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Kivonat

Diplomatervem az EDICAM (Event Detection Intelligent Camera) néven ismert intelligens

kamera rendszer fejlesztésébe nyújt betekintést. A dolgozatban a két FPGA-n megvalósított

�rmware tervezése és implementálása kerül bemutatásra.

Az EDICAM rendszer hardver komponense egy kamerafejb®l és egy fejleszt®i kártyából

épül fel. Ezen egységek már a fejlesztés els® fázisában rendelkezésre álltak. A diploma-

terv els® fejezete ezeket a komponenseket mutatja be az újrafelhasznált, küls® fejleszt®k

által biztosított FPGA-modulokkal kiegészítve. Az újrafelhasznált modulok a �rmware-hez

kapcsolódó alacsony szint¶ interfészek kezelését látják el. A felhasznált komponenseken túl

az FPGA-tevezéskor alkalmazott speciális id®zítési megfontolások is a dolgozat elején ker-

ülnek bemutatásra.

A �rmware-fejlesztés alapjául az EDICAM rendszer magasszint¶ speci�kációja szolgált.

A dolgozat második része a speci�káció bizonyos részeit mutatja be az expozícióval és a

képkiolvasással kapcsolatos megfontolásokra fókuszálva.

A speci�káció bemutatását követ®en a rendszertervezéssel kapcsolatos részleteket mutatja

be a dolgozat. Ez a rész röviden ismerteti a �rmware két komponensének architektúráját,

valamint az almodulok m¶ködését és a f®bb interfészeket. Az általam tervezett almodulok

a következ® részben részletesebben is bemutatásra kerülnek.

A diplomaterv mérési eredmények ismertetésével zárul. A teszt két expozíció és egy kép-

kiolvasás végrehajtásán keresztül bemutatja és összefoglalja az EDICAM rendszer m¶ködését.

Összefoglalásként elmondható, hogy a kezdeti célokat maradéktalanul sikerült teljesíteni,

ugyanis a diplomatervben bemutatott implementáció megfelel a magasszint¶ EDICAM

speci�kációnak.
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Abstract

This master thesis presents the details of the design and implementation of the �rmware of

an intelligent camera system, the so called EDICAM (Event Detection Intelligent Camera).

The �rmware has been implemented on two FPGAs.

The EDICAM system consists of a camera head and a development board. These hard-

ware modules have already been available at the beginning of the development. The �rst

part of the thesis presents some details of these hardware components as well as introduces

the third party FPGA modules. These modules are responsible to handle the low level

interfaces connected to the FPGAs. Firmware design on FPGAs requires speci�c timing

considerations which are introduced as well.

The development of the �rmware was based on the high level speci�cation of EDICAM,

so the second part of the thesis is focused on certain parts of this document: exposure and

image readout methodology of EDICAM.

The introduction of the speci�cation is followed by the details of the system level design.

This part presents the high level architecture of the two main �rmware components, and

shortly introduces the submodules and the main interfaces. The submodules which are the

main contributions of my development are introduced in detail in the next part one-by-one.

The last part of the thesis demonstrates and summarizes the operation of EDICAM via

presenting test results: 2 exposures and a transmission of an image had been performed.

In summary, it can be said that the inital objectives have been completely achieved.

The implementation introduced in this thesis complies with the high level speci�cation of

EDICAM.
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Introduction

The increasing energy demand of the population is one of the most urgent problems of

today. A solution is more and more important as the depletion of fossil fuel resources is

expected in the close future. Fusion power plants can be considered as one of the feasible

solutions to resolve the energy problem:

• the fuel of a fusion power plant is available in large amount,

• fusion plants are more environmentally friendly than nuclear plants,

• the transformation of the released energy to electricity is easy to perform.

The technology has only one huge disadvantage, namely the high technology required

to realise the fusion.

Figure 1. Tokamak and stellarator. [9]

The storage of hot plasma is one of the most serious problems. In �gure 1. two possible

solutions are exhibited. The classical tokamak is presented on left side, and the structure

of a stellarator can be seen on right side. The plasma has a temperature of even 150 million

degrees in these reactors [1][2].

The main purpose of the existing experimental fusion reactors is not energy production

yet, but the exploration of the behavior of plasma to collect experience. The observation

of such a system is a complex problem which can be performed by a camera system. The

optical observation of the whole chamber of a stellarator can be performed by 10 tangential

view ports. The arrangement is shown in �gure 2.
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Tubes for camera capsulesAngle of view

Figure 2. Stellarator observed by cameras.

The MTA W FK 1 has been started to develop a new optical observer system, the so

called EDICAM (Event Detection Intelligent Camera). EDICAM is intended to be used

in an experimental setup created in the Weldenstein 7-X stellarator in Greifswald. The

optical sensor of the camera has a resolution of 1280*1024 pixels, and produces 12 bit

intensity information per each pixel. The camera can produce pictures up to 400 times per

second. Considering the numbers, approximately 3 terabytes of information is generated

every hour, which has to be processed in real-time. The system is implemented on a high-

end FPGA (Field Programmable Gate Array) which facilitates the realisation of low latency

reactions, high bandwidth real-time communication and data processing.

I have been participated in the development of the above mentioned system at ProDSP

Ltd.2. ProDSP has been performed the design and implementation of modules inEDICAM

implemented on an FPGA. The high level functional speci�cation along with the hardware

and the low level FPGA modules were provided by the MTA W FK. This thesis presents

the details of my development work which are grouped as the following:

1. Introduction of theoretical knowledge related to digital design, the applied hardware,

the low level modules provided by 3rd party developers and the design �ow.

2. High level speci�cation of EDICAM and its interpretation.

3. System level considerations, division of the system to submodules.

4. Implementation of the submodules.

5. Test results of the integrated system.

6. Possible ways of further development.

1MTA W FK stands for "Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpont".
2ProDSP Ltd. is a Hungarian R&D company, founded in 2006 as a spino� of the Budapest University

of Technology and Economics.
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Chapter 1

Background

This chapter presents the basics of the development. The theoretical background of static

timing analysis is presented �rst. The timing part is followed by the introduction of the

applied hardware modules (camera head and development board). FPGA units (image

sensor-, optical link control and PCIe core) provided by 3rd party developers are described

as well. The applied design �ow is summarized at the end of this chapter.

1.1 Synchronous sequential circuits

In this part, synchronous sequential circuits are introduced [7]. Digital circuits can be

divided into combinational- and sequential circuits. By de�nition, a combinational circuit

is a circuit whose output, after an initial transient period, is a function of the current input.

In contrast, a sequential circuit has an internal state. The output of such a system is the

function of the current input and the internal state as well.

Internal states can be realised by predesigned memory components or by combinational

feedback loops. Modern FPGAs feature predesigned memory components which are care-

fully designed and thoroughly analysed. Combinational loops contain potential timing ha-

zards, so they have to be avoided in synthesis.

These memory components are carefully designed and thoroughly analysed, while feed-

back loops contain potential timing hazards, and aren't suitable for synthesis.

1.1.1 Memory components

Basic memory components can be divided into latches and �ip-�ops (FFs). Since latches

are not used in the �rmware (they are not used in synthesis normally), the next section

focuses only on FFs.

Functional description of D FFs

The schematic and the function table of positive-edge-triggered D FFs can be seen in

�gure 1.1. D FFs have a special control signal known as clock signal which is labeled as

clk in the schematic. D FFs take sample of the input data when the clock signal changes

from low level to high level (see function table in �gure 1.1.), which is known as the rising

8



edge of the clock. At other times, the output remains the same as the value stored in the

memory at the rising edge of clk, so the output of a D FF is unchanged until the next

rising edge.

There are also negative-edge-triggered D FFs which are controlled by the falling edge

of the clock signal. The edge of clock, which causes sampling, can be referred to as the

sampling edge. Since the operation of D FFs is controlled by the edge of signal clk, they

are referred to as edge sensitive. Sometimes D FFs are referred to as FFs simply in the

thesis.

Timing description of D FFs

In order to ensure the above detailed functionally proper operation of a D FF , timing

considerations have to be examined. The three timing parameters, introduced in �gure 1.1.,

are described in the following [7]:

• Clock to q delay (Tcq): the propagation delay required for the d input to show up at

the q output after the sampling edge of the clock signal.

• Setup time (Ts): the time interval in which signal dmust be stable before the sampling

edge.

• Hold time (Th): the time interval in which signal d must be stable after the sampling

edge.

Ts

Th

Tcq

clk

d

q
setup time
violation

metastable
state

decision
window

d q

clk

1
0

clk q*
q
q
d

Figure 1.1. Schematic, function table and timing diagram of a positive-edge-
triggered D FF.

A decision window is speci�ed by the timing constrains (Ts and Th), in which the input

of the D FF has to be stable. If signal d changes inside this interval, the FF may enter

a metastable state: the output is neither low nor high, which con�icts with the functional

speci�cation of the D FF .

In normal operation, a D FF is in one of the two stable states, and its output voltage

is either high or low, meanwhile in metastable state, the output voltage can be anywhere

in the entire voltage range. This intermediate state cannot be interpreted as either logic 0

or logic 1. If the output of the FF is used to drive logic, which is likely, the intermediate

value may propagate to further memory elements, and lead the entire digital system into

an unknown state.
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1.1.2 Globally synchronous sequential circuits

A globally synchronous sequential circuit (or simply synchronous circuit), in which all FFs

are controlled by a global synchronizing signal (the so called clock signal), greatly simpli�es

the design process. Synchronous design is the most suitable methodology to design com-

plex digital systems. During the design of EDICAM , the principles of the synchronous

sequential circuit design methodology were applied. The basics of the synchronous design

methodology are summarized in this section [7].

next-state
logic

output
logic

d qexternal
input

clk state register

output

state regstate next

Figure 1.2. Conceptual diagram of a synchronous sequential circuit.

The memory element in a sequential circuit, frequently known as a state register, is a

collection of D FFs. The output of the register, signal state reg, represents the internal

state of the system. The next-state logic is a combinational circuit that determines the

next state of the system. The output logic is another combinational circuit that generates

the external output signal. The structure of such a system is shown in �gure 1.2. During

the operation of synchronous circuits, the following steps are periodically performed:

1. At the sampling edge of the clock, the value of signal state next is sampled and

propagated to port q, which becomes the new value of signal state reg. The current

state of the system is represented by the values stored in FFs.

2. Based on the value of signals state reg and external input, the next-state logic

computes the value of signal state next, and the output logic computes the value of

the external output.

Synchronous design is preferred because of its important advantages:

• The combinational circuits and memory elements are clearly separated. This enables

the combinational part of the system to be easily isolated, and also to be designed

and analyzed as a regular combinational circuit.

• Timing hazards can easily accommodated in a synchronous circuit because inputs

are stored at the sampling edge of the clock. The e�ects of glitches are ignorable as

long as they are settled in the decision window .

1.2 Static timing analysis

When designing a digital circuit, both the speci�ed functional operation and the timing

requirements described in subsection 1.1.1 have to be checked. The process of the examin-

ation of timing requirements is called static timing analysis, and can be performed by the
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TimeQuest T iming Analyser. The basics and features of TimeQuest which were used in

the design of the EDICAM �rmware are introduced in this section [11].

The timing information necessary in a digital design can be presented in an SDC (Syn-

opsys Design Constraints) �le. This �le is processed by both the synthesis and timing

analyser software.

1.2.1 Introduction of timing analysis

Static timing analysis is based on the presence of clocks, namely every register launches

and latches data periodically. Timing relationships between the register pairs being in

connection are examined during the analysis. The principles of this method are described

in the folowing, where the expressions D FFs and registers are used equivalently.

Basic model

The sampling edge of the clock signal can be referred to as launch- or latch edge. When the

transmission between two registers is examined, the sampling edge of the source register is

called launch, while the sampling edge of the destination register is called latch edge. The

data launched by the launch edge is intended to be sampled with the latch edge.

Tsrc clk dly

Tdata dly

Tdst clk dly

tdata arrival path

tlaunch edge

PS

PD

Tcq

src reg dst reg

tlatch edge tdata required path

dq

Figure 1.3. Register pair timing model in T imeQuest.

In �gure 1.3., the model and parameters used by TimeQuest can be seen. Points PS

and PD can be the same. The abbreviations src(S), dst(D), dly, and reg stand for source,

destination, delay and register respectively. The terminology used by TimeQuest is not

exactly the same. Tcq, Ts and Th are called micro-parameters, and they are referenced as

µTco, µTsu and µTh. The other parameters are called simply launch_edge, latch_edge,

src_clk_dly, dst_clk_dly, data_delay, data_arrival_path and data_required_path

regardless of the underlying meaning. Since these names used in TimeQuest can be con-

fusing at �rst glance, the notation introduced in �gure 1.3. is preferred in this thesis. The

description of the tags in the �gure is described in the following:

• PS , PD: reference points related to the timing of clocks feeding src reg and dst reg.

• src reg: this register launches data.

• dst reg: this register samples the data launched by src reg.
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• tlaunch edge: time of the arrival of lauch edge at PS .

• tlatch edge: time of the arrival of latch edge at PD.

• Tsrc clk dly: propagation delay from PS to src reg.

• Tdst clk dly: propagation delay from PD to dst reg.

• Tdata dly: propagation delay from the output of src reg to the input of dst reg.

• tdata arrival path: time of the arrival of data, driven by src reg and triggered by the

launch edge, at dst reg.

• tdata required path: time of the arrival of latch edge at dst reg (time of sample).

Timing analysis

In order to ensure the setup requirement of dst reg, the data launched by src reg has to

reach the destination reg by the value of Ts earlier than the latch edge, which is described

by the next inequality:

tdata arrival path < tdata required path − Ts (1.1)

After substituting the parameters into (1.1), the result is:

tlaunch edge + Tsrc clk dly + Tcq + Tdata dly <

tlatch edge + Tdst clk dly − Ts (1.2)

The minimum di�erence between tlatch edge and tlaunch edge is the so called setup rela-

tionship, and the deviation of the clock delays is the clock skew (Tdst clk dly − Tsrc clk dly).

The next data launched by src reg has to reach dst reg by the value of Th beyond the

arrival of the latch edge in order to ensure the hold requirement of dst reg:

tnext data arrival path > tdata required path + Th,

which results in

tnext launch edge + Tsrc clk dly + Tcq + Tdata dly >

tlatch edge + Tdst clk dly + Th (1.3)

It's important to emphasize that tnext launch edge in (1.3) represents a later time than

tlaunch edge in (1.2). This is the consequence of the periodic operation of synchronous sys-

tems: the next launched data must not disturb the previously sent one.

The maximum di�erence between tlatch edge and tnext launch edge is the so called hold

relationship.

