
Diplomaterv

Garamvölgyi Zsolt





Nyilatkozat

Alulírott Garamvölgyi Zsolt, a Budapesti Műszaki és Gazdaságtudományi Egyetem hall-

gatója kijelentem, hogy ezt a diplomatervet meg nem engedett segítség nélkül, saját magam

készítettem, és a diplomatervben csak a megadott forrásokat használtam fel. Minden olyan

részt, amelyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvet-

tem, egyértelműen, a forrás megadásával megjelöltem.

Garamvölgyi Zsolt

hallgató





Physics-based Modeling of Membranes

for Sound Synthesis Applications

M.Sc. thesis

Zsolt Garamvölgyi

Supervisor:

Balázs Bank

Ph.D.

Budapest University of Technology and Economics

Department of Measurement and Information Systems

2008



x



Kivonat

A dolgozat membránrezgés fizikai alapú modellezésével foglalkozik. A membrán mod-

ellezésének célja olyan fizikai alapú dobmodellek létrehozása, amelyek alkalmasak valódi

hangszerek hangjának reprodukálására. A fizikai alapú hangszermodellezés mint hangsz-

intézis technika, számos előnnyel rendelkezik a hangszintézis egyéb módszereivel szemben.

Ezek közül a legfontosabb, hogy egyetlen jól felépített modell segítségével számos eltérő

hang hozható létre, valamint hogy az emberi beavatkozás viszonylag élethűen modellezhető.

A dolgozat három fő részre osztható. A második fejezet összefoglalja az egy- és kétdi-

menziós elosztott rezgő rendszerek modellezésének matematikai alapjait. A parciális differ-

enciálegyenletek általános tulajdonságainak rövid áttekintése után az ideális húr valamint

a membrán leírására alkalmas egyenletek kerülnek bemutatásra. Különös hangsúlyt kap a

kör alakú membrán peremfeltételeinek vizsgálata különböző koordinátarendszerekben.

A harmadik fejezetben a választott fizikai alapú eljárás, a véges differencia módszer

kerül bemutatásra. A véges differencia sémák legfontosabb tulajdonságai, a konvergencia,

konzisztencia, numerikus stabilitás és diszperzió definiálása és részletes ismertetése szilárd

alapot szolgáltat a numerikus modellek további vizsgálatához. A sémák numerikus sta-

bilitásának vizsgálatára a térbeli Fourier-transzformáción alapuló von Neumann analízis

módszere kerül ismertetésre.

Az előző fejezetek eredményeire támaszkodva a negyedik fejezetben számos különböző

membránmodell vizsgálatára kerül sor. Nagy hangsúlyt kap a kétdimenziós rendszerekben

fellépő iránymenti numerikus diszperzió vizsgálata, valamint a különböző diszkretizációs

módszerek, úgy mint a Descartes- ill. trianguláris koordinátarendszerben történő, a negyed-

rendű és az interpolált diszkretizáció összehasonlítása.

Kulcsszavak: fizikai alapú modellezés, hangszintézis, véges differencia módszer, kétdi-

menziós hullámegyenlet, digitális jelfeldolgozás
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Abstract

In this thesis, physics-based models of the elastic membrane will be presented. These

numerical models of the membrane can be used as a component of a drum model, which

can be applied for recreating the sound of the actual instrument in a way unique to this

sound synthesis technique. Compared to other synthesis methods, physics-based modeling

has several advantages. The most important benefits are the variety of sounds that can be

produced by a single instrument model and the natural response to human interaction.

The thesis is divided into three parts. In Chapter 2, the partial differential equations of

the string and the membrane are presented. The mathematical foundations of instrument

modeling discussed in this chapter are used as a starting point in the subsequent chapters.

In Chapter 3, the fundamentals of the finite difference method are overviewed. The

concepts of convergence, consistency, stability and numerical dispersion are defined and

examined in great detail for the one-dimensional case. For stability- and dispersion analysis

of finite difference schemes, the technique of von Neumann analysis is presented.

In Chapter 4, the concepts introduced in the previous chapter are extended to the

two-dimensional case, and several types of membrane models are overviewed and ana-

lyzed. These include the models discretized in the Cartesian and the triangular coordinate

systems, finite difference schemes of increased accuracy and interpolated schemes. The

properties of these models are compared with respect to stability, dispersion error and

computational complexity. Lossy and nonlinear models of the membrane are also dis-

cussed. Particular emphasis is laid on implementation issues, including the realization of

circular boundary conditions in different coordinate systems.

Keywords: physics-based modeling, sound synthesis, finite difference method, two-

dimensional wave equation, digital signal processing
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Chapter 1

Introduction

Physics-based modeling has been used to analyze a wide range of real-world phenomena

in many fields of science and engineering. Modeling the processes in nature is beneficial

both from theoretical and practical points of view. Besides the better understanding of the

surrounding physical world, which has always been the ultimate goal of science, the results

can be effectively used in design and verification of electronic and mechanical devices or in

weather prediction, to mention a few applications.

Modeling usually starts by obtaining the mathematical representation, i.e., a set of

partial differential equations (PDEs) of the physical system of interest. In order to obtain

a model that can be implemented on a digital computer, algorithms for numerically solving

the PDEs have to be constructed. In practice, this means that the physical problem

described by the differential equations has to be reformulated as a set of algebraic equations

that can be implemented in software. This step, namely, the reformulation of the PDEs

is referred to as discretization. The high computational complexity of numerically solving

these equations usually prevents real-time implementations from being realized, however,

in most fields of science and engineering real-time realization is not a requirement.

This is not the case in the field of sound synthesis. When a musician strikes a note on

his keyboard, he will not tolerate a delay even as long as a hundred of milliseconds. The fact

that real-time implementation is of prime importance in sound synthesis has prohibited

physics-based instrument modeling from becoming a viable approach until the last few

decades. The evolution of digital signal processing hardware and algorithms, however,

enabled physics-based modeling to become one of the most promising synthesis methods

at the present time.

Traditional, signal-based sound synthesis methods model the sound of the instrument

without making any assumptions about the physical structure of the instrument. These

techniques include abstract methods, spectral modeling techniques and models based on

the processing of pre-recorded samples [Smith 1991; Tolonen et al. 1998]. Physics-based

synthesis has several advantages over these methods. The most important benefits are the

meaningful model parameters and the way the model takes human interaction into account.

In the case of signal-based synthesis techniques, the adjustable parameters usually cannot

be easily related to the physical properties of the instrument, which makes finding the

1



2 CHAPTER 1. INTRODUCTION

desirable sound difficult. On the other hand, in the case of a physics-based instrument

model, the adjustable parameters are directly associated with physical specifics of the

modeled instrument. For example, if the sound of a piano is to be recreated, in a model

based on pre-recorded samples, the sound of each note has to be stored in order to yield

natural sounding results. In the physics-based model, only a few physical parameters, e.g.,

the length and thickness of the string have to be adjusted for each note, and the changes

in sound are taken into account automatically.

The importance of human interaction can be easily illustrated in the case of a drum.

The drum can be struck at any point of the membrane, in a variety of ways. These

differences in the excitation create audible effects in the sound of the instrument. In a

sample-based model, this means that all the different sounds that can be produced by the

instrument have to be recorded and stored. However, in this model, there is no way to

describe the effect of several consecutive strokes to each other, which would be desirable to

make the sound lively and natural. In a properly constructed physics-based model, these

features are readily included.

The main parts of the physical instrument model have to correspond to the parts of the

instrument itself. These are the sound source, which is a vibrating elastic structure (e.g.,

a string or a membrane), and the resonant body. The vibrations created by the sound

source are amplified and the timbre is modified to some extent by the body. In practice,

modeling the resonant body is often implemented by filtering the sound of the source.

Two additional factors have significant influence on the sound of the instrument, namely,

excitation and sound propagation in the air. In some cases, excitation can be regarded as

a part of the instrument (e.g., the hammer in the piano), in others, they are somewhat

separated (like the drum and the drumstick). However, in both cases, an excitation model

has to be included in the physical model of the instrument to yield realistic results. Sound

propagation has to be modeled in order to describe the relation between the vibrations of

the instrument and the sound perceived by the human ear. Actually, the displacement-time

or velocity-time functions of several points of the instrument model have to be summed in

some way to yield a function of sound pressure with respect to time.

Instruments based on sound sources that can be modeled by one-dimensional structures

(stringed and wind instruments) have been objects of research in the last few decades. In

1994, the first physics-based synthesizer, which can recreate the sound of several wind in-

struments in a quite natural way, the Yamaha VL-1 was introduced. However, instruments

based on two-dimensional vibrating structures, like membranes and plates, have become

objects of scientific research only in the last decade, so this can be considered a relatively

new field of research.

