Analóg periféria interfész illesztése EFM32 mikrokontrollerhez

Készítette: Fónai Martin

Konzulens: Dr. Orosz György

Téma ismertetése

- EFM32 analóg perifériáinak korlátai
 - o 12 bit
 - Kicsi jel-zaj viszony
- Bővítőkártya Giant Gecko fejlesztő board-hoz
 - Audio célokra
 - Nagy felbontás
 - Zajmentesen
- Szoftveres támogatás

Előző félévben

- Szigma-delta architektúra megismerése
- Interfész chip-ek kiválasztása
- Rendszerterv az MCU és az interfészek kommunikációjára
- Tápellátás topológiájának megválasztása (LDO)

Egyszerűsítések

- Tervezési-, megvalósítási gondok a két alkatrész miatt
 - TQFP tokozás
 - Négyrétegű nyomtatott áramkör
 - Nehézkes beültetés
- Új chipet választottam
 - 1 darab audio codec (AK4556VT)
 - TSSOP-20 tokozás
 - 24 bit, kétcsatornás szigma-delta
 - Egyetlen I2S interfész
 - Egyszerűbb programozás

Újragondolt kommunikáció

- Csak I2S van
- A mintavétel erre szinkronizált → nem kell rá külön jel

Áramköri tervek

- Analóg input
 - DC leválasztás, eltolás
 - 0.7-szeres erősítés
 - Ismételt DC leválasztás
- Analóg output
 - DC leválasztás, eltolás
 - 10/7-szeres erősítés
 - ismételt leválasztás
- Digitális jelek
 - A Gecko header-jével egyeztetve
- Tápellátás
 - o 3.3V, 5V-ról LDO-val

PCB terv

- Két réteg
- Felső réteg: jelvezetések
- Alsó réteg: táp, föld
 - o Táp: csillagpontos
 - Föld: az alsó réteg maradék része
- Elszigetelt analóg- és digitális jelek
- RCA csatlakozás
- Tüskesor adapter
- Üzemmód-kapcsolók

Az elkészült áramkör

Szoftveres keretrendszer

- Periféria setup
- Teljes DMA támogatás
- Beépített blokkoló függvények, getterek és setterek
- Egy példakód:

```
while (1) {
    BFG_waitForLeftIn();
    left[index++] = BFG_getLeftIn();
    for(k = 0; k < 16; k++) output += left[k] >> 4;
    BFG_waitForLeftOut();
    BFG_setLeftOut(output);
    index &= 0xFF;
}
```

Tesztelés

THD mérés

- Nem kívánt felharmonikusok aránya
- A jelteljesítmény hibája az elvárthoz képest, decibelben
- Nagy lett
- Nem az én rendszeremből származik a jelentős része

Frequency	Vpp	Input RMS	Output Vpp	Output RMS	THD	THDdB
100	2,04	0,718	2,09	0,738	0,006498785816	-43,74335552
200	2,04	0,72	2,11	0,747	0,006132784218	-44,24684631
500	2,04	0,72	2,12	0,75	0,004700346021	-46,5574034
1000	2,04	0,721	2,12	0,751	0,004589901362	-46,76393295
2000	2,04	0,721	2,09	0,741	0,006274691168	-44,04815289
5000	2,08	0,725	2,04	0,712	0,002645180158	-51,55089487
10000	2,05	0,724	2,05	0,726	0,005502052835	-45,18950487

Diszkrét sinc/átlagoló megvalósítása

- 16-odfokú (a korábbi kódnak megfelelően)
- Kiemeléseknél, elnyomásoknál mértem
- MATLAB-ban ábrázolva

Fejlesztési lehetőségek

- A bemeneti erősítő fokozat egyszerűsítése
- PCB tervezési hibák megszüntetése
 - Az egyik szűrőkondenzátor túl messze került
 - A tápsín és az órajel nagy felületen találkozik
 - RCA/BNC átalakítók használata esetén méretezési probléma
- Ismételt mérések leválasztó transzformátorral
- A szoftver tökéletesítése

Köszönöm a figyelmet!