Relationships detailed in (1.2) and (1.3) contain micro-parameters, delays and setup-

or hold relationship. Micro-parameters are constant parameters determined by the techno-
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logy, and delays can be extracted accurately from the routed design. In order to perform

timing analysis, only the relationships have to be calculated by TimeQuest from the SDC

�le. Setup- and hold relationships can be also referred to as requirements, because the syn-

thesis software has to satisfy the hold- and setup inequalities based on these parameters

as requirements.

Writing of proper SDC �les requires the understanding of the way TimeQuest calculates

relationships depending on the constraints written in the SDC, so in the next subsections

SDC constraints and their e�ects are presented.

1.2.2 Basic relationships

This subsection focuses on the derivation of the basic relationships in TimeQuest.

Description of clock creation

There are constraints in the SDC �le which enable the designer to describe the waveform

of the clock signal in certain points of the design. From these points, the waveform of the

clock signal can be calculated anywhere in the design, because the delays of the elements

in the clock paths in the routed design are known. create_clock, create_derived_clock and

create_pll_clocks SDC constraints are introduced in the following.

A schematic can be seen in �gure 1.4. which represents the clock structure of a syn-

chronous system containing a PLL1 (Phase Locked Loop).

Psys clk PLL c1

gen clk domainmain clk domain

main clk

gen clk main clk

gen clk

Figure 1.4. Clock domains with a PLL.

The clock structure of the example system is described by the following SDC constraints:

• create_clock -period 8.0 -name main_clk [get_ports sys_clk]

• create_generated_clock -name gen_clk -divide_by 2 -phase 22.5 -source

sys_clk [get_pins PLL|c1]

create_clock constraint is used to create base clocks, namely it can describe the waveform

of the clock coming into the FPGA. In this particular constraint, a clock signal is created

which user name ismain clk. The target of the constraint is the sys clk port of the FPGA,

1A PLL is a predesigned component in FPGAs, which can be used to transform clock signals.
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so at that port a clock waveform is generated with 8 ns period and �rst rising edge at 4

ns. The function of Psys clk is the same as the function of PS and PD in �gure 1.3., but in

this example the two points are the same.

create_generated_clock constraint is used to create clocks based on already de�ned

clocks. In this example, the user name of the generated clock is gen clk. This clock is the

modi�ed version of sys clk indicated by the -source parameter. Because of the source-

and divide_by parameters of the constraint, gen clk has 16 ns period, but its rising edge

occurs at 1 ns caused by the phase parameter. The waveform is related to the same point

as main clk, because generated clocks are analyzed as if they were coming into the device

where the clock presented in the -source parameter. The targets of this generated clock

are the registers in gen clk domain which are controlled by the c1 output of the PLL.

create_pll_clocks constraint describes the outputs of PLLs. The constraint uses para-

meters from the de�nition �les of PLLs to determine the proper parameters of the auto-

matically generated create_generated_clock constraints. These generated constraints are

similar to the create_generated_clock constraint described in the previous paragraph.

Calculation of basic setup and hold relationships

Calculation of basic setup and hold relationships can be performed after the clock con-

straints have been applied. The steps of the derivation which are thoroughly summarized

in [11] are the following:

1. The waveforms have to be drawn based on SDC constraints.

2. The default setup relationship is designated by the closest edge pairs where

tlaunch edge < tlatch edge.

3. The default hold relationship is designated by the closest edge pairs where

tlatch edge < tlaunch edge + Tsetup relationship.

The second step is based on an inequality, but it can be done easier by the examination

of waveforms. In the waveforms, an arrow has to be drawn from every launch edge towards

the nearest latch edge until the time di�erences are started to repeat. Tsetup relationship is

the smallest time di�erence between the edge pairs. The derivation of the setup relationship

of the above constrained clocks is illustrated in �gure 1.5.

0 ns 8 ns 16 ns

Setup = 1 ns

Default relationshipmain clk

gen clk

1 ns
9 ns

1 ns

Figure 1.5. Calculation of basic setup relationship based on waveforms.

Not just the setup-, but also the hold requirement can be easily extracted from wave-

forms. The setup relationship has to be added to every launch edge �rst. In the second step,
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those latch edges have to be found which are the closest backwards in time to these shifted

launch edges. At the end of the derivation, hold requirement is the di�erence between the

closest incremented launch edge and latch edge pair designated by the previous step. This

process can be seen in �gure 1.6.

0 ns 8 ns 16 ns

Setup = 1 ns

Default relationshipsmain clk

gen clk

1 ns

Hold = -7 ns

-7 ns
-15 ns

9 ns 17 ns

-15 ns

Figure 1.6. Calculation of basic hold relationship based on waveforms.

1.2.3 Modi�cation of the basic relationships

In this part, some of the features of TimeQuest are introduced which enable the designer

to modify the basic relationships.

Use of multicycle path

Step 2 of the list found in subsection 1.2.2. assumes that the designer wants to per-

form correct data transmissions between even the closest launch- and latch edges, namely

TimeQuest assumes that every lauch edge can generate new output, and every latch edge

samples the input. Sometimes this basic launch- latch attitude of TimeQuest and the

derived basic relationships di�er from the intentions of the designer. In these cases the

default relationships can be modi�ed by applying the mulicycle path SDC constraint in

the design.

0 ns 8 ns 16 ns

Setup = 1 ns

Hold = -7 ns

Setup = 9 ns

Hold = 1 ns

Default relationship

Multicycle path applied

main clk

gen clk

main clk

gen clk

17 ns1 ns

Figure 1.7. Correction of the basic relationships.

A clock domain structure similar to the above detailed PLL example (see �gure 1.4.)

caused problem in the EDICAM �rmware. The solution is detailed hereafter. At top of

�gure 1.7., the basic relationships derived by TimeQuest can be seen. The default setup

requirement is 1 ns which is impossible to be satis�ed by the �tter, and the -7 ns hold rela-

tionship is incorrect as well. The designer has to tell to TimeQuest, that the next sampling

edge is preferred, which can be done by the -setup parameter of set_multicycle_path con-

straint. This is the so called shifting the window method. The results of the constraint are
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shown at bottom of �gure 1.7. The new relationships are illustrated by the arrows with

common ending point, and the interpretation of these arrows is explained in the following.

The data launched by the rising edge of main clk at 8 ns is intended to be sampled at

17 ns by gen clk (the tightest setup requirement, indicated by the dashed arrow). This

sampling is protected by the 1 ns hold requirement, namely the next data launched by

main clock at 16 ns won't reach the destination register in the decision window around

17 ns (the tightest hold requirement, illustrated by the normal arrow), so data transmission

will be performed without any time requirement violation.

Clock relationships

Basically, all clocks of the design are considered as related. If two clocks are related,

TimeQuest will try to satisfy (1.3) and (1.2) between all registers in the two domain.

If these clocks are the outputs of unsynchronised oscillators or uncompensated PLLs, or

if the frequencies of the clocks cause impossible tight timing requirements, the clocks have

to be set up as unrelated. It's important to emphasize that in these cases the designer does

not want to transfer data between these domains synchronously as described in subsec-

tion 1.1.2, so the setup- and hold inequalities have to be ignored by both TimeQuest and

synthesis software.

1.3 Applied hardware

In this section the hardware elements of EDICAM are introduced. The system consists

of a camera head and an expanded Altera development board. The operation is based

on high-speed links: The Camera head and the development board are connected via an

optical link, and the development board communicates with a computer through PCIe

interface. The system used in the design, along with its schematic representation, is shown

in �gure 1.9. and 1.8. respectively.

Optical
TRX

FPGA

optical
link

Camera head

Image
sensor

LEDs

Optical
TRX

Connector

clock and trigger IO

Receiver card

Altera development board

FPGA CPU
PCIe

PC

Figure 1.8. Schematic representation of the hardware components.

The Camera head contains the image sensor controlled by an FPGA, meanwhile the

Altera board provides the signi�cant portion of the computing capacity of EDICAM .

Details of this two main modules of EDICAM are presented in the following subsections.

The �rmware development software, the FPGA programmer and the debug related

tools are installed on an auxiliary computer which can be seen on the left side in �gure 1.9.

This computer communicates with the FPGAs via JTAG and is independent from the
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Altera board

Camera head

Optical link

Development
Programming
Debug

EDICAM application

Figure 1.9. Picture of EDICAM.

operation of EDICAM . The computer connected to the EDICAM via PCIe can be seen

on the right side.

1.3.1 Camera head

This subsection introduces the main components of the Camera head. The description is

completed with the simpli�ed block diagram of the Camera head (see �gure 1.10.)

CMOS IMAGE
SENSOR

ADC

STRATIX II GX
FPGA

LEDs

OPTICAL
TRANSCIEVER

JTAG

CONFIG
EEPROM

156.25 MHz
CLKGEN

40 MHz
CLKGEN

PLL

x16

Figure 1.10. Simpli�ed block diagram of the Camera head.

The image sensor is a LUPA1300 1.3 megapixel high speed CMOS device (see �g-

ure 1.11.) which is based on a 1280 by 1024 pixel array [8]. The sensor can produce images

up to 450 times per second at full resolution. The photodiodes can be in two di�erent

states, collecting light or reset. The current value of the diode array, determined by the

state of exposure2, can be loaded to a storage by sampling. The captured analog values are

valid only for approximately 2 ms. The content of the storage is transmitted via 16 analog

parallel output ampli�ers which are digitized by the 12-bit ADCs (Analog Digital Convert-

2Exposure is the process when light is collected in the light sensitive detector array.
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Figure 1.11. Camera head and image sensor.

ers). The ampli�ers have a pixel rate of 40 MHz. The LUPA1300 can produce the image

data of rectangular subareas as well, which enables the sensor to increase the achievable

sampling frequency. Such an area is de�ned by a so called ROI (Region Of Interest)3.

The transmission of the image data requires a very fast interface between the Camera

head and the Altera board which is realised by an optical transciever which support speeds

up to 10 Gbps. The image sensor, optical transciever and the other modules in the Camera

head are controlled by an EP2SGX30 FPGA which is related to the Stratix II GX

FPGA family. Stratix II GX FPGAs are introduced in subsecion 1.3.3. The logical

capacity enables the FPGA in the Camera head to implement some basic parts of the

functionality of EDICAM next to the necessary handling of the image sensor and the

optical link.

The FPGA can be con�gured directly via JTAG or it can load the con�guration �le

from the con�g EEPROM independently.

1.3.2 Expanded Altera development board

This part focuses on the introduction of the expanded Altera development board [5]. The

picture of the board is shown in �gure 1.12. which contains tags only for units applied

in EDICAM . The optical interface of the board is not used, because it cannot provide

the transmission speed required by the speci�cation. A faster optical connector (10 Gbps)

along with the trigger and clock ports are accommodated in the extension card (Receiver

card in �gure 1.8.). This is a custom hardware component which is connected to the Altera

board.

The Altera board contains a 512 Mbyte �ash which can store the con�guration �les

of up to 8 designs. The actual con�guration can be selected via the con�guration switch

which is located at the back plane. The autonomous con�guration is supported by aMAX

II device. This unit is used exclusively to con�gure the �ash or the FPGA. The latter is

performed very quickly, because the FPGA has to be ready within 80 ms beyond power-

on reset (according to the PCIe speci�cation). The communication towards the PC is

supported by a PCIe interface with 8 lane. This port facilitates the complete transmission

3For clarity, it has to be emphasized, that the expression ROI has di�erent meaning for the LUPA1300
and EDICAM . As described above, LUPA1300 can manage only rectangular ROIs, while a ROI in
EDICAM can have arbitrary shape. Where it is unequivocal, hints are presented to aid the clear under-
standing.
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Figure 1.12. Altera development board. [5]

of the image data. The reference clock of the PCIe interface is provided by an oscillator

with a frequency of 100 MHz which can be routed to the gigabit transcievers. The other

clock source with a frequency of 156.25 MHz is utilized by the low level optical interface.

The board features a JTAG chain, which supports in system debug and programming:

Altera provides powerful debug tools which utilizes this serial interface. The MAX II

CPLD4 and FPGA are serially located in the chain.

The memory capacity of the FPGA is expanded with 256 Mbyte DDR2 memory which

supports low latency, high bandwidth storage of high amount of information. This capacity

consists of 72-bit synchronous dynamic random access memory (SDRAM) which is made

up of four 16-bit interfaces. The maximum clock frequency is 333 MHz, which means a

theoretical bandwidth of 48 Gbps.

The core of the Altera board is an EP2SGX90 Stratix II GX FPGA. This module

gives the main part of the computing capacity of EDICAM , so the functionality (e.g. data

processing) is implemented on this module mostly.

1.3.3 Introduction of Stratix II GX FPGA family

Stratix FPGAs are the high-end FPGAs provided by Altera. With the Stratix II

FPGA, Altera introduced a new logic cell architecture, namely the adaptive logic module.

Altera extended the capabilities of these FPGAs with on-chip transcievers creating the

4Complex programmable logic devices (CPLDs) are less complex than FPGAs but have non-volatile
con�guration memory.
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Stratix II GX FPGA. Since EDICAM includes high speed optical and PCIe interfaces,

this extended FPGA family is applied in the system. The main features of these devices

are described hereafter [4][12].

The introduced properties are memory capacity, clocking features, arithmetic support

and IO capabilities. The dedicated storage elements are the so called TriMatrix memories

which supports three RAM block sizes. These modules enable the implementation of true

dual-port memories and FIFOs up to 550 MHz. The Sratix II GX family provides up to

16 global clock in all, and up to 32 regional clock networks per device region. The high-speed

DSP blocks operate up to 450 MHz. These elements can accommodate e.g. multiply-

accumulate functions or FIR �lters. The superior IO blocks support even high-speed

external memory interfaces, such as quad data rate SRAM , double data rate SDRAM and

single data rate SDRAM . High speed serial interfaces are supported by up to 20 high-speed

serial transciever channels which provide up to 255 Gbps of serial bandwidth (6.375 Gbps

in each direction per each transciever). The introduced FPGA family supports multiple

intellectual property megafunctions from Altera MegaCore functions which simpli�es the

design process.

High level architecture

Stratix II GX devices have a two-dimensional row- and column based architecture as can

be seen in �gure 1.13.

Figure 1.13. Block diagram of Stratix II GX architecture. [4]
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The basic building elements are the logic array blocks (LABs), memory blocks (M512,

M4K and M RAMs) and DSP blocks. The DSP blocks can implement four 18 bit x

18 bit or one 36 bit x 36 bit multiplier. Each LAB consists of 8 adaptive logic modules

(ALMs) which is the basic building block of logic.

The memory blocks have a capacity of 0.5 K, 4 K and 512 K without parity bits (K

equals to 1024 bit). M4K RAM and M -RAM blocks provide memory interfaces up to

60-bit and 144-bit wide respectively, and they support all of true-dual port, simple dual

port and single port modes. In contrast, M512 can not implement true-dual port mode.

