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Abstract—Dynamic testing of analog-digital converters (ADC) additive noise in the ADC) the proper maximum likelihood
is a complex task. A possible approach is using a sine waveproblem can be formulated and solved. One observes the
because it can be generated with high precision. However, ithe  q,antized ADC outputs, defines the likelihood function, and
sine wave fitting method for the test of ADC’s, all the availale . . -
information is extracted from the measured data. Therefore MaxXIMizes this via all the pargmeter.s. The key is use _Of the
the estimated ADC parameters (ENOB, linearity errors) are rot ~ Simple model of Gaussian noise which allows connection of

always accurate enough, and not detailed information is gaied the samples of the sine to the quantized samples.

about the nonlinearity of the ADC. S At first sight, the problem looks frightening. Even for a
Generally, maximum I]kellhood (ML) estimation is a powerful 10-bit ADC, there are2!® — 1 = 1023 comparison levels
method for the estimation of unknown parameters. However, . . .
currently it is not used for the processing of such data, beazse © be estimated. This sounds large, but numerically, one can

of the difficulties of formulating it, furthermore because of the ~make use of the fact that with reasonable noise, the output
numerically demanding task of the minimization of the ML cos  values are only possible in a relatively small environment
function [9]. _ _ ) o of the input values. Therefore, maximization can be handled
We have succeeded in formulating the maximum likelihood o v» ot least when the ADC comparison levels are teglat
function for a sine wave excitation, and in minimizing it. The . . . . .
number of parameters is frightening (all comparison levelsof the sine wave can be fitted in "global” steps. Thus, numeyical
the ADC plus parameters of the sine wave plus variance of an demanding tasks can be reasonably reduced by alternately
additive input noise), but proper handling allows to deternine using optimization steps.
thﬁ'ﬁgﬁr\éalgreZek;%Sit?gnogfttr;1ee (Ij\;lﬁlt_afunction and formulation of The result is not only a better estimate of the sine wave,
the nun?erigal method are presented, with results using simlation but also a set of eSt.Im.ateS of the Companso.n I(_evels. Thus, a
and measurement data. To our knowledge, this is the first case MOre complex description of the ADC behavior is at hand.
to solve the full maximum likelihood problem. In this paper the likelihood function to be maximized and
the appropriate cost function to be minimized are derived.
The advantage of this is that in statistics, the ML methods
In sine wave testing, the method recommended by thave the “best” properties. The disadvantage is computatio
standard IEEE-1241 [1] is least squares fit of the ADC outpabmplexity. In the case of least squares (LS), numerical
data by an appropriate sine wave. This works more or lessmputation of the solution can be easily handled evengidar
well, but gives no detailed information about the diffeiaht measurement data sets are used. To compute the maximum
and integral nonlinearity of the ADC. Only global measuresf the ML cost function a numerical minimization method
like the "effective number of bits” (ENOB) are returned. s required. A general multidimensional optimization pram
However, in the measured data there is more informatiomay be very slow. Therefore, special care needs to be taken
moreover, least squares fit is not completely proper. Facitin the implementation.
it assumes that the quantization noise is independent and i¥he paper is organized as follows: section Il describes the
normally (at least symmetrically) distributed [3], [4]. iBhis model of measurement and introduces notations. In section
not true, therefore a better model of the ADC (quantizatiom) maximum likelihood function of the estimation is derive
would certainly yield a better results. The maximum of the ML function can be obtained by the
If the input signal is indeed sinusoidal, even differenti@h- numerical optimization algorithm which is presented intieac
linearity can be evaluated at each level. If we can formufate IV. Section V demonstrates the working of the presented
likelihood cost function, the "best” estimates of the paetens algorithm by using simulated and measurement data.
of the sine wave and of the ADC can be determined.
The idea presented in this paper is that using appropriate Il. MATHEMATICAL MODEL
parameters (sine wave: sine/cosine amplitudes, frequé&ty

level; comparison levels of the ADC; standard deviationf a I this paper we consider a measurement model which
has a finite number of parameters. Our ultimate goal is to

This work has been supported by OTKA grant #73496. estimate the parameters from measurement data. In thisrsect

|. INTRODUCTION



detailed description of the model is given. For all estimagi

of parameters the symbolis applied. Q
Here, the AD converter is modeled by a functign R +— N—-1+

{0,..., N — 1} which maps the analog input plus noise to

the set of digital output codes. The number of elements or

possible output codes i¥. Moreover, it is also assumed that
other imperfections of an AD converter does not present.