The subject of this thesis is physics-based modeling of acoustic membranes, that is, con-

structing and examining physical membrane models that can be used in a real-time drum

model. From the number of physics-based modeling techniques developed so far the au-

thor has choosen the finite difference method (FDM, in the literature also referred to as the

finite difference time domain method, FDTD). Besides the finite element method (FEM),

the FDM is the most widespread technique in physics-based modeling, whose foundations
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were laid down in the first half of the twentieth century1. According to [Välimäki 2004],

one of the earliest examples of applying this method to modeling musical instruments can

be found in [Hiller and Ruiz 1971a] and [Hiller and Ruiz 1971b].

The most important advantages of the finite difference method are the relative ease of

deriving and implementing discretized physical models it provides and its potential real-

time applicability. This last statement does not mean that, in general, the FDM is the most

suitable method for real-time applications. There are other techniques, most importantly,

the digital waveguide method, that, in many cases, have better properties with respect to

computational complexity. However, as the FDM is closely related to these methods, and

consequently many of the achievements made while examining its properties directly apply

to other techniques, according to the opinion of the author, studying the finite difference

method is a good starting point for anyone who is interested in physics-based modeling of

musical instruments.

Besides the examination of some of the most recent developments in the field of mem-

brane modeling, one of the main objects of writing this thesis was to review and summarize

the very basics of the FDM in a thorough yet relatively easily understandable way. For this

purpose, most of the mathematical relations that have turned up during the research were

derived and reviewed by the author. While this has helped the author himself to compre-

hend the details of finite difference modeling, it also made it possible to unify the different

types of notation used in the literature into a uniform notational framework. Many of the

derivations are included in this thesis in order to help the reader in the interpretation of

the results. The author is hopeful that in consequence, the reader unfamiliar yet interested

in physical modeling of musical instruments can use this thesis as an introductory text-

book that can be profitably consulted. A comprehensive review and comparison of various

physics-based sound synthesis methods can be found in [Välimäki et al. 2006].

The thesis is divided into three main parts. In Chapter 2, the mathematical models,

i.e., the PDEs of some basic vibrating physical structures will be presented. As the thesis is

manly devoted to the discretization and numerical analysis of these mathematical models,

only the essentials of this field will be reviewed. These include general remarks on partial

differential equations, the wave equation in one and two dimensions and the concept of

normal modes and spatial frequency. Emphasis will be laid on the formulation of the two-

dimensional wave equation in different coordinate systems and on the boundary conditions

that correspond to a circular membrane. At the and of the chapter, more accurate models of

the acoustic membrane will be presented, which take some perceptually important physical

phenomena into account.

In Chapter 3, the fundamentals of the finite difference method will be presented in great

detail. As an illustrative example, the model of an ideal string will be used. The concepts

of convergence, consistency and stability introduced in this chapter form the framework

for the analysis of the discretized models throughout the thesis. It will be shown that one

of the most important properties of a finite difference model is numerical stability. For

1According to [Trefethen 1996, p. 147], the finite difference method was first used by L. F. Richardson

in his book Weather Prediction by Numerical Processes, first published in 1922.
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the analysis of discretized models from this point of view, the method of von Neumann

analysis will be presented. This technique will prove to be useful also at examining the

dispersion properties of a model.

In Chapter 4, the results of the previous chapter will be extended and used for deriv-

ing and examining several types of finite difference membrane models. The basic model

introduced at the beginning of the chapter will be improved in two distinct ways, which

correspond to the results of Chapter 2: on one hand, different types of discretization based

on the Cartesian and the triangular coordinate systems will be presented and analyzed,

on the other hand, the membrane model will be extended with damping and nonlinear

behavior. Special emphasis will be laid on the discussion of numerical dispersion in two di-

mensions. A comparison of several types of membrane models will be presented in Section

4.5.



Chapter 2

Partial Differential Equations for

Oscillating Mechanical Systems

In this chapter, we will present the mathematical models for the two basic structures

that will be discussed in the subsequent chapters: the string and the membrane. In

Section 2.1, we will briefly summarize the basic properties of partial differential equations.

In Section 2.2, the one-dimensional wave equation will be presented. By examining the

solutions of the boundary-value problem, the concept of normal modes will be introduced.

In Section 2.3, several forms of the two-dimensional wave equation will be examined: the

wave equation in the Cartesian, cylindrical and triangular coordinate systems. It will

be shown how the boundary conditions corresponding to a circular membrane can be

transformed to each of these coordinate systems. The cylindrical form of the wave equation

will not be discretized in the subsequent chapters, however, its analytical solution yields

the frequencies of the normal modes, which can be used for comparison with the modal

frequencies of the discretized membrane models. For the Cartesian form of the PDE, it

will be shown how to include some physical phenomena, namely, damping and nonlinear

behavior, that are essential for a natural sounding membrane model.

2.1 General Remarks on Partial Differential Equations

A partial differential equation (PDE) is an equation that contains partial derivatives of

the unknown function. PDEs can be written in the general form of

P{u} = f. (2.1)

P is a differential operator, u is a function of several variables. For example, the equation

of an ideal string is

∂2u

∂t2
− c2 ∂2u

∂x2
= 0 (2.2)

or, in a shorter notation,

utt − c2uxx = 0. (2.3)

5



6 CHAPTER 2. EQUATIONS FOR OSCILLATING MECHANICAL SYSTEMS

The two types of notation are equivalent. In this equation the differential operator is

defined by

P{u} =
∂2u

∂t2
− c2 ∂2u

∂x2
(2.4)

and f is identically zero.

The order of the PDE is the greatest number of derivatives in any term of P . If P is

a linear operator, that is,

P{a1u1 + a2u2} = a1P{u1} + a2P{u2} (2.5)

where a1 and a2 are arbitrary constants, u1 and u2 are functions, then the PDE is linear. If

f is identically zero, then the equation is called homogeneous, otherwise it is inhomogeneous.

Hereafter, we will only deal with homogeneous linear equations. In this thesis, the function

u denotes the displacement of a string or a membrane, and depends on the time and one

or two space variables.

Differential equations have in general infinite number of solutions. In order to specify

a particular one, initial conditions have to be provided. For a PDE of second order with

respect to time, u and ut has to be given at the initial time t = 0.

While investigating a phenomenon, we are generally interested in the behavior of the

physical system over a finite, bounded domain of space. This domain can be specified by

boundary conditions. For example, boundary conditions can be used to describe how a

string of finite length is terminated at its ends. In this thesis, we will only use boundary

conditions that specify identically zero displacement outside a bounded domain of space,

however, in general, time-dependent boundary conditions can also be specified. A partial

differential equation with its initial and boundary conditions is called an initial-boundary

value problem.

In order to be suited for numerical analysis, a PDE has to be well posed as an initial

value problem. A well posed problem satisfies the following conditions:

• The solution exists

• The solution is unique

• The solution is stable

Uniqueness means that at most one function satisfies the PDE with the given initial and

boundary conditions. Stability, in this sense, means that with arbitrary small difference

in the initial and boundary conditions, the difference of the solutions cannot be arbitrary

large, that is, the solution depends continuously on the initial and boundary conditions.

Although they are closely related, the stability of initial value problems should not be

confused with the stability of finite difference schemes that will be defined in Chapter 3.

In [Bensa et al. 2003], a general class of wave-equations with one spatial dimension

is shown to be well posed using a method based on the spatial Fourier-transform. The

method described can also be applied to problems with more spatial dimensions, thus the
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well posedness of the initial-value problems reviewed in this thesis can be easily verified.

As detailed analysis of PDEs is outside the scope of this thesis, knowing that the prob-

lems under review are well posed, no further attention to this topic will be paid. More

information on well posedness can be found, e.g., in [Zwillinger 1997, Section 24].

2.2 The Wave Equation in One Dimension: Modeling a String

First, let us consider the one dimensional wave equation, as follows (see [Kinsler et al.

1999, p. 39]):

∂2u

∂t2
= c2 ∂2u

∂x2
. (2.6)

Eq. (2.6) may be regarded as the mathematical model of an ideal string (a string with no

dissipation due to internal or external effects) of infinite length. The function u = u(x, t)

denotes the transversal displacement that depends on the position along the string, x, and

the time t. The parameter c is called the phase speed or phase velocity and it is determined

by the tension and the mass of the string as follows:

c =

√

T

ρL
(2.7)

where T is the tension in N, and ρL is the linear mass density in kg/m. The general

solution can be written in the following form1:

u(x, t) = u1(ct − x) + u2(ct + x). (2.8)

That is, the solution consists of two waves travelling in opposite directions without loss

or distortion. The functions u1(x) and u2(x) are determined by the initial and boundary

conditions. As initial conditions, the initial displacement u(x, 0) and initial velocity ut(x, 0)

have to be given. Boundary conditions are determined by the way the string is terminated

at its ends. For a string of length L with fixed ends the following boundary conditions will

be used:

u(x, t) = 0 if |x − x0| ≥
L

2
(2.9)

where x0 denotes the midpoint of the string. Without loss of generality, we will use

x0 = L/2, which implies that the two ends of the string correspond to the points with

x = 0 and x = L, respectively. As in this case

u(0, t) = u1(ct − 0) + u2(ct + 0) = 0 (2.10)

it is clear that u1(x) = − u2(x) which means that the incoming waves at fixed ends are

reflected with inverted phase. It can also be shown that u1(x) equals to the half of the

initial displacement. These results are illustrated in Fig. 2.1 and 2.2.