The memory blocks except M -RAM , DSP modules and LABs are placed in a column

structure, while M -RAM is located individually in the logic array of the device.

The IO pins of the FPGA are fed by IO elements (IOEs) located at the end of LAB

rows and columns around the periphery of the device. Various single-ended and di�erential

IO standards are supported. Each IOE consist of a bidirectional IO bu�er, six registers

for registering input, output and output enable siganls. These registers are controlled by

a dedicated clock, and they allow the realisation of high performance external memory

interfaces such as DDR, DDR2, QDR II SRAM .

The resources available in the particular devices of EDICAM are listed in table 1.1. It

is obvious, that the GX90 located in the Altera board is much powerful than the GX30

in the Camera head. The di�erence between the two devices has a factor of almost 3 in

every listed resource. The functionality of EDICAM is mostly realized by the capacity of

the GX90. It has to be added that the PCIe soft core and the related application layer

with DMA in the GX90 consumes almost 30 % of the resources. Furthermore, this part

operates at high frequency (250 MHz). In summary, the extra resources are consumed by

the PCIe interface and the implementation of EDICAM functionality together.

Device M512 M4K M-RAM
MUL

18x18
ALM

Memory

capacity
Transcievers

EP2SGX30 202 144 1 64 13552 1.47 Mb 4/8
EP2SGX90 488 408 4 192 36384 4.52 Mb 8/12

Table 1.1. Summary of resources in the applied SIIGX FPGAs.

It is important to localize these devices in the world of FPGAs. To illustrate the relative

capacity of EP2SGX30 and EP2SGX90, the ordinary Spartan 3E 250 and the most

advanced Altera FPGA is compared with the GX90 in table 1.2.

Device MUL 18x18 LEs memory PLL

XC3S250E 12 5508 220 kb 4
EP2SGX90 192 90960 4.52 Mb 8
5SGXBB 704 952000 53 Mb 32

Table 1.2. Resources of FPGAs with di�erent level.

It has to be emphasized that the comparison of these FPGAs via the numbers listed

in the table is inaccurate5. These FPGAs have very di�erent architectures (logic element

5Equivalent logic elements (LEs) is the logic capacity expressed in a four-input LUT -based architecture
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structure, memory block structure, etc.) and technology (operating frequency, power con-

sumption). These aspects not included in the table further increase the di�erence. Consid-

ering only the numbers, it can be seen, that there are FPGAs which are bigger or smaller

relative to GX90 with an order of magnitude. It is remarkable that the performance of

even these Stratix II FPGAs is negligible compared to 5SGXBB.

Introduction of LABs and ALMs

When designing with FPGAs, the understanding of the underlying structure is neces-

sary to reach proper implementation. The description provided in the following is only an

introduction.

The main logic building block of Stratix II FPGA is introduced in detail in the fol-

lowing [3]. Each LAB consists of 8 ALMs, a carry chain, a shared arithmetic chain, LAB

control signals, local interconnects and register chain connection lines. As illustrated in

�gure 1.14., each ALM contains a variety of LUT based resources, two registers, two ded-

icated full adders, a carry chain, a shared arithmetic chain, a register chain and additional

logic units. These resources can be adaptively divided into two adaptive LUTs (ALUTs).

The LUT based resources and the additional logic units are tagged as Combinational logic

in the �gure.

Figure 1.14. Relationship of ALMs and ALUTs. [3]

The structure of LABs allows the Quartus II Compiler to implement arithmetic func-

tions and shift registers and certain functions very e�ectively. This is obtained by the

placement of associated logic in the same or adjacent LABs which enables the common

use of the above enumerated chains. The GX family further increases the logic utilization

by the so called register packing: Every ALM in the device can use both its LUT and

register resources for independent functions. This is bene�cial when the original function

uses only the combinational part of the ALM and hence the corresponding register would

be wasted.

The power of ALMs lies in the adaptive Combinational logic which enables the struc-

ture to implement various combinations of two functions with up to 8 inputs. The adaptive

logic is always divided by the compiler in a manner which minimizes the amount of unused

resources. Some of the possible results of ALM con�gurations are the following:

(like the structure in Spartan 3). LUTs are embedded asynchronous memory elements which are used to
implement logic functions.
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• Two independent 4-input LUT (4-LUT ) which ensures the backward compatibility.

• An independent 3-LUT and 5-LUT .

• 5-LUT and 4-LUT with one common input.

• Two 5-LUT with two common inputs.

• Any six-input functions.

• A subset of seven-input functions.

1.4 Reused FPGA modules

This section introduces the modules of the �rmware which are provided by 3rd party

developers (SCFW, 10G link, PCIe core). The reused FPGA modules are illustrated in

�gure 1.15. (dashed boxes). The next descriptions focus on the interfaces and the high level

functionality of the modules. Most of the used documentations related to this section are

con�dental and can not be referenced unless it is separately indicated (e.g. PCIe related

modules provided by Altera).

SCFW
10G
link

user logic PCIe
core

user logic10G
link

Sensor, ADCs CPU

optical
link

PCIe link

Camera head PC

EP2SGX30 EP2SGX90

(SM subsys) (IPCU subsys)

Figure 1.15. Reused FPGA modules in EDICAM.

1.4.1 10G link

The 10G link provides a high level interface between the optical link and the �rmware

which covers the handling of the low level XGMII interface of the optical link. These

interfaces are illustrated in �gure 1.16.
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Figure 1.16. Interfaces of 10G link.
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Towards the �rmware, only simple high speed streaming interfaces are provided in both

receive and transmit directions. The streaming interfaces have a maximal speed of 10 Gbps,

which enables EDICAM to produce high resolution images up to 400 times per second.

The streaming ports are implemented as 64-bit FIFO interfaces with 2 auxiliary bits

which can be used to transmit data packets easily. The units connected to 10G link have

to match the interface described in the following.

clock

data

write

occupancy

Dn DTSTW Dn+1 Dn+2Dn

SOP

EOP

D0 D1

0 1 n n+1 m

Figure 1.17. Waveform of a write transaction on 10G link.

A transmission of a packet is illustrated in �gure 1.17. from the transmitter point of

view. In the �rst cycle, SOP (start of packet) is asserted which marks the �rst QW 6 of

the data packet. If write enable is kept high, the value of the data input is written into the

link. The transfer can be suspended any time by deasserting write enable. occupancy has

to be monitored continuously: when the high threshold level is reached, write enable has to

be deasserted until the �rst cycle after the occupancy level drops below the low threshold

level (cycle 2 and n in �gure 1.17.). These threshold levels are constants provided by the

supplier of 10G link. At the end of the transaction, EOP (end of packet) has to be asserted

when writing the last QW .

clock

data

SOP

EOP

D0 D1 Dn+1 Dn+2 Dn+3Dn

empty

read

Figure 1.18. Waveform of a read transaction on 10G link.

If a packet is received via the optical link, the QWs can be accessed via the receive

streaming interface. An example waveform of a receive transmission is shown in �gure 1.18.

The reader has to monitor the empty signal which indicates whether a new QW is available

in the FIFO. The read operation can be started immediately after empty transitions to

low (cycle 3). read can be asserted continuously until empty is asserted again (cycle 5).

The read process can be suspended at any time by deasserting read (cycle 2-3). Along

with the data QWs, SOP and EOP bits are also provided in the same positions as in the

transmitter before the transmission.
6QW stands for quadword which is a group of 64 bits.
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1.4.2 Sensor Control Firmware (SCFW)

The low level control of the image sensor and the corresponding ADCs is performed by

the Sensor Control Firmware. The high level interface provided by this module enables

user logic, without knowing the underlying details, to perform image data read with ease.

In �gure 1.19., the user interfaces are tagged, meanwhile the control signals of the sensor

and ADCs are omitted. Exposition and sampling are controlled via Exposure and sample

control interface. The ROI to be read can be de�ned via ROI parameter FIFO interface

after a sampling occurs. The number of ROIs which are read between two samplings

is arbitrary. After the ROI parameters have been sent, the pixel data extracted from the

ADCs are accessible on Image data FIFO interface. The state of the analog storage, located

in the sensor, is tracked by SCFW , so the pixels which are received too late are marked.

This subsection describes these user interfaces in detail.

SCFW

Image data FIFO IF

ROI parameter FIFO IF

Exposure and sample control IF

control

data stream

Figure 1.19. User interfaces of SCFW.

Exposure and sample control interface consists of busy_o, sample_i and exposure_i

signals. The signal names are post�xed with "_i" or "_o" which indicates the direction

of the signals from the SCFW point of view. The light sensitive diode array collects the

light during exposure_i is asserted. Since the photodiodes are reset while exposure_i is

deasserted, exposure cannot be paused. A sample can be taken any time by an impulse on

sample_i which copies the content of the array to an analog storage in the sensor. Sampling

and exposure can be performed independently from the state of the sensor, SCFW and

other signals, so the appropriate control of these signals is the responsibility of user logic.

Sampling should not be performed while busy_o is kept high, which is explained later.

user logic can de�ne rectangular areas, the so called ROIs, on ROI parameter FIFO

interface. The transmitted parameters consist of the horizontal and vertial coordinates

of the upper left corner and the extension of the area to be read. In the case of ROIs

with arbitrary shape7 the marking of the �rst and last subareas is supported by framing

signals. These signals are auxiliary bits of the data port of the parameter FIFO. The

corresponding pixel data segments via Image data FIFO interface will be marked required

by these framing signals.

SCFW monitors continuously the state of the ROI parameter FIFO, and if a new

descriptor is available, it will be processed immediately. This task consists of the follow-

ing steps: The descriptor is downloaded to the LUPA1300 �rst. After this step has been

�nished, pixel data is clocked out both from the sensor and ADCs. busy_o is kepth high

7EDICAM manages ROIs with arbitrary shape (EDICAM ROI), however SCFW supports directly
only the readout of rectangular areas (SCFW ROI).
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during the whole procedure, and is deasserted when the ROI is completely received from

the sensor. Since the source of the image is the analog storage in the sensor which is

overwritten by sampling, the assertion of sample_i control signal during busy_o is active

corrupts the reading of the current ROI.

The information transmitted by the sensor are bu�ered in SCFW , and are accessible via

Image data FIFO interface. The pixel intensities are presented in 192-bit segments which

accommodate data of 16 pixels with a resolution of 12-bit per each pixel.

The data port is extended with framing bits as mentioned at parameter interface. The

start bit is asserted when the �rst image data segment is performed related to a particu-

lar SCFW ROI which has been de�ned with the start bit kept high on the parameter

interface. The same applies to the end bit, except it can indicate the last image data

segment of a ROI.

SCFW tracks the state of the sample in the analog storage as previously mentioned. An

extra bit of the Image data port indicates whether the current pixel bits were generated

beyond the period of validity.

SCFW has lower level control and status signals as well, namely two reset and a ready

signals. The introduced user ports of the module can be used during the ready signal is

kept high, and the operation can be restarted by the reset inputs.

1.4.3 PCIe core

The communication between IPCU subsys and the CPU is supported by a high speed

PCIe link (see �gure 1.15.). This subsection shortly introduces the main characteristics of

this subject in the following.

The complete implementation of a module which complies the PCIe speci�cation is

itself an enormous task. Vendors provide soft- and hard PCIe cores8 which implement

certain layers of the protocol to increase productivity.

The Altera development board is supplied with the Altera PCIe compiler which allows

the designer to create and customize soft PCIe cores in a simple manner. The gener-

ated PCIe core in EDICAM implements both the required and optional features of the

transaction, data link and physical layers. The top level transaction layer is completed

with an example application layer which further simpli�es the design [6].

The interfaces of the PCIe core are summarized in �gure 1.20. and introduced hereafter.
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Figure 1.20. Interfaces provided by the PCIe core.

8Hard cores are prefabricated dedicated submodules on the silicon, while soft cores are con�gurable
HDL modules which has to be implemented by general FPGA resources. Hard PCIe cores are featured
only by the superior FPGAs.
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The example application handles both simple memory and complexDMA9 access. These

features are used by internal submodules in the original application, and hence modi�ca-

tions had been performed. A memory- and a FIFO interface is provided in each direction

in the customized module, which supports both fast data transfers and simple reads and

writes between the application running on the CPU and EDICAM .

1.5 Design �ow

FPGA development consists of various stages. This section summarizes the steps of the

applied design �ow which can be seen in �gure 1.21. [10].

Specification &
architecture

RTL design &
optimization

RTL simulation

Analysis &
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Place &
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Static timing
analysis

Program &
debug

Place & Route
optimizations

1.

2.

3.

4.

5.

6.

7.

Timing requirements not met

Functionality has to be corrected

Figure 1.21. FPGA design �ow.

1. The development of EDICAM was started with the interpretation of the high level

specification (provided by MTA W FK). It is important to see the system in the

same way as the customer. The architecture has to be clearly de�ned before the

RTL10 design can be started, so the partitioning of the �rmware into submodules

have been performed in the beginning of the �ow as well.
9Direct memory access (DMA) in the PCIe protocol is the opportunity to launch independent memory

write packets toward the root complex.
10Register transfer level (RTL) is a design abstraction which models a synchronous circuit in terms of

registers and logic operations performed on the outputs of the registers.
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2. The functionality of each submodule has to be implemented in V HDL hardware

description language. The code intended to run on an FPGA has to be synthesiz-

able. This means that conscious coding stlye has to be applied, which fundamentally

in�uences the performance of the resulting system.

3. The functionality of the synthesizable modules has to be veri�ed before the FPGA

implementation. The reliable operation of the system requires the thorough examin-

ation of each module. This step of the �ow is completed by system level simulations

which ensure the appropiate operation of the integrated system. Since the compila-

tion time of such a large design is signi�cant (around an hour), iterations towards the

end of the design process is much more expensive than in this early stage. This causes

the importance of simulations. The simulations were performed by ModelSim.

4. Syntax and semantic errors are checked at the beginning of this phase, and the

design hierarchy is identi�ed. The V HDL code is translated to di�erent types of

RTL primitives, including counters, adders, block RAMs, multipliers, state machines

and registers. Technology mapping is carried out on these RTL primitives which

implement the design using device speci�c resources, such as ALMs, LEs (ALUT

with a register) and other dedicated logic blocks. This step was performed by the

integrated synthesizer of Quartus II.

5. The design speci�c resources have to be mapped to the actual device. The �tter

assigns physical locations to these resources and connects them appropriately via

routing. Timing constraints are considered during the operation of �tter which prac-

tically controls the �tting process (actually the synthesizer is a�ected as well). This

step was performed by the integrated �tter of Quartus II.

6. Compliance of the routed design with the timing constraints has to be checked before

programming the FPGA. This step was performed by TimeQuest T iming Analyzer.

