. Moreover,
it can be seen that the partial derivatives with respect to
the corresponding subset of parameters can be determined
independently from each other.

Subsets of the parameters are listed here:

• Parameters of the excitation signal:A, B, C. The corre-
sponding indexes areL1 = {1, 2, 3}.. Therefore,

∇L1P (Yl = yl) =
[

∂P (Yl=yl)
∂p1

∂P (Yl=yl)
∂p2

∂P (Yl=yl)
∂p3

0 . . . 0
]T

.

Detailed calculation of the elements of∇L1P (Yl = yl)
can be found in appendix VII-A.

• Variance of the additive noise:σ. The corresponding
index isL2 = {4}.. Hence

∇L2P (Yl = yl) =
[

0 0 0 ∂P (Yl=yl)
∂p4

0 . . . 0
]T

.

Appendix VII-B contains sub-cases of calculation of the
non-zero element of∇L2P (Yl = yl).

• In the case of transition levels a different approach is
used. The reason is that even in the case of a 8-bit
converter the number of transition levels is very high.
If every setLm wherem ≥ 3 contained only one index,
the backtracking line-search would have to be evaluated
N in the inner cycle of the main algorithm.
A possible way to decrease the computation time, if
the number of elements inLm (m ≥ 3) increases.
We propose a heuristic method which computes disjoint
subsets ofL\(L1 ∪L2) based on the currently estimated
noise variancêσ = p(4).
Denoting σ̂LSB = σ̂/Q and definings = floor(5σ̂LSB),
the proposed subsets of{5, . . . , N + 3} is

Lm+2 = {m + 4, m + 4 + s, m + 4 + 2s, . . .}

wherem = 1, . . . , s.

∇Lm
P (Yl = yl) =

[

0 0 0 0 K
]T

where the vectorK ∈ R
N−1 and

K[k] =







∂P (Yl = yl)

∂pk+4
, if k = m, m + s, . . . ,

0, otherwise.

Since determining ofK[k] depends on the valueyl, it
contains nine sub-cases. They are listed and calculated in
appendix VII-C.



A. Initial Values

Before starting the whole iterative minimizing procedure
a starting value needs to be calculated. In general, one can
say that for obtaining a solution of a non-linear minimization
problem is difficult and in practice strongly depends on how
close the starting value is to the optimum. Our experience
is that using the method proposed below calculating starting
values has worked fine. Like above, three sub-cases can be
distinguished.

First, the initial transition levels are estimated. Since at this
step no other information available transition levels of the ideal
quantizer (2) is calculated.

Then a three parameter sine fitting is evaluated. Fitting is
executed using the least squares (LS) method [6]. The error is
in the digital domain and is defined as the difference between
the observationyk (1) and the modelx(t) (3) in the digital
domain

argminAd,Bd,Cd

M
∑

m=1

(ym − xd(tm))
2
.

wherexd(t) = Ad sin(2πft)+Bd cos(2πft)+Cd. The result
is in the digital domain and has to transformed back to the
analog domain:A = QAd, B = QBd and C = Q(Cd +
Vmin/Q).

In the last step of computing the initial values, variance
of the noise is estimated. It is based on the paper [10]. The
estimation is performed in the digital domain, using the output
samplesyk, by trying to eliminate effect of the excitation
signal:

σ̂2
init =

1

M − 1

M
∑

m=1

(ym − q(x(tm)))2 .

V. EXPERIMENTAL RESULTS

In this section two examples are shown. They demonstrate
that the solution of the maximum likelihood problem can be
found with using the introduced method. The first one is
a simulation example and then an experimental example is
presented.

A. Simulated Data

Here, a 8-bit converter is assumed. During generation of the
simulated data the following parameters are used:N = 256,
Vmin = −2 V, Vmax = +2 V, M = 576000 samples,fs = 10
kHz, amplitude of the sine wave was 2.001 V, its frequency
1 Hz, dc level was 0 V, std of the additive noise:0.018 V.
The ideal quantizer was modified by shifting some transition
levels: T10 = Tideal,10 + 0.1Q, T11 = Tideal,11 + 0.2Q and
T12 = Tideal,12 + 0.3Q.

The result can be seen in Fig. 4 whereT [k] − T̂ [k] is
plotted for all transition levels. It can be seen that the absolute
value of the estimation error is less than0.06Q. Accuracy of
the estimation increases, i.e. variance of the estimated value
decreases as the number of samples increases. Results w.r.t.
the excitation signal and the noise are|σ− σ̂| = 0.0017Q and
maxk=1,...,M |x(tk) − x̂| = 0.0442Q.
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Fig. 4. Difference of the estimated and the real quantization levels of a
simulated 8-bit converter.
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Fig. 5. INL characteristic of the measured AD9245. Difference of the
estimated and the ideal quantization levels.Tid,k = T̂1 + kQid where
Qid = (T̂N − T̂1)/N .