1This solution of the wave equation was found by d’Alembert in 1747.
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Figure 2.1: Solution of the one-dimensional wave equation at consequtive time steps with

the initial displacement specified.

Figure 2.2: Reflection of the waves at the left-hand side boundary in the case of a string

with fixed ends. The figures display the displacement of the string at consequtive time

steps.

The solution can also be written in the following form (see, e.g., [Kinsler et al. 1999, p.

53]):

u(x, t) =
∑

n

Cn cos (ωnt + φn) sin βnx (2.11)

where

βn =
πn

L
=

ωn

c
= 2π

fn

c
(2.12)

is the wave number or spatial frequency. From the definition, it is apparent that the unit

of β is rad/m. The frequency ω1 is called the fundamental frequency and ωn = nω1 are

the overtones (for n ≥ 2). The space-dependent sin βnx functions are the normal modes.

It can be seen in Eq. (2.12) that only discrete values of ωn and βn are allowed, and these

values are determined by the boundary conditions. The constants Cn and φn depend on

the initial conditions and can be obtained by means of Fourier analysis (see [Kinsler et al.

1999, p. 54]).
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n = 1 n = 2 n = 5

Figure 2.3: Normal modes of a string

2.3 The Wave Equation in Two Dimensions: Modeling a

Membrane

2.3.1 The Wave Equation in Cartesian Coordinate System

The two-dimensional wave equation in Cartesian coordinate system is

∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y2

)

. (2.13)

Beside time, the displacement u depends on the position along both the x and y axes.

Thus, the initial displacement and the initial velocity is given as u(x, y, 0) = u0(x, y) and

ut(x, y, 0) = ut,0(x, y), respectively. The phase velocity c is now defined as

c =

√

T

ρS
(2.14)

The parameter T is the membrane tension in N/m, and ρS is the surface mass density in

kg/m2. It is assumed that the membrane is stretched uniformly in all directions, and a

line segment of length dl is pulled apart with a force T dl. This assumption is only valid if

the displacement of the membrane is small because the tension in a real membrane is not

independent on the displacement. A more realistic model, which takes this phenomenon

into account will be introduced in Section 2.3.5.

The shape of the membrane is determined by the boundary conditions. A square

membrane of the size L×L with fixed rim can be modeled using the boundary conditions

u(x, y, t) = 0 if |x − x0| ≥
L

2
or |y − y0| ≥

L

2
(2.15)

where x0 and y0 denote the coordinates of the center of the membrane. Similarly to the

one-dimensional case, the solution can be written as a superposition of normal modes:

u(x, y, t) =
∑

n

∑

m

Cn,m cos (ωn,mt + φn,m) sin βnx sin βmy. (2.16)

The normal modes are defined by the wave numbers βn = nπ
L

and βm = mπ
L

. Frequencies of
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Figure 2.4: Normal modes of a square membrane for (n,m) = (2, 1) and (3, 2)

the normal modes can be calculated by the following formula [Fletcher and Rossing 1998]:

ωn,m = 2πfn,m = c
√

β2
n + β2

m. (2.17)

Values of the mode frequencies will be used to verify if the discretized model is a good

approximation of the physical phenomenon.

Boundary conditions for a circular membrane in Cartesian coordinate system are

u(x, y, t) = 0 if (x − x0)
2 + (y − y0)

2 ≥ R2 (2.18)

that is, the displacement is zero in every point whose distance from the center (x0, y0)

is greater than or equal to the radius of the membrane. This form of circular boundary

conditions will be useful while discretizing the model in Cartesian coordinate system. For

analytical solution, however, it is more convenient to use a different form of the differential

equation.

2.3.2 The Wave Equation in Cylindrical Coordinate System

The wave equation in cylindrical coordinates is

∂2u

∂t2
= c2

(

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂Θ2

)

. (2.19)

If the center of the membrane is the point for which r = 0 then the boundary conditions

for a circular membrane can be written in a simpler form:

u(r,Θ, t) = 0 if r ≥ R. (2.20)
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Figure 2.5: Normal modes of the circular membrane. At any time, the values of dis-

placement of the membrane sections denoted by ‘+´ and ‘−´, respectively, are of opposite

sign.

The solution for Eq. (2.19) can also be written as a superposition of normal modes (see

Fig. 2.5). The modes of the circular membrane can be analitically expressed using Bessel

functions, however, for the purpose of model verification, knowing the mode frequencies

is sufficient. According to [Fletcher and Rossing 1998], the fundamental frequency can be

calculated using the formula

f0,1 =
2.405

2πR
c. (2.21)

Mode frequencies for other modes can be calculated by multiplying f0,1 by the relative

frequency of the mode of interest. Some of the relative frequencies are listed in Table 2.1.

The relation between the temporal and spatial frequency of a normal mode can be

written in the following form (see [Kinsler et al. 1999, p. 97]):

fm,n = βm,n
c

2π
. (2.22)
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f0,1 = 1.000f0,1 f2,2 = 3.501f0,1

f1,1 = 1.594f0,1 f0,3 = 3.600f0,1

f2,1 = 2.136f0,1 f5,1 = 3.652f0,1

f0,2 = 2.296f0,1 f3,2 = 4.060f0,1

f3,1 = 2.653f0,1 f6,1 = 4.154f0,1

f1,2 = 2.918f0,1 f1,3 = 4.230f0,1

f4,1 = 3.156f0,1 f2,3 = 4.832f0,1

Table 2.1: Relative mode frequencies of the circular membrane ([Fletcher and Rossing

1998], [Kinsler et al. 1999]).

2.3.3 The Wave Equation in Triangular Coordinate System

There is another form of the wave equation that proves itself to be useful during spatial

discretization, namely, the equation in triangular coordinates. The triangular coordinate

system is defined by the x and w axes, whose relative angle is 60◦ (see Fig. 2.6). The reason

for using a third axis, z, is that it leads to a simpler form of the equation. Eq. (2.13) in

triangular coordinates is

∂2u

∂t2
= c2 2

3

(

∂2u

∂x2
+

∂2u

∂w2
+

∂2u

∂z2

)

. (2.23)

The derivation of this equation can be found in Appendix A. We will not attempt to

solve this equation analytically, as it has no advantages over the above-mentioned forms

regarding the boundary conditions. However, as it will be shown, Eq. (2.23) does have

some attractive properties with respect to spatial discretization.

Let us express the circular boundary conditions in triangular coordinates. The unit

vector along the w axis (ew) is defined as

ew =
1

2
ex +

√
3

2
ey. (2.24)

where ex and ey form the basis of the Cartesian coordinate system. For any a vector in

the triangular coordinate system it is true that

a = x′ex + wew = (2.25)

= x′ex + w

(

1

2
ex +

√
3

2
ey

)

= (2.26)

=

(

x′ +
w

2

)

ex +

(√
3

2
w

)

ey. (2.27)

According to Eq. (2.27), the Cartesian coordinates of any vector, provided its triangular

coordinates are known, can be obtained by the following linear transform:
[

x

y

]

=

[

1 1/2

0
√

3/2

][

x′

w

]

(2.28)
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x

w

z

Figure 2.6: The triangular coordinate system

or by using vector notation

x = S−1x′ (2.29)

where x = [ x y ]T and x′ = [ x′ w ]T, T denotes transposition. Eq. (2.28) can be

inverted, thus

x′ = Sx (2.30)

where

S =

[

1 1/2

0
√

3/2

]−1

=

[

1 −
√

3/3

0 2
√

3/3

]

. (2.31)

The boundary condition

u(x, y, t) = 0 if (x − x0)
2 + (y − y0)

2 ≥ R2 (2.32)

thus can be written as

u(x′, w, t) = 0 if

(

x′ +
w

2
− x0

)2

+

(√
3

2
w − y0

)2

≥ R2 (2.33)

or after expressing x0 and y0 by their triangular coordinates x′
0 and w0:

u(x′, w, t) = 0 if

(

x′ +
w

2
− x′

0 −
w0

2

)2

+

(√
3

2
w −

√
3

2
w0

)2

≥ R2. (2.34)
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2.3.4 Equations for the Damped Membrane

The PDEs discussed so far are models of vibrating systems whose total energy is constant

over time (see [Fletcher and Rossing 1998]), that is, the waves do not decay. In order to

obtain a more realistic model, damping has to be introduced. Damping forces arise from

internal friction and air resistance, and cause the amplitude of each mode decrease over

time.