7. The monitoring and control of certain signals of the FPGA design is necessary to

validate and debug the operation. The observation of the programmed device was

supported by SignalTap II Logic Analyzer, and control functions were provided by

SignalProbe.

The introduced design �ow contains feedbacks, which is shown in �gure 1.21. Further

iterations have to be performed when Step 6. reports that the timing requirements have

not been met by the routed design. This problem can be resolved by modifying the options

of the Quartus II �tter, e.g. increasing the placement e�ort. If the �tter is unable to place

and route the design appropriately, the RTL design has to be further optimized. Both

RTL level modi�cations and increased �tter e�orts can be very time consuming, so the

importance of the careful design in the early stages of the �ow has to be emphasized again.

Further V HDL code modi�cations can be made necessary by bugs as well which have been

came to light only after programming.
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Chapter 2

High level EDICAM speci�cation

EDICAM performs periodic image readout and also calculates some basic parameters of

the information read. The operation is controlled by external control signals, parameters

set up by the PC, and by the results of the calculations which are performed in real-time.

In this chapter, the high level speci�cation of the �rmware developed by ProDSP Ltd. is

introduced.

The speci�cation of EDICAM is provided by MTA W FK. These are con�dental

documents which can not be referenced. The subsections of this chapter (except 2.1) are

the summary of those parts of the original speci�cation which are relevant to my work in

the EDICAM project.

2.1 Introduction of the main modules of the EDICAM �rmware

EDICAM consists of two main components, therefore the �rmware is also divided into

two main modules: Sensor Module (SM) implemented on the Camera head and Image

Processing and Control Unit (IPCU) realised on the Altera development board. The

relationships between the �rmware- and hardware modules are illustrated in a high level

block diagram which can be seen in �gure 2.1. The two systems operate in a master-slave

manner, because the commands initiated by IPCU are performed by SM .

SCFW
10G
link

SM PCIe
core

IPCU10G
link

Sensor, ADCs CPU

optical
link

PCIe link

Camera head PC

EP2SGX30 EP2SGX90

Figure 2.1. Function of the developed �rmware modules in EDICAM .
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Basically, IPCU controls exposure, sampling and readout1 performed in the SM . The

image received can be processed and sent to the PC. Readouts are controlled by processes

running parallel which can have di�erent parameters (image shape, readout period, etc).

These and other parameters have to be set by the PC via a register table. The operation

of the system is also controlled by external inputs and results of image processing.

SM provides a high level interface between IPCU and SCFW . This interface enables

IPCU to control the sensor by relatively high level parameters packed into commands.

These commands are decoded by the SM , then exposure, sample and readout is controlled

as required by the parameters.

2.2 Common parts

This section introduces parts of the speci�cation which are related to both IPCU and

SM . Details related to timing in EDICAM are presented.

2.2.1 Timing

Both SM and IPCU have an internal 64-bit counter (the so called ETU (EDICAM

Timing Unit) counter) with 100 ns resolution. This period is the unit of the system time

in EDICAM , and is referred to as ETU . ETU time (EDICAM system time) is the value

of the ETU counter.

These counters can be reset by an external input signal or by software command. The

counters of the two modules are synchronized through the 10G link. Timing of exposure

and data readout is based on these counters.

The ETU counters can be clocked by either an oscillator on the development board or

an external clock input received by the extension card. This source applies only for the

time measurement, and does not a�ect the clocking of the FPGA. The source clock drives

a PLL which ensures the proper 100 ns resolution (10 MHz) of system time even with

source clock periods not equal to 100 ns.

2.3 IPCU related parts

Parts of the speci�cation which are related mainly to IPCU are presented in this sec-

tion. The description focuses on the details of image generation (readout) and real-time

processing (events).

2.3.1 ROIP concept description

The core feature of EDICAM is the execution of the so called Region Of Interest

Processes (ROIPs). These tasks enable the PC to control the readouts via a high level

interface. This subsection presents the details of the ROIP concept. The development of

the modules implementing the functionality of ROIPs is out of the scope of my work. This

subsection summarizes both the speci�cation of ROIPs and the relevant characteristics

1A readout involves the entire transmission of parameters and image data related to a ROI.
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of the corresponding implementation. The details introduced are necessary to comprehend

the operation of other modules, especially in the case of parts in this chapter which describe

the readout operation in the SM .

ROIPs are generating readout requests one-by-one which are eventually executed by

the SM as a readout. A readout request contains all the informations necessary to perform

a readout in the SM . The time, when a readout request is sent is the launch time, while

the actual time of the readout is referred to as sampling time.

The PC has to specify the area to be read and the timing of the readout generation.

The timing parameters set by the PC are tstart, Tperiod, Nloop, immediate and normal

attributes, while Tpreload is a constant. These parameters are introduced later.

The defined �ag of a ROIP can be set after all of the parameters introduced here-

after are con�gured. It has to be emphasized that a ROI in the scope of SM and IPCU

(EDICAM ROI) can have more complex shapes than rectangular. If a ROI has arbit-

rary shape (unlike simple rectangular ROIs introduced in SCFW ), each row of the area

is de�ned as a rectangle with one pixel height in the description (SCFW ROI). The re-

lationship between the various types of ROIs, full image and sub-ROI is shown in �gure

2.2. Sub-ROIs are introduced later in subsection 2.3.2.

EDICAM ROI

sub-ROI

1280

1
0
2
4

Full image

SCFW ROI

Area of processing

Figure 2.2. Illustration of ROI related units.

This entire description is sent to the SM when a readout is generated by a ROIP . After

the transmission of the readout request has been �nished, SM performs the interpretation

of the complex EDICAM ROI descriptor, and performs the readout of each rectangular

area (SCFW ROI) sequentally. The image data sent by SM can be processed by IPCU

and transmitted to the PC.

A ROIP starts to initiate readouts after it has been activated by the event handling

mechanism of EDICAM or by the PC. The possible operation modes are illustrated in

�gure 2.3., and explained in the following.
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Figure 2.3. Di�erence between normal and immediate ROIP timings.

Two kinds of ROIPs are de�ned: immediate and normal. A normal ROIP generates

the �rst readout request before the start time by Tpreload. The start time (tstart, sampling

time of the �rst readout) is available in the description. Each additional readout launch

is delayed by Tperiod. The number of executed readouts is de�ned by Nloop. If immediate

mode is speci�ed, readout requests will be generated as fast as possible after the launch

time of the �rst request arrives (tstart − Tpreload). Normal readouts wait for the sampling

time in SM (Tpreload a�ects only the launch time), while the immediate ones are performed

as soon as possible.

There are di�erentiated persistent and non persistent ROIPs as well, regardless of

the immediate and normal attributes. Normal non persistent ROIPs discard requests

examined beyond the corresponding sampling time, which can be caused by e.g. a too late

activation. If the sampling time of the current request (after some discards) is greater than

the current ETU time, it will be launched. In contrast, immediate non persistent ROIPs

cancel all requests if the �rst cannot be generated in time. In case of persistent operation,

every requests will be launched in both modes.

Since persistent property is interpreted di�erently by immediate and normal ROIPs,

the former is not equal to the latter with Tperiod set to 0. Furthermore, the sampling

time in SM of readouts generated by only normal ROIPs are checked again (they can

be discarded also in the SM), while the immediate requests which reach the SM are

performed in any event (practically immediate requests are performed independently from

sampling time).

There is one more important parameter which describes the operation of ROIPs, namely

the trigger mode. ROIPs are slightly a�ected by this attribute, only the Tpreload parameter

is in�uenced. The real di�erence is caused in the operation of the readout module in SM ,

which is introduced in 2.4.2 (Readout operation).
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2.3.2 Event description

The high level control of EDICAM is performed by a computer (HOST ). The HOST

continuously monitors the state of the system, and changes the operation if necessary. Since

EDICAM requires very low latency between a status change and the corresponding control

reaction, an internal control mechanism has been applied. This concept is implemented by

the so called events which are introduced hereafter.

Events realise low latency (immediate), programmable control of the EDICAM opera-

tion. They use multiple binary inputs which are combined with prede�ned and program-

mable binary operations. The single bit result of the operations is considered as the state of

the event. When an event becomes active or inactive, multiple actions can be performed.

These actions are the above mentioned low latency control reactions.

Events are de�ned by the so called event inputs, operation and actions:

Event inputs

Each event has a certain number of event inputs. Each event input of each event are

driven by the following sources:

• Certain properties of the image data.

• State of external inputs and other events.

• ETU time.

• Inputs controlled by the HOST via PCIe.

Event operation

The following operations can be performed on the event inputs:

• Negation of arbitrary inputs.

• Combination with binary AND operation.

• The result of the AND operation can be negated.

• The state change of the output (the negated AND operation) can be delayed by a

certain amount of time in ETU .

Event actions

There are prede�ned actions in EDICAM which can be associated with certain events.

An event can control even more actions. The prede�ned actions are the following:

• Switch a ROIP state to active or inactive.

• Control a ROIP active state.

• Send ROIP trigger to SM to start a triggered readout.
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• Send exposure trigger to SM to start a triggered exposure.

• Assert or deassert a pin when the event becomes active.

• Control or invert the state of a pin.

• Send interrupt to HOST .

These actions can be triggered by various event state conditions: rising edge, falling

edge, high level and low level.

Image data processing

Certain event inputs are the result of image data processing. The image data is sent by SM

as a result of a readout, and the pixels are processed by the IPCU : minimum, maximum

and total intensity is calculated. These 3 parameters are compared against a threshold

level, and the single bit results of the comparisons are part of the inputs of evenets.

ROIs enable EDICAM to perform the readout only of subparts of the full image (see

illustration in �gure 2.2.). The extension of the processing of the full image can be further

limited (beyond ROIs) by the so called sub-ROIs (sROI). sROIs are rectangular areas

that fully or partially cover a ROI. An sROI de�nes a rectangle relative to the upper left

corner of the full image. An sROI might extend over the ROI area e.g. if the ROI has

arbitrary shape. In this case only data of the common territory of the ROI and sROI are

processed.

2.4 SM related parts

The speci�cation contains subparts related to readouts and exposure which can be asso-

ciated with the SM . These parts are described in this section.

2.4.1 Exposure control

The sensor module can perform image exposure periodically. Readout is not coupled with

exposure, so it can be done on any part of the diode array at any time independent of the

exposure. The exposure control can be either in IDLE state (no exposures are running),

ARM state (parameters are set, waiting for start time) or RUN state when periodic

exposures are running as shown in �gure 2.4. RUN state can last for either an in�nite

time or can return to IDLE after a prede�ned number of exposures have been performed.

An incompleted exposure sequence can be stopped by the IPCU .

After a short initialization period, the exposure control at SM gets into IDLE state.

After the exposure parameters have been set, an exposure start command is sent from the

IPCU to SM . The exposure state of SM changes to ARM . The actual exposure sequence

starts only when the time of the �rst exposure is reached or the triggered exposure receives

a trigger.
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t0

Texposure Trepetition

t[ETU]

collected light

Figure 2.4. Exposure sequence in SM .

Exposure can be described by the following parameters which can be set by the user in

the SM register table (see �gure 2.4.):

• Start time instant of �rst exposure in ETU (t0) or start on external trigger. The

external trigger is received by the IPCU and forwarded to SM via the 10G link.

• Exposure time interval(Texposure).

• Repetition period (Trepetition).

• Number of exposures or 0 if in�nite loop is desired (Nloop).
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2.4.2 Readout operation

This subsection describes that parts of the ROIP concept in EDICAM which are not

related to the IPCU exclusively. The following details are based on subsection 2.3.1, but

a short summary of the relevant parts is presented as well.

SM performs elementary readouts: The ROIP cores in IPCU translate the periodic

image read sequences de�ned by the PC into individual readouts, so all readouts are

triggered one-by-one by the IPCU . The packet of informations which describe a readout

is referred to as a readout request. The basic readout operation in the sensor module

consists of the following steps as shown in �gure 2.5.:

Exposure

Readout state

Request transfer

Sampling

IDLE ARMED READOUT IDLE

t[ETU]

Descriptor load

Pixel read

1. 2. 3. 4.

Figure 2.5. Timing diagram of a basic readout sequence in SM .

1. Transfer of a readout request: The readout request is sent from the IPCU to the

Sensor module. This contains information on what should be read out and when the

readout should start.

2. Waiting for sampling time: SM is waiting until the sampling time instant speci�ed in

the request. The sampling time is de�ned in the request as a time instant in ETU ,

or can be determined by an external trigger.

3. Sampling: Sampling impulse is generated towards SCFW .

4. Readout: The descriptor of the �rst ROI related to the actual request is loaded to

the sensor at �rst. The digitized pixel information has to be read continuously from

the sensor meanwhile the parameters of rectangular ROIs are loaded to the sensor.

The image data is sent onward to the IPCU . The procedure is �nished when the

last rectangular ROI of the area de�ned by the ROIP has been also read.

With regard to the readout sequence, the following restrictions have to be considered:

• No sampling can take place during reading samples from LUPA1300 (pixel read).

• The analog sampled image is available for pixel read for approximately 2 ms. Multiple

ROI packets can make use of the same sampled analog data, but the data is lost
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after 2 ms. Beyond this interval, the sampled analog values have to be considered to

be invalid.

The previous enumeration describes the readout operation from a high level point of

view. The EDICAM speci�cation includes also some hints related to the implementation

of the readout operation which are presented in the following.

The SM has three readout states, namely IDLE, ARMED and READOUT . SM is

in IDLE state by default, while it waits for the download of a readout request. When

a request arrives, SM enters ARMED state. In this state, SM waits for the sampling

time speci�ed in the request. As soon as the ETU time in SM reaches the sampling

time instant, a state transition occurs to READOUT and SM starts digitizing data and

downloading rectangularROI descriptors. Meanwhile, the image data are sent continuously

to the IPCU . After pixel read and transmission of data have been �nished, SM checks

whether a new request is already available in the request bu�er. If it is, SM will enter

ARMED state otherwise it returns to IDLE state.

The ETU time when the last sensor sample is taken is registered in a SM internal

register. This register is cleared after a certain time has passed which can be set as well. If

the required sampling time in a readout command equals the time of the last sample, then

without a new sensor sampling a readout will be performed. There are also conditions when

sampling cannot be preformed by the SM . In such cases the ARMED state is aborted and

SM returns to IDLE state. Sampling is interrupted when the required sampling time of

a ROI has already been passed or when a clear readout command is received. Regardless

of the conditions, there is always a readout command sent form SM to IPCU in response

to a ROI download. If no data are available, the header of the command will contain an

error code.

SM has storage capacity for two readout requests. These so called readout request

registers are �lled by the IPCU . The active request is the one which determines the

current readout. As soon as the readout has been �nished, the role of the two registers

are swapped and the previously active request register becomes free, waiting for the next

request.