B. Measurement Data

A trial measurement was performed to test what is the
output of the proposed algorithm. A converter AD9245, a
product of Analog Devices, is used in the measurement setup.
The converter was on a custom made PCI board which
contains also an analog anti-alias filter. The power supply was
connected to the PCI bus of the computer, therefore significant
noise was injected into the analog components. Because of the
limited bandwidth of the PCI bus, most significant 10 bits were
used. Therefore, here we characterized the equivivalent ADC
of the full device. Parameters of the measurement:fs = 80
MHz, fsine = 20 MHz, dc level = 0 V, and amplitude of
the sine wave was -40 dBm (generator: Agilent 33250A),
M = 102400 samples were recorded.

The result can be seen in Fig. 5. Estimated noise std is
2.8549 LSB. This demonstration example shows that the pro-
posed algorithm can indeed determine the INL from measured
data.

VI. CONCLUSIONS

In this paper it has been shown that maximum likelihood
estimation of the parameters of an ADC is possible using
sine wave testing. The numerical implementation has been
described, and the algorithm has been verified using simulation



and measurement. The error analysis of the estimates (Cramer-
Rao bound) will be visited next.

VII. A PPENDIX

A. Differentiation w.r.t.A, B, C

If m ∈ L1, then the corresponding derivatives are

∂P (Yl = 0)

∂pm

=
1√
2πσ

e−
(T1−x(tl))

2

2σ2

(

−∂x(tl)

∂pm

)

,

∂P (Yl = N − 1)

∂pm

=
1√
2πσ

e−
(TN−1−x(tl))

2

2σ2

(

∂x(tl)

∂pm

)

,

and if k 6= 0 andk 6= N − 1

∂P (Yl = k)

∂pm

=
1√
2πσ

e−
(Tk−x(tl))

2

2σ2

(

−∂x(tl)

∂pm

)

− 1√
2πσ

e−
(Tk−1−x(tl))

2

2σ2

(

−∂x(tl)

∂pm

)

where

∂x(tl)

∂pm

=











sin(2πtl), if m = 1,

cos(2πtl), if m = 2,

1, if m = 3.

B. Differentiation w.r.t.σ

If m ∈ L2, i.e. m = 4, p4 = σ then the corresponding
derivatives are

∂P (Yl = 0)

∂p4
=

−1√
2π

e−
(T1−x(tl))

2

2σ2
(T1 − x(tl))

σ2
,

∂P (Yl = N − 1)

∂p4
=

−1√
2π

e−
(TN−1−x(tl))

2

2σ2
(TN−1 − x(tl))

σ2
,

and; if Yl 6= 0 andYl 6= N

∂P (Yl = k)

∂σ
=

−1√
2π

e−
(Tk−x(tl))

2

2σ2
(Tk − x(tl))

σ2

+
1√
2π

e−
(Tk−1−x(tl))

2

2σ2
(Tk−1 − x(tl))

σ2
.

C. Differentiation w.r.t. transition levels

Derivatives of the probability functions (5), (6) and (7) w.r.t.
the first and the last transition levels differ from the case
of other transition levels. Therefore, three cases have to be
considered.

In the first case differentiation w.r.t.T1 is performed. From
(5) we have

∂P (Yl = 0)

∂T1
=

1√
2πσ

e−
(T1−x(tl))

2

2σ2 .

SinceN > 3, (6) does not containT1, hence

∂P (Yl = N − 1)

∂T1
= 0.

In the general case

∂P (Yl = k)

∂T1
=







− 1√
2πσ

e−
(T1−x(tl))

2

2σ2 , if k = 2,

0, otherwise.

Secondly, we known that (5) does not depend onTN−1, so

∂P (Yl = 0)

∂TN−1
= 0.

From (6), the derivative function is

∂P (Yl = N − 1)

∂TN−1
= − 1√

2πσ
e−

(TN−1−x(tl))
2

2σ2 .

And if yl 6= 0 andyl 6= N − 1 then

∂P (Yl = k)

∂TN−1
=







1√
2πσ

e−
(TN−1−x(tl))

2

2σ2 , if k = N − 2,

0, otherwise.

And in the third case we assume thatk 6= 1 andk 6= N −1.
(5) and (6) give that

∂P (Yl = 0)

∂Tk

= 0 and
∂P (Yl = N − 1)

∂Tk

= 0.

Generally, from (7) we have

∂P (Yl = m)

∂Tk

=















1√
2πσ

e−
(Tk−x(tl))

2

2σ2 , if m = k

−1√
2πσ

e−
(Tk−1−x(tl))

2

2σ2 , if m = k + 1.
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