The following equation takes account of these effects in the simplest way:

∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y2

)

− d
∂u

∂t
. (2.35)

The last term on the right-hand side of the equation represents a force whose magnitude

is proportional to the transversal velocity of the string but acts in the opposite direction.

In general, the damping coefficient d is frequency-dependent, that is, the modes associated

with higher frequencies decay faster. However, a general d(ω) term cannot be implemented

directly by finite difference schemes. According to [Bensa et al. 2003], frequency-dependent

damping can be taken into account in the simplest way by replacing d(ω)ut by

d1
∂u

∂t
− d2

∂

∂t

(

∂2u

∂x2
+

∂2u

∂y2

)

. (2.36)

so Eq. (2.35) takes the following form:

∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y2

)

− d1
∂u

∂t
+ d2

∂

∂t

(

∂2u

∂x2
+

∂2u

∂y2

)

. (2.37)

2.3.5 Modeling Nonlinear Behaviour

So far, only the linear model of a membrane has been presented. Linearity, in the case

of modeling a membrane of a drum, means that if only the amplitude of the excitation is

changed then the displacement-time function for any point of the membrane is unchanged

in shape, only scaled by a constant factor. However, in the case of many types of drums

(e.g., tom-tom, tabla), one of the main features of the sound is that the playing strength,

that is, the dynamic level of the excitation affects the sound in a nonlinear2 way: the pitch

of the sound is lowered over time and this effect is more audible if the drum is struck harder

(more information on this topic including measurements of several drums can be found in

[Dahl 1997]).

This phenomenon is due to the fact that the membrane tension is actually not constant,

it depends on the displacement of the membrane, which changes continuously. According

to Eq. (2.14), the phase speed, c, is dependent on the tension, and according to Eq. (2.17)

and (2.21), the modal frequencies of the membrane depend on the phase speed, which

explains why the pitch of the sound is changing over time. The method for obtaining a

nonlinear membrane model presented below is referred to as tension modulation.

2This type of nonlinearity is due to the geometry of the problem, the material of the membrane is

assumed to be linear.
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The geometric nonlinearity can be taken into account by the following form of the wave

equation:

∂2u

∂t2
=

(

T (u)

ρS

)(

∂2u

∂x2
+

∂2u

∂y2

)

. (2.38)

As the displacement depends on the variables x, y and t, the tension T is actually depen-

dent on these variables. Let us assume that the longitudinal waves propagate much faster

than the transversal ones. In this case, the tension can be regarded uniform throughout

the entire area of the membrane at any time t, and it only depends on the surface of the

membrane. As the surface depends only on time, the tension is also dependent only on

time. According to [Petrausch and Rabenstein 2005], the following relation can be derived

for T (t):

T (t) = T0 + T1(t) (2.39)

where T0 is the tension of the membrane with zero displacement, and T1(t) is defined as

T1(t) =
1

4

E

1 − p

1

L2

∫ L

0

∫ L

0

(

u2
x + u2

y +
1

2
u2

xu2
y

)

dxdy. (2.40)

The parameters E and p are material constants, the Young-modulus and the Poisson-ratio,

respectively, and L is the length along side of the membrane. It will prove to be useful to

introduce the scaling factor aS in the following way:

T (t) = T0 + aST1(t). (2.41)

The scaling factor can be used to adjust the properties of the discretized model. Conse-

quently, Eq. (2.38) can be written in the following form:

∂2u

∂t2
=

(

T0 + aST1(t)

ρS

)(

∂2u

∂x2
+

∂2u

∂y2

)

. (2.42)

It is easy to see that the nonlinear form of the rest of the PDEs can be obtained by making

the substitution

c2 =
T0 + aST1(t)

ρS
. (2.43)

Accordingly, the nonlinear equation for the damped membrane can be written as

∂2u

∂t2
=

(

T0 + aST1(t)

ρS

)(

∂2u

∂x2
+

∂2u

∂y2

)

− d1
∂u

∂t
+ d2

∂

∂t

(

∂2u

∂x2
+

∂2u

∂y2

)

. (2.44)

We will not attempt to solve these equations analytically, however, it will be shown in

Chapter 4 that the finite difference method can be easily applied to obtain a discretized

model that takes geometrical nonlinearity into account.
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Chapter 3

Introduction to the Finite Difference

Method

In this chapter, we will introduce the fundamental concepts of finite difference modeling.

For this purpose, the ideal string will be used as an demonstrative example. In Section

3.1, a simple finite difference scheme (FDS) for the ideal string will be derived and im-

plemented. The difference operator notation will be introduced, which will be used also

in the subsequent chapters. In Section 3.2, after introducing the shift operator notation,

the concepts of convergence, consistency, stability, accuracy and numerical dispersion will

be defined and explained. Many of the definitions and theorems presented in this chapter

are based on [Strikwerda 1989], however, they are interpreted from the point of view of

instrument modeling.

3.1 Modeling a String with Finite Difference Schemes

As an example, let us attempt to solve numerically the following initial-boundary value

problem:

utt = c2uxx (PDE)

u0(x) = f(x) (initial conditions)

ut,0(x) = 0

u(0, t) = u(L, t) = 0 (boundary conditions).

(3.1)

Equation (3.1) corresponds to an ideal string fixed at its ends with zero initial velocity

and nonzero initial displacement. The initial velocity is set to zero for simplicity, however,

nonzero initial velocity would not cause much difficulty. The solution will be approximated

only in discrete points, so let us introduce the grid function v that is defined over the grid

(xm, tn) = (mh,nk). This function, which is actually a two-dimensional sequence, is

used to approximate the values of the continuous function u in the points of the grid. The

parameters h and k are the grid spacings, i.e., the distance of two grid points in space and

time, respectively, m and n are arbitrary integers. Consequently, k = 1/fs where fs is

the sampling frequency. The value of v in the grid point (mh,nk) is denoted as vn
m. The

same notation is used for the values of continuous functions in the grid points, e.g., (ut)
n
m

17
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denotes ut(mh,nk). The points of the grid at t = nk will be referred to as grid level n.

According to the definition of derivation for continuously differentiable functions,

(ut)
n
m = lim

k→0

un+1
m − un

m

k
= lim

k→0

un
m − un−1

m

k
= lim

k→0

un+1
m − un−1

m

2k
(3.2)

and

(ux)nm = lim
h→0

un
m+1 − un

m

h
= lim

h→0

un
m − un

m−1

h
= lim

h→0

un
m+1 − un

m−1

2h
. (3.3)

The first order derivatives of u may be approximated by the terms

(ut)
n
m ≈ vn+1

m − vn
m

k
= δt+{vn

m} (3.4)

(ut)
n
m ≈ vn

m − vn−1
m

k
= δt−{vn

m} (3.5)

(ut)
n
m ≈ vn+1

m − vn−1
m

2k
= δt0{vn

m} (3.6)

(ux)nm ≈ vn
m+1 − vn

m

h
= δx+{vn

m} (3.7)

(ux)nm ≈ vn
m − vn

m−1

h
= δx−{vn

m} (3.8)

(ux)nm ≈ vn
m+1 − vn

m−1

2h
= δx0{vn

m} (3.9)

where δt+, δt− and δt0 are the forward, backward and central time difference operators,

respectively. Similarly, δx+, δx− and δx0 are the forward, backward and central space differ-

ence operators. Accordingly, Eq. (3.4) and (3.7) are called forward-time and forward-space

approximations of the first order derivatives, etc. By applying these operators repeatedly,

the following approximations for the second order derivatives can be obtained1:

(utt)
n
m ≈ δt+δt−{vn

m} =
vn+1
m − 2vn

m + vn−1
m

k2
(3.10)

(uxx)nm ≈ δx+δx−{vn
m} =

vn
m+1 − 2vn

m + vn
m−1

h2
(3.11)

The second order operators δt+δt+ and δx+δx− will also be denoted as δ2
t and δ2

x, respec-

tively. Now let us replace the derivatives the PDE in Eq. (3.1) by the expressions on the

right-hand side of Eq. (3.6) and (3.9), so we obtain

vn+1
m − 2vn

m + vn−1
m

k2
= c2 vn

m+1 − 2vn
m + vn

m−1

h2
. (3.12)

Eq. (3.12) is a finite difference scheme for the one-dimensional wave equation. It can be

seen that in Eq. (3.12) only one term, namely vn+1
m is on grid level n + 1. Expressing this

term, we obtain

vn+1
m = c2λ2

(

vn
m+1 + vn

m−1

)

+ 2
(

1 − c2λ2
)

vn
m − vn−1

m (3.13)

1For clarity, we will use the notational shortcut P1{P2{u}} = P1P2{u} if an operator (P1) is applied to

another operator (P2).
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x
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v
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n
m

v
n−1
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n+1
m

mh (m + 1)h(m − 1)h

nk

(n + 1)k

(n − 1)k

Figure 3.1: Grid points involved in calculating v at the next time step.