Handling of the sampling time instant depends on the following three �ags of the ROIP

description which are sent to SM :

• immediate: The sampling is done immediately as soon the SM has been entered into

ARMED state.

• persistent: If this �ag is set, the readout process will read the image even if the

indicated sampling time has passed. Without setting this �ag, the readout command

will be dropped if the sample time is passed. This behaviour is applied to both

triggered and timed ROIs as well.

• triggered: If this �ag is set, the readout will wait for a readout trigger command

from the IPCU , and the sampling will not be taken at the indicated sampling time

instant. However, if the persistence �ag is not set, the readout is cancelled when the
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indicated sampling time has passed. Triggered ROIPs suspend the sensor operation

for an unknown time therefore practically no other requests can be processed.

2.5 SM-IPCU interaction

This section introduces a typical readout scenario. The scenario consists of an exposure

setup followed by two readout requests. The second request is cancelled before the corres-

ponding sampling time instant.

The description is focused on the interaction between IPCU and SM . The state trans-

itions of the exposure and readout operations implemented in SM and the corresponding

actions are illustrated in �gure 2.6. and detailed in the following. Note that these so called

operations are the high level descriptor of the EDICAM operation.

Exposure state
IDLE

t[ETU]t1 t3 t4t2

Readout state

Request register 1

Request register 2

RUN

IDLE ARMED READOUT ARMED IDLE

IDLE

EMPTY

EMPTY

EMPTY

EMPTY

ARM

request2

request1

t5 t6 t7 t8

Figure 2.6. State transitions of SM submodules during a basic readout.

SM is in indi�erent state before t1: Both exposure and readout are in IDLE state, and

the request registers are empty. The operations are waiting for parameters and a start

trigger. A command which contains exposure related paramteres arrive at t1, and hence

exposure operation steps into state ARM . During this state, exposure is waiting for the

time instant of the �rst exposure which arrives at t3. Exposure is in state RUN until t8:

It transitions back to IDLE after the last exposure de�ned by the parameters has been

performed. Readouts are performed during exposures are running (between t3 and t8).

The readout operation steps into ARMED state when a readout request is launched

by a ROIP at t2 (request1). The request is stored in the �rst request register. Since

both registers were empty before the arrival of the request, the new request will be active

immediately. The sampling time of the �rst request arrives at t4, and hence readout oper-

ation steps into state READOUT : sampling, ROI download and image data transmission

towards the IPCU is carried out.

Readout operation steps back to ARMED state, and request2 (launched at t5) in the

second request register becomes active when the data transmission related to request1

is �nished (t6). Readout operation is waiting for the sampling time of request2 between

t6 and t7. ARMED state is followed by IDLE state instead of READOUT state (t7),

because a clear readout command occurs at t7. The request registers become empty

after the corresponding readouts have been performed (t6, t7), so further requests can be

launched by the IPCU .
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Chapter 3

System level design

This chapter presents system level design considerations in the EDICAM �rmware. The

high level block diagram of EDICAM is shown again in �gure 3.1., because it exhibits

the structure at system level. System level design considerations deal with clock domain-

and reset structures as well as interfaces between top level modules. The presented results

are trade-o�s based on di�erent types of aspects, including operating frequency, develop-

ment time and resource utilization. The block diagrams and high level descriptions of the

user logic modules are also introduced. The operation of the corresponding submodules is

summarized in Chapter 4.

SCFW
10G
link

user logic PCIe
core

user logic10G
link

Sensor, ADCs CPU

optical
link

PCIe link

Camera head PC

EP2SGX30 EP2SGX90

(SM subsys) (IPCU subsys)

Figure 3.1. High level block diagram of EDICAM .

3.1 Sensor Module

The Sensor Module (SM) is located in the Camera head. This part of the �rmware is

tagged EP2SGX30 in �gure 3.1. which refers to the type of the corresponding FPGA.

This section addresses connections between the high level modules, such as SCFW , user

logic and 10G link among others.

3.1.1 Clock and reset structure

The clock and reset structure of the SM can be seen in �gure 3.2. The incoming clock

signals of this module are clk40_i and xaui_refclk_i. The latter is used only by 10G
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link to drive the XAUI interface of the optical link, while the 40 MHz incoming clock and

its 100 MHz transformed version (referred in the following as clk40 and clk100) is used by

other SM modules. clk100 is derived by a PLL. Since this PLL is reset by the Power

supervisor and the corresponding locked output feeds the reset system of SM , the correct

startup is guaranteed.

CLK unit
clk40 i

clk100 o
rst100 o

Power supervisor
power good i reset o

10G link

xaui reset iSync
xaui refclk i

xaui refclk i

SM subsys
clk i
rst i

link ready o

SCFWreset slaves o

sys clk i
reset n i
cal blk clk i

clk 40 i
reset i
resetADCFIFOs i Ready o

ROIdata read clk ireset slaves 40 o

reset slaves 100 oSync

SCFW and 10G ready iclk40

clk100

resets

PLL
locked clk

Syncmodule
clk 100 i
clk 40 i
rst 100 i
rst 40 i

clk100 o
clk40 i

SCFW interface

Figure 3.2. Clock and reset structure of SM

The applied clock frequencies are determined by the EDICAM speci�cation and con-

straints related to reused modules. EDICAM can perform the readout of complete images

up to 400 times per a second with even 1280 ∗ 1024 pixel resolution. Since each pixel pro-

duces 12 bit information, to provide this performance, a transmission speed greater than

5.86 Gbps has to be supported. Because the data interface of Link transmitter has a

width of 64-bit, the necessary operating frequency of this interface is approximately 92

MHz. The selected 100 MHz for the data path can be produced easily by a PLL from the

40 MHz clock, and it ensures some spare bandwidth as well. These clocks are considered

unrelated in SM . To sum up, the SM subsys (this module implements the functionality

related to EDICAM) is fully, while SCFW and 10G link are partly controlled by clk100.

A guideline for clocks is to operate the modules on the smallest feasible frequency, which

results in looser timing requirements and reduced area consumption.

ROI parameter and control interfaces of SCFW are controlled by the 40 MHz clock

input of SCFW . This clock has a �xed period, so synchronisation is necessary between SM

subsys and SCFW . This is performed by Syncmodule. The Image data port of SCFW

is fed by another clock input which allows the use of clocks with arbitrary period. To avoid

synchronisation in the image datastream, this port is connected to the same clk100 as SM

subsys. The relevant interfaces of 10G link from the SM subsys point of view (Receive

and Transmit interface) are provided with unconstrained clock input as well, so these

ports are also clocked by clk100.

The operation of the reset structure of the SM is demonstrated via �gure 3.3. The

following description focuses on the reset signals which are controlled by SM subsys.

Before t1, the states of SM after a power-up can be seen. The whole module is reset until
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SM subsys
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clk100
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wait normop

t[ETU]t1 t3 t4t2

Figure 3.3. Power-up and reset command timing sequence.

the power supply is not stabilized. This is indicated by Power supervisor at t1 by the

assertion of the signal power good. Between t1 and t2, the PLL tries to lock on clk40. The

PLL is locked when clk100 is stabilized and hence signal rst100 transitions to 0. After

t2, SM subsys leaves state reset, and so deasserts the reset signal of the slaves (10G and

SCFW ). The slave modules have to be ready before SM subsys transitions to its normal

operation (normop, t3). There is a reset command which restarts the operation both of

SM subsys and the slaves. Such an event can be seen at t4: After a short reset pulse is

generated on reset slaves, the same sequence starts again as at t2.

Finer division of the clocks of the SM would be possible with even slower clocks, however

it would result in the unnecessary increment of the development time. The presented results

are representing a properly constrained system which complies the speci�cation without

any exertion related to timing closure or resource utilization.

3.1.2 Interface synchronisation

As described in the previous subsection, the control and ROI parameter interfaces of

SCFW are in the 40 MHz domain. A synchronisation module has to be connected to

these ports, because SM subsys is in the 100 MHz domain. Syncmodul emulates the

behaviour of the interfaces related to SCFW towards SM subsys, however, in the faster

domain. The structure of Syncmodul can be seen in �gure 3.4.
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40 MHz domain 100 MHz domain40-100

Syncmodul

Figure 3.4. Block diagram of Syncmodul.

The synchroniser can be divided into two di�erent parts. ROI parameter interface is
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a FIFO interface with parallel control, status and data signals, while the signals sample,

exposure and busy are independent single bit control lines. This FIFO interface can be

transmitted via a DCFIFO expanded with some glue logic which ensures the proper

behaviour of the control signals of the parameter port. This functionality is implemented

by Command sync. The single bit lines are synchronised simply by base and enable1

synchronisers. A base synchroniser consists of two serially connected FFs.

3.1.3 High level user logic introduction

This subsection presents a high level overview of user logic located in SM (see �gure 3.1.).

The overview consists of a block diagram which represents the main components of user

logic along with the corresponding interfaces (see �gure 3.5.). The introduction of interfaces

facilitates the handling of the complexity of the top module. Section 4.1 presents the details

of each module and interface which have not been described in the thesis yet.
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Figure 3.5. Block diagram of user logic in SM .

SM subsys is connected to the 10G link via Link Receiver and Link Transmitter.

Link Transmitter receives data packets sent by internal modules via a QW stream. The

packets are completed with a cyclic redundancy check (CRC) code, and the boundary

QWs are marked by the appropriate framing singals of Transmit IF . Link Receiver

processes the incoming commands: The lenght and the CRC code of the received packets

are checked. The appropriate error signals are asserted upon failure.

The interpretation of the commands received by Link Receiver is performed by Command

decoder. This module controls the internal modules of user logic as required by the cur-

rent command. Some parameters are transmitted via the parallel IF (interface) toward

Register table, so they reach their destination indirectly. Register table also receives status

information from the other modules, and provides it for Command generator via FIFO

interfaces. The organization of the communication in the opposite direction is implemented

1The applied enable synchroniser (Narrow en sync) is introduced in subsection 4.3.3.
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by Command generator. This module provides various ports which allows the other units

to simply launch commands and optionally transmit data toward IPCU .

The direct control of SCFW is perfomed by Exposure- and Readout controller, but

note that the image data output is connected to Command generator. Readout controller

provides not only status information related to the readout toward Command generator

but also the ROI description (it is sent back to IPCU). These descriptors are stored

in the read request buffer of Readout controller (see subsection 2.4.2) which is fed by

Command decoder.

Since the both sensor related modules perform timing based on the system time, they are

connected to ETU timing. The timing unit can be loaded during operation because of the

di�erent frequency uncertainty of the oscillators in Camera head and Altera development

board.

3.2 IPCU

Image Processing and Control Unit (IPCU) is located in the Altera development board.

This part of the �rmware is tagged as EP2SGX90 in �gure 3.1. which refers to the type

of the corresponding FPGA. This section addresses connections between the high level

modules, such as 10G link, user logic and PCIe core among others.

3.2.1 Clock and reset structure

The clock and reset structure of the IPCU can be seen in �gure 3.6. The Application

interface (APP IF ) provided by the modi�ed example application related to the PCIe

core is illustrated separately.
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Figure 3.6. Clock and reset structure of IPCU .
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The incoming clock signals of this part of the �rmware are refclk_i and xaui_refclk_i.

xaui_refclk_i is used only by 10G link to drive the XAUI interface of the optical

link. refclk_i with a frequency of 125 MHz is used by the PCIe core: The frequency is

duplicated, and the generated clock signal with a frequency of 250 MHz (clk250) is used by

the logic inside the PCIe core. cal_blk_clk is the common calibration clock of the gigabit

transceivers, and is generated from clk250 by a simple D FF .

Since SM transmits image data at a maximum speed of 100 MHz, and the data pro-

cessing is performed by fully pipelined parallel structures, an operation frequency of 100 MHz

is satisfactory in IPCU subsys: A PLL generates a clock with 125 MHz (clk125) from the

output clock of the PCIe core. The 125 MHz frequency overful�ls the minimal criterion,

but provides bene�ts in data transmission between clocks clk125 and clk250 (these clocks

are related). The relevant interfaces of 10G link from the IPCU subsys point of view

(Receive and Transmit interface) are provided with unconstrained clock input, so these

ports are clocked by clk125 as well.

The Read-, Write memory and DMA FIFO WR interface of PCIe core (see sub-

section 1.4.3) are controlled by clk250, and hence synchronisation has to be performed

between the PCIe core and IPCU subsys. Syncmodule is connected to these high speed

interfaces, and performs the data transmission between the two domains via port250 and

port125. The module consists of DCFIFOs expanded with some glue logic.

The operation of the reset structure is shortly summarized. First, the PCIe core has to

be initalized after power on reset, which deasserts the reset signals of the Syncmodule,

PLL and 10G link. IPCU subsys starts to operate after the PLL has been locked, and

deasserts the user reset signal (reset_n_i) of 10G link.

3.2.2 High level user logic introduction

This subsection presents a high level overview of user logic located in IPCU (see �g-

ure 3.1.). The overview consists of a block diagram which represents the main components

of user logic along with some of the corresponding interfaces (see �gure 3.7.). The details

of the submodules are presented in section 4.2.

I have contributed to the development of EDICAM subsys only partially, and hence

section 4.2 presents only the relevant units (RDP and Event processor) in detail. A short

description of the other submodules is presented in this subsection as well.

The core unit of IPCU subsys is the Readout command generator (RCG) which im-

plements the ROIPs introduced in subsection 2.3.1: RCG is responsible for generating

periodic readout requests based on the parameters provided by the Register table.

Commands are initiated also by CMD requesters. This unit consists of submodules

which are generating periodic requests toward Sensor module command queue (SMCQ):

clock sync- and status requests. The request period can be adjusted in the Register table.

The various command requests are received by SMCQ. After the arbitration has been

performed between the requests, the commands are generated with proper framing: The ne-

cessary pieces of information are collected from the appropriate submodules, e.g. Register
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Figure 3.7. Block diagram of user logic in IPCU .

table. The commands are sent via Link Transmitter.

Data tra�c on the 10G link in the opposite direction is decoded by Command decoder.

Every command is acknowledged by SM . When such a command arrives, Command

decoder indicates this event toward SMCQ. SMCQ sends the next command after the

previous has been acknowledged. The status of SM can be quoted, and the status bits are

transmitted to Register table. If a command which contains image data arrives, data bits

are sent to both RDP and PC (latter via DMA FIFO WR IF ).

The processing and control features of IPCU are implemented by ROI data processor

(RDP) and Event processor. RDP processes image data (minimum, maximum, intensity),

and feeds certain inputs of the Event processor. Event processor asserts trigger signals

related to several actions. The operation of Event processor is de�ned by its inputs and

con�guration. The con�guration is located in the Register table.