| 1
1 1
Denoting the sampling frequency and time fy and T, 2 T : l
respectively, it means that AD converter produces tte : E
output code by using values afiT;) andn(ITs) wheren(t) 1, 4+ ; !
denotes the noise process. The parameters of the modekare th 1 [ [ :
code transition levels denoted By, e R (k=1,...,N — 1) i : : :
and the noise variance. of '
Viin T T Tn-1 Vinax
A. Transition Levels o

The quantization is modeled by the sign function
Fig. 1. N-bit ADC transfer function. The notation follows the starditEEE-

1, if >0, 1241. Ty, k = 1,...,N — 1 are the transition levelgy is the ideal width
sgr(a:) = 1 oth_erwise of a code and/jin, Vimax denote the analog minimum and analog maximum
’ ) values, respectively.

At a particular point of time = t; the input-output relation-
ship yr, = q(«(tx)) is defined as

N -1

N-1
v = alo()) = 5+ 5 3 sor(a(ty) — T)
=1

0, if x(tk) <Th,
= m,if Ty < z(ty) < T, 1)
N — 1, if TN—l < l‘(tk)

Output sequence denoted by, £ = 1,2,..., M with Vk :

yr € {0,..., N — 1}. The negative and positive analog full o 1000 2000 3000 4000 5000 6000 7000 8000
scale values are noted bpin € R andVimax € R, respectively. . . )
In th f id Iby"n . max . hp y Fig. 2. Example output of a 3-bit AD converter. Simulationrgraeters:
n the case of an ideal quantizer we can write that Viin = 0, Vimax = 1, A = 0.5, B = 0, C = 0.5, f = 0.002, & = 0.01,

Ts =0.1.
TideaLk - Q(k - 1) + TideaLl (2)

where Q@ € R is the ideal width of a code which can bec Excitation Signal

calculated as) = (Vinax — Vimin)/IN and Tigeair, denotes the . . o . ]
kth transition level of an ideal quantizer. Fig. 1 explains Applying sine wave as excitation signal has advantages:

. , can be generated with high precision, determined by four
graphically the notations. parameters (amplitude, frequency, phase, dc level). Ia thi
B. Additional Noise paper the frequency is supposed to be known, so a lineadfittin

) , , can be performed. But the method can be easily extended to
The non-ideal measurement environment and the interngl ,ovn frequency

noises are modeled by additional noise. The noise appeargyq parametric model is
in the analog domain and is assumed to have Gaussian
distribution with zero mean. The noise is denoted Xt) z(t) = Asin(27 ft) + B cos(27 ft) + C 3)

and the model is described by where the parameters aree R, B € R, andC € R.

i = q(z(ts) + N(ty)) . An .example can b_e seen in Fig. 2. The excitation signal
is a sine wave with linear parameteAs= 0.5V, B =0V,

wherey;, is a concrete realization of the stochastic functio@ = 0.5 V and frequencyf = 0.002 Hz. Sampling frequency
q(z(tr) + N(tx)). The random variables are denoted By, of the 3-bit ideal converter i$0 Hz andVipin = 0V, Vipax =1
k =0,...,N — 1. In our approach a white noise model isV. The additive noise has Gaussian distribution with zerame
used, so ift # s thenN(¢) andN(s) are independent. For all and variancer = 0.01 V. Since the excitation signal frequency
t: N(t) has normal distribution with zero mean and variands small compared to the sampling frequency the effect of the
o. In this papers is assumed to be unknown. additive noise close to the transition levels can be observe



A. The Probability Function
sk 4 igeat To obtain the likelihood function, we need to evaluate the
probability of each sample. From (1) we have
il P(Yy =0) = F(T1,z(k),0)
1 T1 — I(tk)>
3F T3 ideal =- |1+ erf S
2 [ < o2 ©)
WO P(Yy =N —1)=1- F(Tx_1,2(t),0)
Iy 1 Tn_o1 —x(t ))]
1 3,ideal N—-1 k
: =—|l—-erf| ————— 6
2 { ( oV?2 ©)

0 . . . . .
1400 1500 1600 1700 1800 1900 2000

P(Yk =)= F(Tl,x(tk),o) — F(Tl_l,x(tk ,U)

)
Fig. 3. Demonstration of the effect of non-ideal transitievels. Green 1 { f(Tl — ZC(tk)) f(Tl_l — UC(tk))]
er —er

line denote the output of an ideal quantizer. Blue line shthweseffect where =3 = — = (7)
P d 2 0\/5 U\/§

wherel < [ < N — 1, andz(t;) denotes the exact value of
the input at thekth sample. The functior(¢;) depends also
In Fig. 3 the effect of non-ideal transition levels is demoren the input signals. Its value can be numerically evaluated
strated. The simulation is generated by using the same fi@reach parameter set.
rameters like in the previous case. Two output sample $§- cost Function
quences were generated. In_ the first one the ideal quantlze{_he cost function can be derived from the probability
was used. Secondly, a non-ideal quantizer was applied. T%%ction The overall probability is
transition levels were modifiedly = @Q + T, — 0.4Q and '

T5 ideal @Nd T’y jgea are shifted by—0.4Q and 0.2Q, respectively.