The parameter λ = k/h is called the mesh ratio. Fig. 3.1 can be regarded as a graphical

representation of this equation.

If the values of v on grid level n + 1 can be explicitly expressed like in Eq. (3.13),

then the scheme is called explicit, otherwise it is implicit. The main advantage of using

explicit schemes is the inherent ease of implementation. Calculating implicit schemes can

be performed by solving a set of linear algebraic equations in every time step. As this

is more computationally demanding than calculating explicit schemes, implicit schemes

are, in general, less suitable for real-time implementation. For this reason, only explicit

schemes are discussed in this thesis.

Eq. (3.13) is called a two-step scheme as two time levels, namely, n and n − 1 are

involved in calculating the new values of vn
m. Both from practical and theoretical point

of view, it is advantageous to use two-step and not three- or other multistep schemes for

second order PDEs with respect to time since the computational complexity is lower and

the relations derived are easier to interpret and evaluate.

From Eq. (3.13), it is clear that if vn
m is known for all values of m and for any two

consecutive values of n, then v can be calculated for any values of m and n by repeatedly

applying the difference equation. The value of v0
m can be obtained by sampling the initial

conditions of Eq. (3.1) as follows:

v0
m = u0

m = u0(mh). (3.14)

The value of v1
m can be obtained by using the Taylor-series expansion of u1

m:

u1
m ≈ u0

m + k(ut)
0
m. (3.15)

As in our case the initial velocity ut,0 is identically zero, the above expression is simplified

to

u1
m ≈ u0

m (3.16)
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vold = in i t_disp lacement ;

vmiddle = in i t_disp lacement ;

vnew = zeros (1 ,M) ;

for i i = 1 : N,

vmiddle_right = vmiddle ( 3 :M) ;

vmiddle_le f t = vmiddle ( 1 :M−2);

vnew ( 2 :M−1) = a1 ∗( vmiddle_le f t + vmiddle_right ) . . .

+ a2∗vmiddle ( 2 :M−1) − vold ( 2 :M−1);

vnew (1) = 0 ;

vnew(M) = 0 ;

vold = vmiddle ;

vmiddle = vnew ;

end

Figure 3.2: MATLAB code extract for modeling the ideal string. vold, vmiddle and vnew

denote the arrays of vn−1
m , vn

m and vn+1
m , respectively. The parameter M corresponds to Γ,

which is defined by the equation (Γ − 1)h = L.

that is, the displacement of the string at time step one can be written as

v1
m = v0

m = u0(mh). (3.17)

Due to the boundary conditions, the displacement at the endpoints of the string has to be

set to zero for all time steps, that is,

vn
0 = vn

Γ−1 = 0 (3.18)

where Γ is defined by (Γ − 1)h = L, that is, the string model consists of Γ points. Now

we have the discretized form of the initial-boundary value problem:

vn+1
m = a1

(

vn
m+1 + vn

m−1

)

+ a2v
n
m − vn−1

m (3.19)

v0
m = v1

m = u0(mh) (3.20)

vn
0 = vn

Γ−1 = 0 (3.21)

where a1 = c2λ2, a2 = 2 (1 − a1) and m ∈ [1,Γ − 2].

The values of vn−1
m , vn

m and vn+1
m can be directly mapped to three arrays of length Γ.

The MATLAB code extract in Fig. 3.2 is an example of implementing the finite difference

string model derived so far.



3.2. CHARACTERIZATION OF FINITE DIFFERENCE SCHEMES 21

3.2 Characterization of Finite Difference Schemes

The main idea behind the string model derived in the previous section was to approximate

the derivatives of the differential equation by finite differences. The smaller the values of

k and h are, the better the approximation is. Nevertheless, the grid spacings cannot be

chosen to be arbitrary small for several reasons.

If h is small, then the unknown function in the PDE is approximated in more points.

Eq. (3.13) has to be evaluated for every point, that is, smaller values of h cause increased

computational load. The same is true for k, that is, if k is decreased then vn
m has to be

calculated for more values of n during a unit of time. In some applications there are other

restrictions for the grid spacings. In the case of CD-quality audio, the sampling frequency

fs is 44.1 kHz. Since k = 1/fs the value of k is also determined.

Our ultimate goal is to find the finite difference scheme and the parameter values that

are, in some sense, most suitable for numerically solving a given initial-boundary problem.

In this section, we will introduce the mathematical concepts and methods that will form

the basis of our further investigation.

3.2.1 Shift Operator Notation

We have seen in the previous section that applying the finite difference method can lead

to equations that lack clarity. This is mainly due to the indices that are used to identify a

particular point of the grid. In order to make the equations clearer we introduce the shift

operator notation. This type of notation will prove to be useful especially in the course of

analyzing schemes in higher dimensions.

Let us define the time and space shift operators as follows:

M{vn
m} = vn

m+1 M−1{vn
m} = vn

m−1

Z{vn
m} = vn+1

m Z−1{vn
m} = vn−1

m .
(3.22)

The identity operator is defined as

I{vn
m} = vn

m. (3.23)

By using shift operators, the difference operators introduced in the previous section can

be written as

δt+ =
1

k
(Z − I) δx+ =

1

h
(M − I) (3.24)

δt− =
1

k
(I − Z−1) δx− =

1

h
(I − M−1) (3.25)

δ2
t =

1

k2
(Z − 2I + Z−1) δ2

x =
1

h2
(M − 2I + M−1). (3.26)

Every FDS in one spatial dimension can be rewritten in the following form:

Pk,h{vn
m} = fn

m (3.27)

where Pk,h is a finite difference operator that can be constructed as a linear combination

of shift and identity operators. Eq. (3.27) can be considered as the discretized form of
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the general partial differential equation P{u} = f . In this thesis we will only attempt

to construct finite difference schemes for homogeneous PDEs, so the right-hand side of

Eq. (3.27) will always be identically zero. However, the schemes and concepts discussed

here can be easily extended for the inhomogeneous case.

As an example, let us derive the shift operator representation of the one-dimensional

wave equation. Eq. (3.13) can be rewritten as

Z{vn
m} =

(

a1(M + M−1) + a2I − Z−1
)

{vn
m}. (3.28)

By rearranging this equation to the form of Eq. (3.27), we obtain

Pk,h = (Z + Z−1) − a1(M + M−1) − a2I. (3.29)

We will use the difference and shift operators for continuous functions too. For instance,

M{u(x, t)} = u(x + h, t) (3.30)

and

δt+{u(x, t)} =
u(x, t + k) − u(x, t)

k
. (3.31)

All of the presented notations (index-, shift operator- and difference operator notation,

sometimes mixed) will be used in this thesis because the particular equation under exam-

ination determines which one is the most favorable, so the reader should be familiar with

all of them.

3.2.2 Convergence, Consistency, Stability

The most basic property a finite difference scheme is expected to have in order to be

suitable for modeling purposes is that its solutions are approximating the solutions of

the corresponding differential equation. In other words, the approximate solutions of the

scheme converge to the exact solutions of the PDE in some sense as the grid spacings tend

to zero. This property, namely, convergence, is a property of the solutions of the scheme,

and it should not be confused with consistency defined later, which can be regarded as the

convergence of the scheme itself.

Convergence can be defined as follows (see [Strikwerda 1989, p. 19] for an equivalent

definition).

Definition 3.1: (Convergence) If any solution, vn
m, of a finite difference scheme con-

verges2to the solution of the approximated partial differential equation, u(x, t), while the

grid spacings k and h tend to zero, and v0
m converges to u0(x), then the scheme is conver-

gent.

2This is not a mathematically precise definition as it is stated that a grid function converges to a

continuous function, and this type of convergence has to be clearly defined. The mathematical details can

be found in [Strikwerda 1989].
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In general, it can be quite involved to check the convergence of a scheme directly. However,

convergence can be traced back to other concepts that are easier to deal with: consistency

and stability.

Definition 3.2: (Consistency of a finite difference operator) The finite difference o-

perator Pk,h is consistent with the differential operator P if for any smooth3function φ

lim
k,h→0

(P{φ} − Pk,h{φ}) = 0 (3.32)

in each grid point.