Since some ICPU related modules carry out timing (Event processor, RCG and CMD

requesters), ETU timing is instantiated as well.

The operation of the above introduced submodules can be controlled and observed by

the HOST via Register table.
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Chapter 4

Implementation of submodules

This chapter presents the details of the implementation and operation of the submodules

introduced in subsections 3.1.3 and 3.2.2. The submodules which are not the outcome of

my development work are omitted. The description focuses on the high level interfaces and

main features of the submodules. The objective of this part of the thesis is to provide a

short overview of the structure of this complex system.

4.1 SM related submodules

During my work, the readout related modules (Exposure controller andReadout controller)

along with the Command generator were developed that are related to the Sensor

Module. The details of these units are presented hereafter. The simultaneous observa-

tion of �gure 3.5. (SM subsys blockdiagram) is highly recommended in order to simplify

the understanding of this section. The omitted modules are the SM Register table and

Command decoder which are not part of my work.

4.1.1 Exposure controller

The exposure signal of SCFW is directly controlled by Exposure controller. This unit

provides a simple interface (see �gure 4.1.) which can be used by the control module of

SM to set the parameters of the epxosure (see subsection 2.4.1).

trigger

Exposure controller
stop

start

parameters
exposure

lastexp start

busy S
C
F
W

state

status

control

time interface

Figure 4.1. Interface of Exposure controller.

An exposure sequence can be launched when the busy signal of Exposure controller is

not asserted, which indicates that an exposure sequence is running. Unless busy is kept
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high, the operation starts immediately after the assertion of start which registers the input

parameters (the assertion of start is missed if busy is kept high). These parameters are the

same as the ones introduced in the high level EDICAM speci�cation (exposure-, repetition

time, number of exposures and the selected operating mode with start time).

In the �rst step of the operation (ARM state) Exposure controller is waiting for the

start event. In normal mode, the start time has to arrive, in triggered mode, the input

trigger has to be asserted beyond start. Exposure controller steps into state RUN if

immediate mode �ag is set among the parameters. At the beginning of every exposure,

the current ETU time is stored which, along with the current internal state (IDLE,

ARM , RUN), is available at the output of the unit. This information is contained in the

corresponding data stream.

The operation can be aborted by the assertion of stop any time. The input is registered

and Exposure controller transitions to IDLE. In state RUN , not the actual but the

next cycle will be aborted. Another exposure can be launched only after the current one

is completed or aborted.

The module consists of a state machine, a counter which tracks the number of the

remaining expositions and a counter which monitors the length of the exposures and reset

cycles.

4.1.2 Readout controller

Readout requests generated by IPCU are executed by the Readout controller. The im-

plementation is based on the parts of the speci�cation presented in subsections 2.3.1 and

2.4.2.

The introduction of this module is started with the description of the provided interfaces

which are the following:Xi interface,mode interface, control interface, time interface,

control status interface, Xo interface, readout status interface, ROI parameter

FIFO interface and sample control interface (see �gure 4.2.).
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Parameters in readout requests can be transmitted onXi interface andmode interface

which are implemented as simple FIFO interfaces. These interfaces are referred to as re-

quest bu�ers in the speci�cation. Xi interface is connected to FIFOs which have enough

capacity to accommodate the row descriptors of two requests with up to 1024 row and ar-

bitrary shape. The FIFOs fed by Xi interface are duplicated, because SMCG sends also

the shape descriptors along with the image data to the IPCU as well. The other request

parameter interface is the mode interface which is related to a FIFO with 2 depth. This

port has to be �lled with parameters like sample mode (immediate, persistent, triggered),

sample time, ROI type (arbitrary/rectangular) and number of rows. These parameters are

necessary to determine the time of sampling and to reproduce the ROI parameters re-

quired by SCFW . The readout is in�uenced by the control interface which consists of

clear and trigger signals. Readouts waiting for the sample time or for the arrival of a trigger

can be canceled by the clear signal before the readout has not been started yet. Some state

information are accessible on control status interface, namely the time of the last sample,

the ID of the ROI related to the currently processed request, the status of the request

bu�er and the state of Readout controller (IDLE, ARMED, READOUT ) itself.

After the ROI parameters in the readout request have been transmitted to SCFW on

ROI parameter FIFO interface, or the readout has been canceled, the status of the

readout can be received on readout status interface: time of sampling, time of exposure,

�ags indicating whether readout has been canceled (timeout or stopped) and the other

pieces of information which were also available via mode interface.

This subsection introduces the internal structure and operation of Readout controller

as well, which is described in the following. The main components of Readout controller

can be seen in �gure 4.2. These components are the FIFOs connected to the interfaces

described in the previous paragraphs, a state machine (Readout controller SM) and a

separated submodule (Sample and Readout unit). The operation of Readout controller

SM is summarized in �gure 4.3. and detailed hereafter.

t[ETU]

empty request 1 empty

IDLE ARMED READOUT IDLE

IDLE ROI download\flush IDLE

empty new status

Readout control SM

mode FIFO

Sample and Readout u

Readout status if

Xi read

t1 t2 t3

Figure 4.3. State diagram of submodules in Readout controller.

If a readout request is loaded into mode FIFO (t1), Readout controller SM will

determine the launch or abolition of the readout (ARMED state). The operation is de-

termined by the following parameters and signals: clear and trigger signals, sample time,

persistence and immediate mode. After the start time or a trigger arrives, or the readout

48



is canceled (t2), Sample and Readout unit is started. This unit performs the transmission

of ROI descriptors to SCFW (note that this is only a part of the readout procedure) or

simply �ushes the contents of Xi FIFOs related to the active request in mode FIFO.

The latter is performed when the readout is canceled. The results of the operation is

stored in readout status FIFO when Sample and Readout unit is �nished (t3). Readout

control SM is in READOUT state during Sample and Readout unit is in operation.

Before Sample and Readout unit transitions back to IDLE state, it clears the parameters

of the currently processed request stored in mode FIFO (t3). This request is referred to

as active request in EDICAM : e.g. in �gure 4.3. request 1 is the active request between

t1 and t3.

The IPCU is allowed to launch a request if the request bu�er is not full (mode FIFO

and Xi FIFO). The fullness of the bu�er is monitored by mode FIFO status. This unit

is based on a counter which is incremented when a write occurs on mode interface (trans-

mission of a new readout request), and is decremented when data sent input is asserted.

Data sent signal is kept high for one period by SMCG when the package containing the

image data of the active readout request is loaded completely to Link Transmitter. Since

this data package contains also the ROI descriptor which is accessed via Xo FIFOs, the

next request can not replace the active request in Readout controller before all of the row

parameters (related to the active request) from Xo FIFOs are read by SMCG.

Sample and Readout unit

Sample and Readout unit is a submodule located in Readout controller. The operation

of this unit is based on Xi FIFOs, mode FIFO and time interface, and controlled by

Readout controller SM (see �gure 4.2.). The module can perform two di�erent kinds of

operations. If the abolition of the active request is determined by Readout controller, this

submodule simply �ushes the appropriate number of elements from Xi FIFOs, clears the

active request located in mode FIFO, and writes the readout status to readout status

FIFO with the stopped/timeout �ags set. This way, no communication is performed with

SCFW .

In contrast, if a sample is triggered by Redout controller SM , the ROI descriptor will be

loaded into SCFW . Unless otherwise noted, a sampling will precede the transmission of the

�rst ROI descriptor (if the sample time matches the previous, no sampling is necessary).

Note that SCFW can perform only readouts of rectangular ROIs. Accordingly, if the

active request describes a ROI with arbitrary shape, the ordinal number of each row in the

ROI has to be regenerated, and loaded to SCFW via ROI parameter FIFO interface

with the corresponding element available on Xi FIFOs. Readout status FIFO is �lled

with the proper status word at the end of the ROI descriptor transmission. The status

contains the time of sampling and the start time of the last exposure before the sampling

time among other things. The parameters of the active request available in mode FIFO

are part of the readout status anyway as well.

Before the completion is indicated towards Readout controller SM , the busy signal of

SCFW has to be examined: The number of 0-1-0 transitions during READOUT state
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have to be equal to the number of rectangular ROI descriptors which are related to the

active request (see behaviour of busy in subsection 1.4.2). This condition ensures that the

sampling triggered by the next readout request does not corrupt the image data of the

actual request. The overwriting of image data is possible, because the download of ROI

descriptors and the reception of the image data are overlapped in SCFW .

4.1.3 Command generator

Sensor module command generator (SMCG) provides various interfaces, which enables

the other submodules of SM to easily initiate transmits of commands and to provide

the data content of the appropriate commands. This subsection introduces the supported

interfaces, the FIFO converters which transform the FIFO interfaces related to readouts,

some submodules and the structure of the core which facilitates the uni�ed transmission

of every command.
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Figure 4.4. Illustration of the interfaces provided by SMCG.

The interfaces connected to SMCG are shown in �gure 4.4. All of the interfaces detailed

hereafter are used by Command generator to assemble complete commands which are

transmitted via Link Transmitter. The ports related to the transmission of ROI data

commands are Xo-, Image data FIFO- and readout status interfaces (FIFO interfaces).

Xo interface grants the description of each row related to readout requests. If a ROI

data command is sent towards IPCU , the row descriptors will be attached to the packet

as well. Readout status interface indicates that a request is processed completely by

Readout controller, and whether a readout was actually performed. The parameters of

the request are also implied. These interfaces are described in detail in subsection 4.1.2.

Image data FIFO interface is the image data port of SCFW which is introduced in

subsection 1.4.2.

The other ports are OPREG, SERV REG, status and ack interfaces. The content of

the SM register table can be quoted on OPREG and SERV REG interfaces before it
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can be sent to IPCU . Ack interface is used by SM command decoder, and facilitates

the transmission of acknowledge commands with adjustable status information. The state

of the Exposure- and Readout controller as well as the occupancy of the mode FIFO is

accessible via status interface.

Readout FIFO converters

One of the most important tasks of SMCG is the assembling of ROI data commands

which always contains request parameters (ROIP ID, ROI shape descriptor, etc.), readout

status information (canceled, timeout) and optionally, image data. In order to apply the

core unit structure also in ROI data commands, the already available interfaces have to

be transformed. This modi�cation is detailed here. The function of the converter modules

is represented in �gure 4.5.

Image data FIFO
interface (192 bit)

readout status interface

Xo interface\1 (32 bit)

Xo converter Xo interface (64 bit)
Xo interface\2 (32 bit)

Image data
converter

Error detect

info FIFO interface

status FIFO interface
readout status

converter

Image data FIFO
interface (64 bit)

Figure 4.5. FIFO converter modules in SMCG.

Image data converter transforms the 192-bit image data port of SCFW into a 64-bit

port. The data port with reduced width can be accepted directly by the Core unit. Xo

converter produces a 64-bit ROI row descriptor interface based on Xo interface. This is

necessary, because Xo interface consists of two 32-bit ports. The last elements related to

a particular request are marked via a last bit in every interface. This rule is inherited by

the regenerated ports as well, which is consistent with the operation of Core unit.

The derivation of info- and status FIFO is somewhat more complex. Status FIFO

provides the length of ROI data command next to a bit which indicates whether image

data is transmitted as well (request was not discarded). Info FIFO presents two kinds of

information separated by the last bit: request parameters extracted from readout status

interface, and an error word which indicates whether a timeout or cancellation occured

during the readout. The timeout �ag contains extra information compared to the timeout

�ag of readout status interface: the data stream received from SCFW provides an error

bit which marks the invalid parts of the image data. Since this bit can transition to 1 even

at the end of the data transmission, the error word can be attached to the end of the ROI

data command (after the image data part). The observation of the image data stream is
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performed by Error detect which monitors the last, read and error signals of Image data

FIFO interface. The error bit is connected to a sticky register (set by high input and

separately can be reseted) which is examined at the arrival of the last signal.

Core unit structure

Core unit enables the state machine in SMCG to perform the transmission of every

command uniformly. This description introduces the capabilities of the core rather than

focusing on the particular realisation in Command generator.

This structure is based on some constraints: every commands are started with 1-3 QWs

with arbitrary content followed by data which can be received via even 4 FIFOs se-

quentally. The FIFOs have to provide the same interface (data_o, empty_o, last_o and

read_i). The last_o bit implements a control function, namely it indicates the boundaries

of data segments.

source
FIFO 1

cntcnt

state SHR

state reg

lo
a
d

st
a
tu

s

lo
a
d

st
a
tu

s

sh
if
t

lo
a
d

sh
if
t

lo
a
d

CMD SHR FIFO SHR

source
FIFO N

state machine

L
in
k
T
ra
n
sm

it
te
r

se
le
ct
ed

F
IF

O
re
a
d

read 1

read N

data path boundary

se
le
ct
ed

F
IF

O
:
la
st
,
em

p
ty

Figure 4.6. Block diagram of SMCG core unit.

The structure of the Core unit is shown in �gure 4.6. which can be divided into a data

path and a control path. The data path consists of the elements which are directly involved

in the generation of the data stream. These elements are the CMD SHR (shift register),

source FIFOs and the corresponding multiplexers. The data output can be driven by

CMD SHR or by the data output of the selected source FIFO. This �nal routing is

determined by the state of state machine (content of state register). The multiplexers

and the encoder connected to the source FIFOs are controlled by FIFO SHR. Since

FIFO SHR is a shift register, a prede�ned source FIFO sequence (during one command

transmission) can be determined by the state machine. Both FIFO- and CMD SHRs
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are completed with a counter which contains the number of remaining elements in each

SHR. To sum up, FIFO and CMD SHRs and the auxiliary counters allow the state

machine to de�ne the necessary phases in one step which realise the transmission of a

command. The arrangement contains also a state SHR which de�nes the steps required by

the current command. This module can accommodate the di�erence between commands,

because arbitrary steps can be inserted during the transmission by adding extra states.

The multiplexers and control signals (load, status, shift), used by the state machine to

con�gure the sequence related to the selected command, are also tagged in �gure 4.6.

The operation of Core unit is demonstrated with the description of a timing diagram

(see �gure 4.7.) which describes the steps and states performed during the transmission of

a ROI data command.
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sate register
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FIFO cntr last
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IDLE SEND FIFOs

QW 0
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Figure 4.7. Timing diagram of core operation during ROI data command.