T, =3Q + T1 + 0.2Q) are used instead of (2). In the figure it M

can be seen that modification of a transition level causes not Pinal = H P(Ye = yx) (8)
only shifting of the output samples along the horizontalsaxe k=1

but also a different shape appears because the differam vaynereyr, k = 1,..., M are the measured output symbols and

M is the number of output symbols. The cost function results
by taking the negative logarithm of (8):
I1l. L IKELIHOOD FUNCTION M
CwL(p) = — log Pinal = — Zlog P(Yy = yr). )
k=1
Maximum likelihood estimation finds the minimum of the cost
function CwL(p) as a function ofp. The parameters are the
transition level<l; (I = 1, ..., N —1), variance of the noise?
F(z,p,0) :RxRxR, —R and parameters of the sine wavg, (B, C). It can be seen that
the cost function is highly non-linear in parameters. Ineord
1 " ) to simplify the notation the parameter veciois introduced.
F(z,p,0) = / e R du, It contains all the parameters listed above.
oV21 J -
plll=A, p[2]=B, p[3]=C,pld]=o,
wherey € R the expected value, ande R, is the standard
deviation of the additive noise. The error function can be pl5: N +3]=[T1,...,Tn_1].

expr_ess_ed with fche help of the standard normal cumulatiyge length of the vectop is N + 3. Is is worth noting that
distribution function. Indeed, p € RN*3 put not all points in the parameter space determine
T —p a valid parameter vector. In the paper we apply the following
o2 )} restrictions: N _ _
« the set of transition levels is ordered, i.e.

Th'<Ty <...<Tn_
2 * 2 .
erf(:v):T/ e “dz. 4) withT, eR,i=1,...,N -1,
T /0 « variance of the noise is not zere,> 0.
It is a very important property that the derivative of th&hese restrictions give the domain of the cost function (9):
function (4) can be obtained as _
4) () :R® xRy x RNTLW R (10)

derf(z) _ iefzzl whereR) ™! denotes the ordered subset®Y ~! and the set

dx VT R, contains the positive real numbers.

of excitation signal at those time instants.

The likelihood function is the joint density function forl al
observations. This probability function cannot be deteedi
in closed form. The result can be calculated from the so a@all
standard normal cumulative distribution function, given b

F(,T,/J,,O'):% {1+erf(

where



IV. NUMERICAL OPTIMIZATION The probabilitiesP(Y; = y;) can be calculated using expres-

Extreme values of the cost function (9), which is highigion (5), (6) and (7). In caleulation 0¥, P(Y; = yi) the
non-linear in parameters, is determined by a gradient aescllowing observation helps: ifL,, can be decomposed into
method. The algorithm, which is presented below in details, tWo disjoint, non-empty subsets, = Ly, U Ly, then
a special mixture of the so-called conjugate gradient neeth
and backtracking line search [2], [7]. So it requires to hinee Vi P =) = Vi, PV =y) + Vi, P =y).
derivative function during computation of iterative steBsst, |1 is true because of the constructionix f(p). We can
the general method is presented, then special modificatiqs,cjude thatVy, Cu(p)[k] = 0 if k ¢ L,. Moreover,
which are necessary to handle the restrictions are inte@luci; ¢an be seen that the partial derivatives with respect to

Instead of calculating the full derivative &f Cui (p) only e corresponding subset of parameters can be determined
partial derivatives are used. This is similar to the conjagga- independently from each other.
dient method. The backtracking line search is also evaluate Subsets of the parameters are listed here:

with using partial derivatives. Since the number of paramset
is very large the whole set is divided into smaller number

of subgroups. The subgroups are defined by indexes of the

parameter vectgs. Because of the construction pthe whole
set of the indexes is

L={1,...,N+3} (11)

The indexes correspond to the domain of the cost function
(10). In every step of the numerical minimization the Seis
divided into disjoint subsets such that

L=L,UL,U...UL,,

where m > 3. Using this notation the applied numerical
method is the following:

1) Calculate a starting point

2) Generate the disjoint subsets of (1)~ 1.