Definition 3.3: (Consistency of a finite difference scheme) The FDS according to

Pk,h{v} = 0 is consistent with the partial differential equation P{u} = 0 if Pk,h is consistent

with P .

Actually, consistency of a scheme means that the expression of the FDS itself converges to

the partial differential equation as the grid spacings tend to zero.

As an example, let us show that the second order difference operator δ2
t is consistent

with the differential operator ∂2

∂t2
. By using Taylor-series expansion, φn+1

m and φn−1
m can

be written in the following form:

φn+1
m = φn

m + k(φt)
n
m +

k2

2
(φtt)

n
m +

k3

6
(φttt)

n
m + O(k4) (3.33)

φn−1
m = φn

m − k(φt)
n
m +

k2

2
(φtt)

n
m − k3

6
(φttt)

n
m + O(k4). (3.34)

The big-O symbol is defined as follows:

f(x) = O(g(x)) (3.35)

means that there exist constants C and x0 such that

|f(x)| ≤ Cg(x) (3.36)

for all x ≥ x0. By using these formulae,

δ2
t {φ} =

φn+1
m − 2φn

m + φn−1
m

k2
= (φtt)

n
m + O(k2). (3.37)

This means that

lim
k→0

(

φtt − δ2
t {φ}

)

= 0 (3.38)

for any values of n and m, that is δ2
t is consistent with ∂2

∂t2
. It is apparent that if every

derivative in a PDE is approximated by consistent finite difference operators then the finite

difference scheme will also be consistent with the PDE (e.g. Eq. (3.12)).

Consistency is not a sufficient condition for convergence, that is, if a finite difference

scheme converges to a PDE, it does not necessarily follow that the solutions of the scheme
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Figure 3.3: Initial displacement of the 64-point string model.

are also convergent. As an example, let us consider a 64-point string model with the

initial displacement shown in Fig. 3.3. The finite difference scheme for the string was

derived by using the second order difference operators, δ2
x and δ2

t . These operators were

shown to be consistent with the differential operators in the one-dimensional wave equation,

which means that the scheme is also consistent with the PDE. According to the results of

Chapter 2, we expect two waves of the shape in Fig. 3.3 travel to the left and to the right,

respectively, and be reflected at the ends of the string with inverted amplitude.

This is the case in Fig. 3.4 which shows the waterfall plot of the string model with

parameters c = 1/λ. The ‘slices’ of the waterfall plot correspond to the displacement along

the string at successive time steps. It can be seen as the initial waveform breaks up into

two waves travelling in opposite directions, and they are reflected at the ends of the string

with inverted phase. Accordingly, the finite difference scheme with these parameters seems

to be a good approximation of the one-dimensional wave equation.

On the other hand, it can be seen in Fig. 3.5, that with slightly different parameter

values, the same scheme yields unacceptable results. As we will see, the solution of the

scheme in this case is unbounded. Fig. 3.6 shows the same phenomenon from a different

point of view: the displacement of the midpoint of the string is plotted against time.

The concept that is needed to describe this phenomenon is stability. Stability can be

defined in two different ways. A finite difference scheme is said to be stable if

1. for a fixed value of k, vn
m is bounded in some sense as n → ∞.

2. for a fixed value of n, vn
m is bounded in some sense as k → 0.

Following [Strikwerda 1989], we will use the second interpretation of stability since the

3Smooth, in this case, means that φ is sufficiently differentiable so that P{φ} exists.
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Figure 3.4: Waterfall plot of the stable string model (c = 1
λ
).

Figure 3.5: Waterfall plot of the unstable string model (c = 1.0014
λ

).
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Figure 3.6: The displacement of the midpoint of the string as a function of time. The

left and right-hand side figures show the numerically stable and unstable string models,

respectively.

subsequent theorems and stability conditions use this definition as a starting-point. First,

let us define the L2 norm of a grid function.

Definition 3.4: (L2 Norm of a Grid Function)

‖ w ‖h=

√

√

√

√h
∞
∑

m=−∞
|wm|2. (3.39)

Stability may be defined as follows (see [Strikwerda 1989, p. 158]):

Definition 3.5: (Stability of schemes for second-order PDEs) The finite difference

scheme Pk,h{vn
m} = 0 that approximates an equation that is second-order in t is stable

if there is an integer I and positive numbers h0 and k0 such that for any positive time T ,

there is a constant CT such that

‖ vn ‖2
h ≤ (1 + n2) CT

I
∑

i=0

‖ vi ‖2
h (3.40)

for 0 ≤ nk ≤ T , 0 < h ≤ h0, 0 < k ≤ k0.

Without the term (1 + n2), this definition expresses the fact that the square L2 norm of

the grid function at any time step n is bounded by the sum of the L2 norm at the first

few time steps multiplied by a constant which is not dependent on the grid spacings k and

h. That is, the norm of the grid function does not blow up as k tends to zero. However,

second-order PDEs without lower order derivatives allow linear growth in the solution with

respect to t, that is why the term (1 + n2) has to be added. Without this modification,

the definition would not allow any consistent scheme for second-order PDEs to be stable.

This definition is not very easy to apply for checking the stability of a scheme di-

rectly. However, as it will be shown in the subsequent sections, there exist simple stability

conditions based on the definition above.
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Now let us introduce the theorem that connects convergence to consistency and stability

(see [Strikwerda 1989, p. 26]).

Theorem 3.1: (The Lax-Richtmyer Equivalence Theorem) A finite difference

scheme for a partial differential equation for which the initial value problem is well posed

is convergent if and only if it is consistent and stable.

The Lax-Richtmyer Equivalence Theorem is regarded as the fundamental theorem of finite

difference schemes for partial differential equations. By using this theorem, convergence of

a scheme can be verified without using Def. 3.1 directly. As consistency and stability can

be examined with a relative ease, checking convergence becomes quite simple.

The Lax-Richtmyer Theorem has been proven using the rigorous definition of stability

according to Def. 3.5. This stability definition was constructed, so that a general class of

mathematical problems can be examined by the equivalence theorem. However, from the

signal processing point of view, Def. 3.5 is not the most suitable formulation of stability.

As an example, let us consider the following equation of the damped string:

utt = c2uxx − d1ut. (3.41)

If d1 is positive Eq. (3.41) has solutions that decay over time. However, if d1 is negative,

then the solutions of the equation will grow arbitrary large in absolute value, unless the

initial conditions are identically zero. Although this problem cannot be used for modeling

real physical systems, it may be a subject to finite difference analysis. The solutions of a

convergent scheme have to converge to the solutions of the PDE, that is, they also have to

blow up.

According to the Equivalence Theorem, a convergent scheme is stable, that is, a scheme

that is convergent to Eq. (3.41) with d1 < 0 is stable in spite of the fact that it has

unbounded solutions. As we are only interested in schemes whose solutions do not grow,

we will treat Def. 3.5 loosely, and consider a scheme to be stable if its solutions does not

blow up over time. This type of stability corresponds to the one used in linear system

theory. Neither of this interpretation and the one according to Def. 3.5 implies the other,

however, the schemes discussed in this thesis are either stable or unstable in both senses for

the great majority of parameter values. The few exceptional cases are of rather theoretical

interest, and will not be discussed here.

3.2.3 Von Neumann Stability Analysis

Von Neumann analysis is a powerful method based on the spatial Fourier-transform, which

can be used effectively to examine important properties of finite difference schemes. First

let us define the spatial Fourier transform for continuous and grid functions FT[Strikwerda

1989, p. 32].
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Definition 3.6: (Spatial Fourier-transform) The spatial Fourier-transform of the space-

dependent function u(x) and the inverse formula is defined as

F{u(x)} = U(β) =
1√
2π

∫ ∞

−∞
u(x)e−jβxdx (3.42)

F
−1{U(β)} = u(x) =

1√
2π

∫ ∞

−∞
U(β)ejβxdβ (3.43)

where β is the spatial frequency. The spatial Fourier-transform of the grid function vm

(discrete-space Fourier-transform) and the inverse formula is defined as

F{vm} = V (β) =
1√
2π

h

∞
∑

m=−∞
vme−jmhβ (3.44)

F
−1{V (β)} = vm =

1√
2π

∫ π
h

−π
h

V (β)ejmhβdβ (3.45)

By comparing these formulae with the well-known definition of temporal Fourier-transform,

it can be seen that β is the spatial equivalent of the analog angular frequency, ω, and π/h

can be regarded as the spatial (angular) Nyquist-frequency. Parseval’s relation, which

connects the L2 norm of the grid function and its Fourier-transform, can be written in the

following form.