Status FIFO transisitons to not empty, so state machine launches a ROI data com-

mand at t1. Since this command begins with only one arbitrary QW , this QW is loaded to

QW SHR and SHR cntr is set to 1. The ROI data command is assembled from the con-

tents of 4 FIFOs, so the FIFO cntr is set to 4 and FIFO SHR is loaded with the FIFO

identi�ers, which can be seen in the bottom row of �gure 4.7. CMD cntr last signals by

transitioning to 1 when all of the arbitrary QWs related to the command (currently 1)

are sent (t2). The contents of the FIFOs which are selected by FIFO SHR are trans-

mitted in the following step: readout request parameters (info), image data (image), row

descriptors (x desc) and error �ags (info again). The assertion of the last bit related to

the last FIFO in FIFO SHR (indicated by FIFO cntr last signal) determines the end

of the transmission of the ROI data command (t3). State reg transitions back to IDLE

again, and is ready to send a new command.
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4.2 IPCU related submodules

During my work, ROI data processor and Event processor were developed that are related

to the IPCU . The details of these units are presented in the following. The simultaneous

observation of �gure 3.7. (IPCU subsys blockdiagram) is highly recommended in order to

simplify the understanding of this section. The omitted modules are out of the scope of

my work, and they are shortly introduced in subsection 3.2.2.

4.2.1 Event processor

The event handling mechanism of EDICAM is implemented by Event processor. The

structure of this module is detailed in this part which implements the functionality intro-

duced in subsection 2.3.2.

Event processor consists of Input stages, Events and Action stage as can be seen in

�gure 4.8. Input stages are responsible for the handling of event inputs, the Event blocks

implement the binary operations on the corresponding inputs, and Action stage connects

the events to the appropriate actions. Note that each Event stage provides more than one

output toward Action stage, the so called Aciton bits.
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Event
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Figure 4.8. Block diagram of Event processor.
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Input stage

The block diagram of Input stage can be seen in �gure 4.9. Each Input stage consists of

4 input channels: HOST , Image, External/evenet and ETU time inputs. Only one of

these channels can be connected to the output of the module by Input type select (see the

multiplexer on the output). The operation of the channels is presented in the following.

The �rst channel is the so calledHOST input which is driven directly by a register which

is controlled by the HOST via Register table. The second channel is Image input which

transitions to high level when an image parameter exceeds the threshold level (minimum,

maximum or intensity), and the parameter is related to the Reference ROI ID. The

Image input channel is sensitive only to one parameter which can be selected by ROI mode

select.Reference ROI ID andROI mode select are runtime con�gurable parameters. The

last simple channel is ETU time input. This line is driven by a register which transitions

to high level when the ETU time reaches an adjustable reference time.

External inputs and outputs of events are handled in the same channel (External/event

input). One external input and one event output can be selected in the �rst stage (External

and Event select). This part is followed by a multiplexer which determines whether the

channel is sensitive to external inputs or event outputs. The remainder logic of this channel

determines the handling of the selected input: External/event input can transition to high

level or can be negated after a certain type of edge (rising or falling) occurs. The channel

can also simply follow the state of the selected input (control mode). The select signals of

the various multiplexers are runtime con�gurable.
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Figure 4.9. Block diagram of Input stage.
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Event stage

The block diagram of Event stage is shown in �gure 4.10.

Figure 4.10. Block diagram of Event stage.

The Input bits are fed by the corresponding Input stages. After the operations described

in subsection 2.3.2 have been performed, the generated event state is extended by the

corresponding Action invert bits. The Action bits on the output are connected to the

Action stage.
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Action stage

Action stage is responsible for connecting the Action bits of the Event stages to the

signals related to the prede�ned actions. The schematic representation of the module can

be seen in �gure 4.11.
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Figure 4.11. Block diagram of Action stage (2 events and 4 actions/event).

Each action can be connected to any input action bit via two kinds of multiplexers:

The Action multiplexers select the same action bit of the Event stages, and the Event

multiplexers di�erentiate between the Event stages. The outputs can also be disabled by

output enable.

The ROIP and External pin related lines have adjustable sensitivity. The Act and

Deact outputs can operate in a set mode (set or control and control mode enable is kept

deasserted), which provides activation and deactivation of a ROIP only once (it remains

unchanged afterwards). The other mode is control mode (set or control and control mode

enable is kept asserted). In this case the same action bit controls simultaneously the Act

and Deact signals of the same ROIP in a di�erential fashion.

The external pins have special sensitivity as well, because level control or state change

on rising edge can be set via signal Control or change.
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4.2.2 ROI data processor

EDICAM features image data processing as described in subsection 2.3.2. The corres-

ponding functionality is implemented by ROI data processor (RDP). This module is fed

by Command decoder, and drives some inputs of Event processor. The high level block

diagram of RDP can be seen in �gure 4.12. In this subsection, after the high level funcional

operation of RDP is described, the submodules are introduced as well.
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Figure 4.12. High level block diagram of RDP.

RDP receives image data, and calculates the minimum, maximum and sum of pixel

intensity. The user can associate an sROI for each ROIP ID in the Register table.

The relevant parameters are accessible via port sROI descriptor IF . Since image data is

the result of a readout triggered by a particular ROIP , the data inherits the ID of the

corresponding ROIP which is used to identify the corresponding sROI. The boundaries

of the selected sROI limits the data involved in the processing: pixels outside the sROI

are discarded.

The adequate ROI descriptor has to be provided also along with the image data, because

of the sROI comparison. Image data and ROI descriptors which describe each row of the

ROI are received via Image data 64 IF and X param IF respectively. These are the

data interfaces of RDP , since the processing of information transmitted via these ports is

controlled by Mode IF . Mode IF consists of parameters such as ROIP ID, ROI shape

and vertical coordinate of the �rst row of the ROI among others.

Image data is processed by unit 16CH proc, in blocks of 16 pixels as required by the

sROI. The reproduction of coordinates and the comparison with the sROI boundaries are

performed by unit Pixel hit (described later).

The width of the incoming image data is modi�ed by Input data converter (IDC),

which enables 16CH proc to process 16 pixels simultaneously. The results of the sROI

comparisons are also accessible on the output of Pixel hit in 16 bit wide segments.

The subresults of the channels are combined by Result unit after the current ROI is

processed completely. The resultant minimum, maximum and sum parameters are com-
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pared with the threshold values related to the actual ID. These parameters are provided

by Register table as well. The outputs of the comparators are routed to Event processor.

The synchronisation of the submodules is performed by Proc controller. This unit mon-

itors the status of the FIFO outputs of Input data converter and Pixel hit, and lanches

reads simultaneously. The informations transmitted by the two FIFOs are processed by

16CH proc parallel.

Input data converter

Image data is subjected to various width conversions during its lifecycle in EDICAM .

These conversions are illustrated in �gure 4.13., and are explained hereafter.
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Figure 4.13. Illustration of image data lifecycle.

The image data is provided by SCFW via a 192-bit interface. Since the data port of

10G link has a width of 64-bit, the original segments have to be broken into 3 pieces before

transmission. The image data is forwarded by Command decoder and by the intermediate

modules directly, so the 12-bit pixel informations arrive at RDP in unaligned segments

with variable boundaries.

In order to simplify the processing of the pixels, the unaligned property of the 64-bit wide

data stream has to be terminated. This can be facilitated simply by converting back to the

original 192-bit format. The block diagram of the implementation is shown in �gure 4.14.
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Figure 4.14. Block diagram of Input data converter unit.
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The Input FIFO bu�ers the input data which is shifted into SHR (shift register) by

State machine. If SHR is �lled fully with two new QWs, and the third QW is available

on the output of Input FIFO, State machine writes these three QWs into Output FIFO at

once. The 192-bit wide image data is accessible on the output of this wider FIFO �nally.

Image data 64 IF (see �gure 4.14.) is driven by Command decoder, and the status

and data signals of Image data 192 IF are connected to Proc controller and 16CH proc

respectively.

Unit Pixel hit

This subsection introduces the block diagram of Pixel hit, and describes the submodules.

Pixel hit consists of 3 main modules as can be seen in �gure 4.15.

Pixel in sROI control

Pixcoord calc cmp

sROI select
actual ROIP IDsROI descriptor IF selected sROI boundary

row&column control

first\last
pixel hits

status&controlfull

X param IF

Mode IF

16

Figure 4.15. Block diagram of Pixel hit unit.

Pixcoord calc cmp unit calculates the coordinates of the pixels in the ROI related to

the image data, and compares the values with the selected sROI boundaries. The results

of the comparison are loaded into an output FIFO, which enables the driven modules to

access the results of 16 comparisons at once via a simple FIFO interface. The selected

sROI boundaries are provided by sROI select unit. This module compares the current

ROIP ID with the IDs in the sROI descriptor part of the IPCU register table, and routes

the boundary values related to the matching one to its output. Pixcoord calc cmp unit

contains only the data path required by the calculation and comparison of coordinates

which is controlled by Pixel in sROI control unit. This module controls Pixcoord calc cmp

unit as required by the parameters accessed via ports X param IF and Mode IF (type

and size parameters of the ROI).

The block diagram of Pixcoord calc cmp unit is illustrated in �gure 4.16. which is divided

into pipeline1 stages. The description and operation of the stages are presented hereafter.

The values (row- and column number) stored in the base registers of Stage 1 can be

reloaded, incremented or left unmodi�ed. Signal loadn_incr changes between loading and

incrementation, and takes e�ect if the corresponding step signal is asserted. The base

register can be incremented by one at the top (row number), meanwhile one step increases

the stored value with 16 at the bottom (column number). This di�erence is the consequence

of the fact that the pixels in groups with a size of 16 are processed serially per each row.

There has to be one break between two steps, because of the register inserted between the

adder and the base register.

1Pipelining is a design technique which inserts registers between combinational logics to increase the
maximum frequency.
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Figure 4.16. Block diagram of Pixcoord calc cmp unit.

Stage 2 produces the horizontal coordinates of 16 adjacent pixels at once which, along

with the vertical coordinate of the row, are compared with the selected sROI boundaries

in Stage 3. If both coordinates of a pixel falls into the sROI, the corresponding input

bit of the output FIFO will be asserted by Stage 4. The generated bits are written to

the FIFO by the delayed step signal. The other control signals (last, �rst) are delayed

with the latency2 of the path from the start input to the FIFO as well, which ensures the

consistency of the stored results. The �rst and last groups of 16 pixels in the image data

are designated by the �rst and last bits which will be used in 16CH proc for framing. Since

the FIFO transfers control signals as well, its output is modi�ed: If no read occurs, the

output of the FIFO will be automatically deasserted. This behaviour is provided by the

combination of a multiplexer and a register connected to the output of Pixel hits FIFO.

2Latency is the period required by the input to reach the output. Usually it is expressed in clock cycles.
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Unit subROI select

The sROI boundaries are provided by unit subROI select which can be seen in �gure 4.17.

This module compares the ROIP ID of the image data with the ROIP IDs given in the

sROI related part of the Register table. The comparison of IDs is performed by the logic

at the bottom of �gure 4.17.
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Figure 4.17. Schematic representation of sROI select unit.

Unless there is a match with a ROIP ID in the sROI table, the second multiplexer

at the top will allow the processing of the full image. The output of the comparators are

connected to a binary encoder as well which drives the select signal of the �rst multiplexer.

The inputs of this multiplexer are fed by sROI boundaries related to the comparable

ROIP IDs.
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Unit 16CH proc

The 192-bit image data provided by Input data converter and the sROI comparisons

generated by Pixel hit is processed by 16CH proc. This unit consists of 32 sequential

comparators (left side in �gure 4.18.) and 16 accumulators (right side in �gure 4.18.).

The comparators realise the minimum and maximum calculation, and the accumulators

facilitate the derivation of the intensity. These submodules are organized into groups: two

comparators and an accumulator is referred to as a channel.
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Figure 4.18. Block diagram of the sequential comparator and accumulator.

These submodules are highly pipelined. The corresponding registers are equipped with

special reset signals driven by Pixel hit (first data), which supports the reception of

consecutive image data packets. The results of comparisons between pixel coordinates and

the selected sROI boundary are received via port data valid. This port enables or disables

the update of the current result by the subsequent 12-bit element.

The �ow control of 16CH proc during the processing of a complete image data packet

is illustrated in �gure 4.19.

State PROCESSINGIDLE IDLE

ready out

first data

last data

FIFO wr

FIFO full

t[ETU]

data valid

Figure 4.19. Control �ow of 16CH proc.

A new data segment is processed when signal data valid is asserted, and the �rst and

last segments of a readout are indicated via first in and last in.

The outputs of the channels are written to an output FIFO by signal last in (Result

unit is fed by this FIFO). The channels can receive the data segments of the next readout

after this output bu�er has become not full (see FIFO full and ready out in �gure 4.19.).
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4.3 Common submodules

In this section modules which are instantiated in both SM and IPCU are introduced.

These common modules are Link Transmitter, Link Receiver and ETU timing unit

(measurement of time and interfacing the 10G link is mandatory on both sides).

4.3.1 Link Transmitter

Link Transmitter drives the transmit interface of 10G link. This module provides a

data- and a control interface on its upstream ports3, as shown in �gure 4.20. The data

to be transmitted can be written on the data interface continuously which is realised as

a simple FIFO interface. This raw datastream is cutted into packages and forwarded by

Link Transmitter as it is described by the control interface. Only the size of the required

package has to be de�ned: Link Transmitter asserts the start- and end of packet signals

of 10G link in the appropriate QW positions. Transmitter generates the CRC codes of

packets which are attached to the end of the corresponding packets. The control signals

of control interface (request and acknowledge) are implementing a simple handshaking

protocol.
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Figure 4.20. Block diagram of Link Transmitter.

The block diagram of Link Transmitter can be seen in �gure 4.20. The control of

CRC and the read port of IN FIFO is performed by state machine. This module is

completed with QW counter which is used to track the state of the transmission of a

packet. G10 ready monitors continuously the usedw_o port of 10G link, and indicates

whether the data input FIFO of 10G link is full. If IN FIFO is not empty, 10G link

is not full and a packet sending is in progress, state machine controls the read, write,

3An interface of a module can be referred to as upstream port if it communicates with a higher level
layer relative to the module.
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start and end signals of the units. At the end of every packet, the multiplexer which drives

the data input of 10G link is switched to the output of the CRC module. When also

the CRC code is transmitted with signal end of packet kept high, the next request on

control interface can be acknowledged.

4.3.2 Link Receiver

Link Receiver receives packets sent by Link Transmitter via the 10G link, and performs

length and CRC check. The block diagram of the unit is represented in �gure 4.21. The

examination of the packet length requires the size to be implied in the data stream explicitly

next to the start- and end of packet signals. Since the �rst QW of every command of

EDICAM contains the size of the command, this criterion is self-satis�ed. The CRC

is regenerated and compared with the received one. The interface and operation of this

module are introduced hereafter.
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Figure 4.21. Block diagram of Link Receiver.

The results of the processing of the received packets performed by Link Receiver are

presented on two upstream user interfaces, namely on control interface and data interface.