3) Determine a descent directio\p,, = —V,, CuL(p)

based on.,,.

4) Backtracking line search.

5) Update:p = p + 7Ap.

6) n=n+ 1, if n <m then goto 3.

7) If stopping criterion is not satisfied goto step 2.

8) Stop.
Assuming that: € RN, X C {1,...,N}andf(p) : RY — R
the notationVx f(p) is defined as a special gradient vector.
Vxf(p) € RN and

9f(p)
oplk]’
0, otherwise

The backtracking line search is the following. Its input
arguments are a descent directidp, V, Cu(p) anda €
(0,0.5), B € (0,1). The algorithm is very simple:

1) 7:=1.

2) Evaluate

CwL(p+ 7Ap) > CuL(p) + a7V, O (p)" Ap.

3) Ifitis true, thenr = 37 and goto 2.

4) Stop.

The derivate function of the logarithm of the cost function
(9) can be obtained as

V)K= fheX

M
1
Vi,Cw(p) = — E PO =) )VLHP(YZ =)
~ P(Y, =y

« Parameters of the excitation signal; B, C. The corre-

sponding indexes aré, = {1, 2, 3}.. Therefore,

Vi, P(Yi =) =
[22Gimw) ortimw) 2PGi=w) ol
Op1 Op2 Ops e ’

Detailed calculation of the elements &, P(Y; = yi)
can be found in appendix VII-A.

Variance of the additive noiser. The corresponding
index is L, = {4}.. Hence

orGizw) o o]"

Vi, PYi=y)=10 0 0 220

Appendix VII-B contains sub-cases of calculation of the
non-zero element o¥,, P(Y; = y;).

In the case of transition levels a different approach is
used. The reason is that even in the case of a 8-bit
converter the number of transition levels is very high.
If every setL,, wherem > 3 contained only one index,
the backtracking line-search would have to be evaluated
N in the inner cycle of the main algorithm.

A possible way to decrease the computation time, if
the number of elements il,, (m > 3) increases.
We propose a heuristic method which computes disjoint
subsets of_\ (L, U L) based on the currently estimated
noise variancé = p(4).

Denotingd sg = 6/Q and definings = floor(56sg),

the proposed subsets ¢%,..., N + 3} is

Lypjo={m+4,m+4+sm+4+2s,...}

wherem =1,...,s.
Ve, PVi=y)=1[0 0 0 0 K]"
where the vecto € RV 1 and
OP(Y, =u1)
3pk+4
0, otherwise.

if k=m,
K[k]: m,m —+ S

Since determining ofK[k] depends on the valug, it
contains nine sub-cases. They are listed and calculated in
appendix VII-C.
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A. Initial Values

Before starting the whole iterative minimizing procedure 004}
a starting value needs to be calculated. In general, one can
say that for obtaining a solution of a non-linear minimieati
problem is difficult and in practice strongly depends on how
close the starting value is to the optimum. Our experience
is that using the method proposed below calculating startin 002
values has worked fine. Like above, three sub-cases can be
distinguished. -004r

First, the initial transition levels are estimated. Sintéhis
step no other information available transition levels @f itheal oo 50
qguantizer (2) is calculated.

Then a three parameter sine fitting is evaluated. Fitting f®. 4. Difference of the estimated and the real quantinatavels of a
executed using the least squares (LS) method [6]. The egrofimulated 8-bit converter.
in the digital domain and is defined as the difference between
the observationy, (1) and the modek(t) (3) in the digital
domain o6y

M
argminAd,Bd,Cd Z (Ym — xd(tm))Q .
m=1
wherez(t) = Agsin(27 ft) + Bg cos(27m ft) + Cq. The result
is in the digital domain and has to transformed back to the
analog domainiA = QAy, B = QBy and C = Q(Cy +
Vmin/Q)- -04r

In the last step of computing the initial values, variance : : : : :
of the noise is estimated. It is based on the paper [10]. The : % 100 ion 122 200 250
estimation is performed in the digital domain, using thepoitit

samplesyk, by trying to eliminate effect of the excitationFig. 5. INL characteristic of the measured AD9245. Diffarenof the
signal' estimated and the ideal quantization levelsy, = T1 + kQig Where

Qia = (Tn — T1)/N.