Theorem 3.2: (Parseval’s Relation)

‖ V ‖2
h=

∫ π
h

−π
h

|V (β)|2dβ = h
∞
∑

m=−∞
|vm|2 =‖ v ‖2

h (3.46)

Now let us derive the shift theorem of the discrete-space Fourier-transform which will

be used extensively during the analysis of finite difference schemes.

F{vm+K} =
1√
2π

h

∞
∑

m=−∞
vm+Ke−jmhβ (3.47)

By using the index variable l = m + K, we obtain

F{vm+K} =
1√
2π

h
∞
∑

l=−∞
vle

−j(l−K)hβ = (3.48)

= ejKhβ

(

1√
2π

h

∞
∑

l=−∞
vle

−jlhβ

)

= (3.49)

= ejKhβ
F{vm} (3.50)

that is, we have obtained the following formula:

Theorem 3.3: (Shift Theorem of the Discrete-space Fourier-transform)

F{vm+K} = ejKhβ
F{vm} (3.51)

for any integer K.



3.2. CHARACTERIZATION OF FINITE DIFFERENCE SCHEMES 29

The shift theorem for continuous functions can be derived in a similar fashion.

Theorem 3.4: (Shift Theorem of the Continuous-space Fourier-transform)

F{u(x + x0)} = ejβx0F{u(x)} (3.52)

Let us consider the discrete-space Fourier-transform of the FDS for the one-dimensional

wave equation (Eq. (3.13))

vn+1
m = c2λ2

(

vn
m+1 + vn

m−1

)

+ 2
(

1 − c2λ2
)

vn
m − vn−1

m . (3.53)

The Fourier-transform of the equation can be easily obtained by using the shift theorem:

V n+1(β) =
[

c2λ2
(

ejhβ + e−jhβ
)

+ 2
(

1 − c2λ2
)

]

V n(β) − V n−1(β) = (3.54)

= 2
[

c2λ2 (cos hβ − 1) + 1
]

V n(β) − V n−1(β) (3.55)

where V n(β) = F{vn
m}. By rearranging this equation, we obtain

V n+1(β) − 2DV n(β) + V n−1(β) = 0 (3.56)

where

D = c2λ2 (cos hβ − 1) + 1. (3.57)

Eq. (3.56) is a homogeneous linear second-order difference equation for V n(β) whose solu-

tion is a series of functions. Let us look for the solution of the form

V n(β) = g(β)n. (3.58)

Note that on the left hand side of the equation, n denotes the index of the time step,

however, on the right hand side it stands for raising to a power. In the following discussion,

we will not always emphasize the β-dependence of g, and will write g instead of g(β). By

substituting Eq. (3.58) into Eq. (3.56), we obtain

gn+1 − 2Dgn + gn−1 = 0 (3.59)

that is,

Φ(g) = g2 − 2Dg + 1 = 0. (3.60)

Φ(g) is called the amplification polynomial, whose roots, in this case, are

g± =
2D ±

√
4D2 − 4

2
= D ±

√

D2 − 1. (3.61)

The solution of the difference equation is

V n(β) = A+(β)g+(β)n + A−(β)g−(β)n (g+ 6= g−) (3.62)

V n(β) = A+(β)g+(β)n + nB(β)g−(β)n−1 (g+ = g−) (3.63)
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where A+, A− and B are determined by the initial conditions. The two distinct ampli-

fication factors correspond to the two waves propagating in opposite directions along the

string. It can be seen that if g+ 6= g− and |g±| ≤ 1, then the L2 norm of V n(β) will not

grow over time for all values of β. According to Parseval’s relation, this means that the L2

norm of the grid function vn
m will not grow over time either, that is, the scheme is stable.

If g+ = g− and |g±| ≤ 1 then the norm of the solution will grow at most linearly with

respect to n which, according to Def. 3.5, also results in a stable scheme. According to

the above, we can phrase the following stability condition:

Theorem 3.5: (Stability Condition for schemes for second-order PDEs) The ne-

cessary and sufficient condition for a finite difference scheme for a second-order PDE to be

stable is that the roots gi of its amplification polynomial Φ(g) satisfy the inequality

|gi| ≤ 1. (3.64)

Let us examine what parameter values satisfy this condition. According to Eq. (3.61),

there are three cases to consider:

• D2 < 1

In this case, the two roots form a conjugate complex pair whose absolute value

is

|g±| =

√

D2 +
(

√

1 − D2
)2

= 1 (3.65)

that is, the scheme is stable.

• D2 = 1

In this case there is one multiple root whose absolute value is 1, so the scheme

is stable.

• D2 > 1, that is, D > 1 or D < −1

If we consider Eq. (3.57) it is apparent that D cannot be greater than 1, so only

the case of D < −1 has to be examined. In this case

|g±| =
∣

∣

∣
D ±

√

D2 − 1
∣

∣

∣
= −D ±

√

D2 − 1 (3.66)

It can be seen that in this case |g−| > 1, that is, the scheme is unstable if D < −1.

Our results are summarized in the following theorem.

Theorem 3.6: (Stability condition) If the amplification polynomial of a finite differ-

ence scheme is of the form

Φ(g) = g2 − 2Dg + 1 = 0 (3.67)

where D ≤ 1 then the necessary and sufficient condition of stability is

D ≥ −1. (3.68)
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In the particular case of the ideal string, D is defined by Eq. (3.57), so applying the

stability condition yields

c2λ2 (cos hβ − 1) + 1 ≥ −1 (3.69)

c2λ2 (cos hβ − 1) ≥ −2. (3.70)

For all values of β, this is satisfied if c2λ2 ≤ 1. Since both c and λ can only take positive

values, the stability condition for the finite difference scheme of the ideal string is4

λ ≤ 1

c
. (3.71)

This stability condition corresponds to our former results ( plotted in Fig. 3.4 and

(3.5)), namely, that the scheme with parameters λ = 1/c is stable but with λ = 1.0014/c

(only slightly out of the stability region) it is unstable. Another remark can be made:

the roots of the amplification polynomial of a stable string model are either equal (at the

stability margin) or form a conjugate complex pair, i.e., their magnitudes are identical.

As, by definition, λ = k/h, the stability condition can be interpreted in several ways:

• If the grid spacings k and h are given there is a maximum value of c that yields

a stable model, i.e., only problems with limited value of the phase speed can be

approximated by this scheme. In the case of a string, this means an upper bound for

the pitch of the sound generated by the model.

• If the parameters c and k are given, then the minimum value of h is determined,

which also defines the maximum number of grid points (Γmax).

• If c and h are given, then the maximum value of k and consequently the minimum

value of the sampling frequency fs is determined.

In general, the sampling frequency is already determined by the environment (e.g., the

soundcard or the D/A-converter), unless real-time sample rate conversion is used. Usually,

the phase speed c is also defined by the physical parameters of the instrument, so only

h can be used to adjust the model properties. As it will be shown in the subsequent

chapters, using the scheme near the stability margin is generally advantageous. However,

the higher number of grid points that corresponds to this case increases the computational

load, which may prevent the scheme from being real-time realizable. On the other hand,

the smaller the value of Γ is, the fewer normal modes are taken into account by the model,

which lowers the quality of the generated sound. According to the above, for the best

results, usually the highest possible number of grid points has to be chosen with respect

to the stability margin and the available computational resources.

In summary, to determine the stability of a scheme, the following steps have to be

performed:

4To be mathematically precise, the ratio k/h = λ has to be constant. However, from practical point

of view, the values of c, k and h can be chosen arbitrarily, and Eq. (3.71) will determine if the resulted

scheme for the string is numerically stable or not.
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1. Calculate the Fourier-transform the difference equation of the scheme.

2. Derive the amplification polynomial Φ(g) by making the substitution V n(β) = gn.

3. Obtain the amplification factors gi by finding the roots of the amplification polyno-

mial.

4. Find the parameter values under which the magnitude of the amplification factors is

less than or equal to one.

The ease of this method inheres in the shift theorem, which makes Fourier-transformation

of a difference equation equivalent to substitution of complex exponentials.

3.2.4 Accuracy

Accuracy can be regarded as the refined form of the concept of consistency. While the

latter only tells us if a finite difference scheme is an approximation of a partial differential

equation, accuracy provides more detailed information about this relationship. As with

consistency, we first introduce accuracy for finite difference operators and then for finite

difference schemes.

Definition 3.7: (Accuracy of a Finite Difference Operator) If the differential op-

erator P contains only derivatives with respect to t then the finite difference operator

Pk is said to be a p-order accurate approximation of P if for any smooth function φ

P{φ} − Pk{φ} = O(kp). (3.72)

Similarly, if the differential operator P contains only derivatives with respect to x then the

finite difference operator Ph is said to be a q-order accurate approximation of P if for any

smooth function φ

P{φ} − Ph{φ} = O(hq). (3.73)

If the differential operator P contains derivatives with respect to both t and x then the

finite difference operator Pk,h is said to be a (p, q) accurate approximation of P if for any

smooth function φ

P{φ} − Pk,h{φ} = O(kp) + O(hq). (3.74)

Definition 3.8: (Accuracy of a Finite Difference Scheme) The finite difference scheme

Pk,h{v} = 0 consistent with the partial differential equation P{u} = 0 is accurate5of order

(p, q) if Pk,h is a (p, q) accurate approximation of P .