The received QWs are accessible one-by-one via data interface which is implemented as

a simple FIFO interface. The logic connected to Link Receiver has to moninor con-

tinuously the control interface during reading the data interface. The arrival of a new

packet is indicated on request_o which transitions back to zero after a read occurs on

data interface, or if a reception is aborted internally due to errors. Unless there is a

length error, cmd_end_o is asserted for one period after the last QW of the currently re-

ceived packet is read via data interface. In this case, crc_error_o is also kept low along

with length_error_o if the bits are received properly. The transmitted CRC is available

on crc_o while cmd_end_o is active. In contrast, if there is a length error, cmd_end_o

will be asserted immediately after the deviation is detected, with all of the error signals
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set to high level. The logic connected to data interface has to discard all the QWs which

have been received since the last request_o.

To complete the above presented description of the ports of Link Receiver, some internal

detailes are described in the following. The control module of Receiver is referred simply to

as state machine. This unit contains two counters to track the state of the transmission of a

packet. G10 QW cntr is used to store the number of the QWs which have not been received

from 10G link receive interface yet, and are related to the currently received packet. The

other counter, namely FIFO QW cntr, contains the number of QWs of the current

packet which are not read from OUT FIFO yet. FIFO cntr enables state machine to

determine the time, when cmd_end_o has to be asserted. G10 cntr supports the check of

the length of packets. Besides the immediate assertion of the error and end signals when a

length error occurs, the OUT FIFO is reseted (there can be QWs of only one packet in

OUT FIFO at the same time). If the packet is longer than expected, the remaining QWs

will be automatically �ushed from the receive interface until a QW is read with the end

of packet signal kept high.

The last important element of Link Receiver is the multiplexer connected to the empty

outputs of OUT FIFO. Since the almost empty status signal of OUT FIFO is kept high

when only the last QW of the current packet has not been read yet, this component can be

used by state machine to block the transmission of the last QW until the corresponding

CRC is calculated. This enables control interface to produce the end and error signals

parallel with the last QW of a packet, which simpli�es the upstream logic.

4.3.3 ETU timing unit

The current version of ETU timing unit can produce the system time with 100 ns resolution.

The source clock is permitted to have a frequency of any multiple of 10 MHz, and can be

unrelated to the system clock. The input clock period has to be known compile time, and

must not change during operation. The structure (see �gure 4.22.) and operation of this

module is introduced in the following.
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Figure 4.22. High level block diagram of ETU timing unit.

Basically, ETU time is produced by a binary counter called ETU counter which is an
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instance of the lpm_counter megafunction4. The clear and load ports of the counter are

connected to the ports of ETU timing unit, which enables both the �rmware and user to

clear or set the system time.

Since ETU counter is controlled by the system clock (sys_clk_i) whose period presum-

ably di�ers from 100 ns, its enable input is used as well. The enable input is driven by

the Modulus counter (another lpm_counter instance completed with auxiliary logic) which

performs the division of the ETU source clock (ETU_clk_i). The divider is �xed, and the

signal produced by Modulus counter (en_o) contains pulses periodically with a length of

ETU source clock.

The enable signal generated by Modulus counter (en_o) is asynchronous to the system

clock, so it has to be synchronised. This function is performed by Narrow enable synchron-

iser which can process both wide and narrow input pulses, and produces pulses on its

output (en_s_o) synchronous to the target clock domain with a length of the destination

clock period.

Both the reset and load of ETU counter clears Modulus counter and Narrow enable

synchroniser as well, which ensures the new ETU time to be stable for one ETU after this

events.

Narrow enable synchroniser

This module provides robust synchronisation of enable signals, because both wide and

narrow enable signals can be properly received by the applied structure. The schematic

representation of the design can be seen in �gure 4.23.

If an enable signal arrives from a faster clock domain, the receiver register controlled by

the slower clock will be likely to miss the narrow pulse. By its nature, this problem cannot

be resolved by any synchronous design method. To receive such a signal, the input pulse

has to be stretched �rst. This is performed by the stretcher D FF whose clock input is fed

by the enable pulse. Since the data input of the stretcher is connected to '1', the output

of the strether transitions to high level along with the enable pulse.

d q d q d q

clk

d q

reset

stretcher synchroniser edge detector

en out

clk

en in

1

Figure 4.23. Block diagram of the narrow enable synchroniser.

The stretcher drives a synchroniser chain which produces an impulse with a length of

more clock periods in the receiver domain. Finally, the second synchroniser register clears

the stretcher via its asynchronous reset port, so the synchroniser registers are also cleared

sequentally. The introduced modules have to be completed with an edge detecor, because

4Megafunctions are parameterizable pre-designed modules provided by Altera.
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the output of the synchroniser is asserted longer than one clock period in the receiver

domain.

Since not the duration but the rising edge of the received enable signal in�uences the

operation, wide enable pulses can be accepted by this arrangement as well. The edge

sensitivity comprises also a restriction, namely the incoming enable pulse must be glitch

free, because the shortest transients will be caught too.

The introduced module does not require any constraints in the corresponding SDC �le,

because the clock of stretcher and the �rst synchroniser D FF are automatically unrelated

(the incoming enable signal is not a clock presumably), so the path feeding the reset port

and the path fed by the data output of stretcher are considered false paths. The other

paths of this design are analysed normally (as a synchronous circuit).
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Chapter 5

Veri�cation of the �rmware

This chapter introduces a basic test scenario. The results are based on the observation

of the programmed hardware (7th step of the design �ow introduced in section 1.5). The

control of the �rmware was performed by an application running on the HOST computer.

The applied logic analyzer is introduced shortly as well.

5.1 SignalTap II Logic Analyzer

Altera supports design debugging by providing the SignalTap II Logic Analyzer. This

logic analyzer allows the examination of the internal signals without using any extra IO

pins, while the design is running at full speed. The analyzer is made of general FPGA logic

resources, however, its utilization is negligible compared to the capacities of the applied

FPGAs.

The signals in the test are controlled and sampled by the same clock signal in a single

diagram. Transitional storage quali�cation was applied: sampling was performed only after

the value of certain signals had been changed. This feature allows the observation of periods

which are very long relative to the period of the sampling clock. The impact of this feature

on the waveforms has to be considered during the interpretation of the diagrams presented

hereafter.

5.2 Demonstration of a readout scenario

The basic features of EDICAM are demonstrated in this section: exposure and readout

operations as well as the SM -IPCU communication from a high level point of view are

exhibited. These operations are introduced in subsection 2.4.1, 2.4.2 and 2.5.

The transmitted commands and the interfaces of SCFW are shown in the test results.

The interpretation of SCFW ports is presented in subsection 1.4.2.

Scenario description

The �rmware performs two exposures and one readout. The parameters of the exposure

sequence are the following:
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• t0 = 29000000 ETU(2900 ms)

• Texposure = 2000000 ETU(200 ms)

• Trepetition = 10000000 ETU(1 s)

• Nloop = 2

One ROIP is activated with a tstart of 40000000 ETU(4 s). The ROIP has rectangular

shape (1 pixel height and 32 pixel width). The upper left corner of this rectangle and the

full image is in the same position.

IPCU-SM interaction

The commands received by SM and IPCU Command decoder are shown in �gure 5.1. and

5.2. respectively. Since SM acknowledges every command, and reports the state transitions

of the exposure and readout related submodules, the acknowledged commands and the

received SM states can be seen in �gure 5.2. as well. The timescales of the diagrams are

in chronological order.

t1 t[ETU]t2

Figure 5.1. Commands received by SM Command decoder.

SM receives CIS_START_EXPOSURE command at t1, which asserts the expos-

ure control signal of SCFW at 39000000 ETU (3.9 s). This command is followed by

CIS_SET_ROI at t2 which de�nes the parameters of the readout request.

t3 t5 t6t4 t7 t8 t[ETU]

Figure 5.2. Commands received by IPCU Command decoder.

The events triggered by the readout request (t2) can be seen in �gure 5.2. First,

CIS_SET_ROI is acknowledged at t3. At t4, Readout status changes to ARMED

(ROI_ARM) after the readout request has been loaded to Redout controller. The

sampling time of the request arrives at t5, and Readout status changes to READOUT

(ROI_RD). A command which contains image data (CMD_CIS_ROI_DATA) is re-

ceived at t6 due to the readout. The status changes of Exposure- and Radout controller

are received at t7 and t8 (IDLE): default states arise after the exposures and readouts

have been completed.
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Low level operation of SM

SCFW ports as well as the system-time and the states of Exposure- andReadout controller

are shown in �gure 5.3. This signal composition represents the low level operation of the

�rmware during the readout. The interpretation of the signal transitions is presented in

the following.

t1 t3 t4t2 t5 t6 t7 t8 t9 t10

Figure 5.3. SCFW interfaces and SM subsys states during a readout.

Exposure state changes fromARMED toRUN at t1: the start time of the �rst exposure

arrives (29000000 ETU (2.9 s)). The exposure control signal (Exposure) is deasserted at

31000000 ETU (3.1 s), and the next exposition begins at t2 (39000000 ETU (3.9 s)).

The readout request is received by SM at t3, and hence Redout state changes to

ARMED. Redout controller is waiting for the sampling time beyond t3, the system-

time reaches 40000000 ETU (4 s) at t4, so Sample is asserted for one period. Note that

Exposure has been asserted for 1000000 ETU (100 ms) at this moment.

Sampling is followed by the download of the ROI parameters via ROI parameter FIFO

IF at t5. The values of signals pre�xed with Par in the diagram comply with the para-

meters of the ROI (0,0 start position, 1 height, 32 width). SCFW allows the launch of

the next sampling by the deassertion of signal busy (t6) after the image data has been

transmitted completely by the ADCs.

Since Readout controller is responsible only for the control of the sampling and ROI

parameter related signals of SCFW , it steps into IDLE state at t7 (busy has to be

deasserted as well).

The Image data FIFO IF of SCFW is connected to (SM) Command decoder, and

the transmission of the image data between SCFW and Command decoder is performed

at t8 and t9 (see signals pre�xed with Data). Note that 32 pixels generate two 192-bit data

segments, and Data end is asserted after the last reading via Image Data FIFO IF .

Sampling and data transmission is performed quickly after 30000000 ETU (3 s), and

hence Exposure controller steps into IDLE just at t10. The complete SM changes to its

default state after the commands sent by the ICPU have been executed.
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Chapter 6

Summary, outlook

In summary, it can be said that the inital objectives have been completely achieved.

The implementation introduced in this thesis complies with the high level speci�cation

of EDICAM : the integrated system is capable to perform highly customizable image ac-

quisition. I appreciate mostly the skills and experiences acquired during the work next to

the success of the workmanship. This chapter introduces these capabilities, the correspond-

ing tasks and the development opportunities of the current implementation.

6.1 Design experience

Since the development of EDICAM is practically digital design, my basic craftmanship

related to this speciality had to be improved at the very start: RTL design must not be

started without professional expertise.

The inital theoretical knowledge was strengthened during the design of simpler submod-

ules. These units were veri�ed via small simulations which laid down the basics of my

veri�cation skills. The initial submodule implementations and simulations were followed

by increasingly higher level submodule integrations and simulations. The independent and

extensive comprehension of the speci�cation become essential at this stage.

The complete understanding of the integrated �rmware and the continuous expansion

of my digital design knowledge facilitated the revision and review of the system level

considerations. The modi�cations resulted in speed and area improvements, which allow

the further expansion of the �rmware (without any limitations caused by the currently

available hardware resources).

System level simulations and tests were performed after the �rmware had been integ-

rated. This part of the design �ow requires the ability to apply e�ectively the various debug

and test tools. The troubleshooting in such a large system has an impact on the outlook of

the designer: the importance of the appropriate hierarchy and simulation were unraveled.

The above introduced progress is practically the way which is required to understand the

complex design �ow of FPGA development. This capability is essential in optimal FPGA

design. I thank ProDSP Ltd. e�usively the opportunity to participate in the design of such

a challenging complex system.
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6.2 Further improvements

The introduced version of EDICAM has numerous improvements compared to its previous

version, however, there are plenty of development opportunities.

The introduced ETU timing unit can be further improved. The next version of the

module will support external clocks received via the extension card. The frequency of this

external clock does not have to be speci�ed in compile time (it still has to be in a certain

interval), and hence the multiply and divide parameters of the corresponding PLL have

to be adjustable in runtime. The frequency of the ETU clock which is derived from an

external source has to be automatically veri�able.

Another weakness of the system is related to the storage of ROI descriptors. These

parameters are stored currently in dedicated RAMs. These RAMs have prede�ned number

and size. This realization is suboptimal: each (even a small) ROI occupies a complete

dedicated RAM unnecessarily, because the architecture allows the storage of only one

ROI descriptor in a RAM . The ROI descriptors could be stored in a common memory

(with increased depth) in a following version. This approach facilitates the improvement

of the usability of the area intended to ROI descriptor storage, but raises issues related to

the management of the placement of the descriptors.

The boundary of a particular ROIP is de�ned, and cannot be modi�ed after it has been

downloaded to the �rmware. The so called moving ROIPs are intended to resolve this

constraint: The boundary of such a ROIP changes in runtime without any intervention.

The course is speci�ed by prede�ned attributes.

The last improvement is related to the exposure mechanism. The derivation of the

pixel-by-pixel di�erence between images related to two consecutive readouts is required

in some applications. Since the current exposure mechanism allows the acquisition only

of the raw output of the sensor, two independent readouts have to be performed �rst.

The intensities related to the second readout have to be extracted from the �rst by the

application running on the CPU . This mechanism will be directly supported by the so

called differental ROIPs in a future version. Since the storage of a complete image is

required to implement this funcionality in the �rmware, DDR memories (located in the

Altera board) have to be applied.
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Appendix

A.1 Abbreviations

ADC Analog Digital Converter

ALM Adaptive Logic Module

CMD Command

CRC Cyclic Redundancy Check

DMA Direct Memory Access

EDICAM Event Detection Intelligent Camera

EOP End Of Packet

ETU EDICAM Timing Unit

FF Flip-Flip

FIFO First In First Out

FPGA Field Programmable Gate Array

Gbps Gigabits per second

HDL Hardware Description Language

IF Interface

IPCU Image Processing and Control Unit

LSB Least Signi�cant Bit

MTA W FK Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpont

uTco Tcq in TimeQuest

uTh Th in TimeQuest

uTsu Ts in TimeQuest

PCIe Peripheral Component Interconnect express (PCI express)

PLL Phase Locked Loop

RCG Readout Command Generator

RDP ROI data processor

ROI Region Of Interest

ROIP ROI Process

RTL Register Transfer Level

SCFW Sensor Conrol Firmware

SHR Shift Register

SM Sensor Module

SMCG Sensor Module Command Generator
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SMCQ Sensor Module Command Queue

SOP Start Of Packet

sROI sub-ROI

Tcq Clock to q delay

Ts Setup time

Th Hold time

QW Quadword
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