Ty, — T}, [LSB]

; ;
1 50 200 250
Transition levels

0.8

0.4

Tig, ) — T} [LSB]

M
. 1 2
Oh = 11 O (m — ala(tn))’
m=1 B. Measurement Data
V. EXPERIMENTAL RESULTS A trial measurement was performed to test what is the

In this section two examples are shown. They demonstratetput of the proposed algorithm. A converter AD9245, a
that the solution of the maximum likelihood problem can bproduct of Analog Devices, is used in the measurement setup.
found with using the introduced method. The first one iShe converter was on a custom made PCI board which
a simulation example and then an experimental examplecisntains also an analog anti-alias filter. The power supply w
presented. connected to the PCI bus of the computer, therefore significa
A Simulated Data r_10i_se was inje_cted into the analog comp_on(_e_nts. Becagseof th

' limited bandwidth of the PCI bus, most significant 10 bitsever

Here, a 8-bit converter is assumed. During generation of thged. Therefore, here we characterized the equivivaler@ AD
simulated data the following parameters are us€d= 256, of the full device. Parameters of the measuremgnt= 80
Vinin = =2V, Vmax = 42V, M = 576000 samples.fs =10 MHz, fsne = 20 MHz, dc level = 0 V, and amplitude of
kHz, amplitude of the sine wave was 2.001V, its frequenglfe sine wave was -40 dBm (generator: Agilent 33250A),
1 Hz, dc level was 0 V, std of the additive noige018 V. M = 102400 Samp|es were recorded.

The ideal quantizer was modified by shifting some transition The result can be seen in Fig. 5. Estimated noise std is
levels: To = Tideaio + 0.1Q, T11 = Tigeat11 + 0.2Q and 2 8549 LSB. This demonstration example shows that the pro-

T13 = Tideal12 + 0.3Q. R posed algorithm can indeed determine the INL from measured
The result can be seen in Fig. 4 whefék] — Tk] is data.

plotted for all transition levels. It can be seen that theohlis

value of the estimation error is less tha6Q. Accuracy of VI. CONCLUSIONS

the estimation increases, i.e. variance of the estimatadeva In this paper it has been shown that maximum likelihood

decreases as the number of samples increases. Results wstimation of the parameters of an ADC is possible using
the excitation signal and the noise awe— 5| = 0.0017Q and sine wave testing. The numerical implementation has been
maxg=1,.. M |x(tx) — &| = 0.0442Q. described, and the algorithm has been verified using siioalat



and measurement. The error analysis of the estimates (Granhe the general case

Rao bound) will be visited next.

VII. APPENDIX
A. Differentiation w.r.t.A, B, C
If m € Ly, then the corresponding derivatives are

OP(Y;=0) 1 e_<T1—2r<2tm2 (_B:C(tl))
o )

8pm vV 27 apfn
OP(Y, =N —1) L (ax(tl))
= (& 202 5
apm v 271'0' apm

and ifk A0 andk AN — 1
OP(Y; = k) 1 @meew)? ( 8x(tl)>
= (& 202 —
g apm

Opm V2r
1 @z y)? dx(t))
= o)
where
sin(27t;), if m =1,
ngz) =< cos(2nty), if m =2,

1, if m = 3.
B. Differentiation w.r.t.c

If m € Lo, i.e.m =
derivatives are

4,]94:

OPWi=0) _ 1 -tiozgot (I - olth))
Op4 V2r o? ’
oPY,=N-1) -1 8—7””*12;;“”)2 (Tn—1—z(t))
Opa4 CVer o? ’
and; if Y; #0 andY; # N
oP(Yi=k) _ —1 e (T} — ()
do V2r o2
p L e ? (T — a(t))
ous o? .

C. Differentiation w.r.t. transition levels
Derivatives of the probability functions (5), (6) and (7).

the first and the last transition levels differ from the casgg
of other transition levels. Therefore, three cases haveeto b

considered.

In the first case differentiation w.rf; is performed. From

(5) we have
OP(Y; =0) 1
T VZmo .
Since N > 3, (6) does not contaifi’}, hence
oP(Y,=N—-1)
o1y

(1 —a())?
202

=0.

o then the corresponding

1 _@meen?
8P(}/l:k): —me 202 ,|fl€:27
0T, 0, otherwise.

Secondly, we known that (5) does not dependlan 1, SO

OP(Yi=0) _,
OTN_1 '
From (6), the derivative function is
OP(Y,=N-1) J R S U
Tx1  Rmo
And if y; # 0 andy; # N — 1 then
L el e N o
0, otherwise.

And in the third case we assume tha# 1 andk # N —1.
(5) and (6) give that

OP(Y; =0) OP(Y,=N —1)
- ‘ =0and——— 2 =0.
6Tk aTk
Generally, from (7) we have
1 (Tg—x(27))?
e 22  ifm=k
OP(Y; =m) V210
0T, B -1 _Tea—emn?
e 202 Jifm=Fk+1.
V2o
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