5The definitions of accuracy presented here do not apply to all finite difference operators and schemes,

but they are simple and valid for the schemes examined in this thesis. For a more rigorous treatment of

this topic, we refer to [Strikwerda 1989] and [Trefethen 1996].
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In words, accuracy gives information about the rate of the convergence of a scheme as the

grid spacings tend to zero. This definition inheres the ambiguity that, e.g., if the accuracy

of an operator is 2 then it is also accurate of order 1, because

Pk{φ} = P{φ} + O(k2) ⇒ |Pk{φ} − P{φ}| ≤ Ck2 (3.75)

implies that

|Pk{φ} − P{φ}| ≤ Ck ⇒ Pk{φ} = P{φ} + O(k) (3.76)

if k is not greater than one and C is a positive constant. However, this should not cause

any confusion as in the following we will only claim that a scheme or an operator is accurate

of order p if it is not accurate of order p + 1 according to Def. 3.7 and 3.8.

Accuracy, similarly to consistency, can be determined by Taylor-series expansion. It

was already shown in Section 3.2.2 that

δ2
t {φ} =

φn+1
m − 2φn

m + φn−1
m

k2
= (φtt)

n
m + O(k2) (3.77)

that is, the operator δ2
t is a second order accurate approximation of ∂2/∂t2. The order

of accuracy of the other commonly used difference operators listed in Table 3.1 can be

derived in a similar fashion (see Eq. (3.33)).

differential operator approximated difference operator order of accuracy

∂/∂t δt+ 1

∂/∂t δt− 1

∂/∂t δt0 2

∂2/∂t2 δ2
t 2

Table 3.1: Order of accuracy of common difference operators.

The scheme for the ideal string was constructed by approximating the differential op-

erator of the one-dimensional wave equation as

φtt − c2φxx = δ2
t {φ} − c2δ2

x{φ} + O(k2) + O(h2) (3.78)

which means that this finite difference scheme is accurate of order (2,2). It should be clear

that if a scheme is constructed by using terms of different orders of accuracy then the

accuracy of the scheme is determined by the term which is accurate of the lowest order.

For example, the difference operator

δ2
t − δt− (3.79)

is a first-order accurate approximation of the differential operator

∂2

∂t2
− ∂

∂t
(3.80)

because δt− is only a first-order accurate approximation of ∂/∂t, although the accuracy of

the other term, δ2
t , is two.
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In order not to degrade accuracy of the overall method, the calculation of the grid

function at the first time step has to be accurate of at least the same order as the scheme

itself. E.g., for the ideal string, the approximation that was used in Section 3.1,

u1
m ≈ u0

m + k(ut)
0
m + O(k2) (3.81)

is second-order accurate with respect to time. As the finite difference scheme used for

modeling the string is accurate of order (2,2), the initialization of the scheme at the first

time step is satisfactory.

According to [Strikwerda 1989, p. 63], the accuracy of a scheme is directly related to

the error of the solution defined as

E(t) =‖ u(xm, t) − vn
m ‖h (3.82)

that is, higher order of accuracy results in decreased error of the solution. This means

that using a more accurate scheme, in theory, allows us to use a coarser grid which results

in an implementation with fewer instructions per time unit. However, stability means

another constraint for the grid spacings so they cannot be chosen arbitrary large. Besides,

increased accuracy generally requires more instructions per grid point, which compensates

the advantages of the coarser grid.

The error function defined above is an important characteristic in certain applications.

However, in the field of instrument modeling, where the main point is to recreate the sound

of an instrument, it is not very meaningful since there is no direct relationship between

the error of the displacement vn
m and the fidelity of the sound created. A more important

property of an instrument model, with respect to its realistic behavior, is how it preserves

the modal frequencies of the actual instrument.

3.2.5 Numerical Dispersion

From the analytical solution of the wave equation, we expect the string model to yield

solutions that consist of waves propagating without distortion. However, as it is shown in

Fig. 3.7, this is true only at the stability margin. For other parameter values, the com-

ponents of the solution corresponding to different spatial frequencies travel with different

phase velocities. As shown in Fig. 3.8, this causes the modal frequencies to differ from

the their theoretical values. This effect is referred to as numerical dispersion, which is a

consequence of discretization of the PDE, and should not be confused with the dispersion

that is inherent in some physical systems.

In order to interpret this behaviour of the scheme, let us first examine the wave equation

in the spatial frequency domain. By applying the continuous spatial Fourier-transform to

the wave equation

∂2u

∂t2
(x, t) = c2 ∂2u

∂x2
(x, t) (3.83)

we obtain

∂2U

∂t2
(β, t) = c2(jβ)2U(β, t) (3.84)
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Figure 3.7: The effect of numerical dispersion to the displacement of the string. On the

upper figure (c = 1/λ), the waves propagate without distortion. On the lower figure

(c < 1/λ), due to dispersion, the high-frequency components of the wave propagate slower

which causes the shape of the wave distort over time.

which is an ordinary linear differential equation. Let us look for the solution in the form

of

U(β, t) = A(β)est. (3.85)

By substituting this expression into the differential equation we obtain

s2A(β)est = c2(jβ)2A(β)est (3.86)

s2 = c2(jβ)2 (3.87)

s± = ±jβc (3.88)

and the general solution can be written as

U(β, t) = A+(β)ejβct + A−(β)e−jβct. (3.89)

By applying the shift theorem, for the inverse transform we obtain

u(x, t) = a+(x + ct) + a−(x − ct) (3.90)

which corresponds to the results of Chapter 2. Let us sample the expression for U(β, t)

with respect to time so that we get

U(β, nk) = Un(β) = A+(β)
(

ejβck
)n

+ A−(β)
(

e−jβck
)n

= (3.91)

(3.92)

= A+(β)
(

ejϕ(β)
)n

+ A−(β)
(

e−jϕ(β)
)n

. (3.93)
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Figure 3.8: The effect of numerical dispersion to the spectrum. The figures show the FFT

of the displacement-time function of the string element at 1/10 of the string length with

and without numerical dispersion. The parameters c and k are the same, only the number

of points, and therefore h, is changed. The upper and lower figures were generated with

parameter values h = ck (stability margin) and h = 5ck, respectively. The dashed lines

show the mode frequencies obtained by analytical solution of wave equation.
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By considering the exponential terms, the phase speed may be defined as

c(β) =
ϕ(β)

kβ
. (3.94)

It is clear that in this case c is independent of β, that is, waves corresponding to each

spatial frequency travel with the same speed, there is no dispersion inherent in the ideal

string. This property is due to the linearity of ϕ(β) with respect to β. By comparing

Eq. (3.92) with

V n(β) = A+(β)gn
+ + A−(β)gn

− (3.95)

derived in Section 3.2.3, it is clear that g± is an approximation of e±jϕ(β). For a stable

scheme, g± can be written as

g± = G(β)e±jϕ(β) (3.96)

where G(β) and ±ϕ(β) are the magnitude and phase of g±, respectively. Accordingly, the

phase speed of the finite difference scheme, denoted by γ, may be defined as

γ(β) =
ϕ(β)

kβ
=

arc(g+)

kβ
=

−arc(g−)

kβ

In general, it is difficult to see the meaning behind the lengthy expressions that can be

derived for the phase speed, however, numerical evaluation for different parameter values

proves to be quite useful. It can be seen in Fig. 3.9 that with parameter values c = 1/λ,

there is no dispersion, the phase velocity is constant for all spatial frequencies. For different

parameter values, however, numerical dispersion is present, which causes the waves with

higher spatial frequencies propagate slower. It can be seen that by decreasing the value

of c, with the other parameters fixed, the phase velocity not only decreases but becomes

dependent on the wave number.

3.3 Summary

In this chapter, the fundamentals of finite difference schemes have been introduced. The

most important result presented in this chapter is the Lax-Richtmyer Equivalence Theorem,

which enables us to verify whether a scheme is an appropriate model for a partial differential

equation in a relatively simple way. According to the Equivalence Theorem, the necessary

and sufficient condition for a scheme to be convergent is consistency and stability. The

former property can be easily verified by Taylor-series expansion, and the latter one can be

examined by the means of von Neumann analysis presented in Section 3.2.3. The stability

conditions stated in this chapter will be used in the subsequent parts of the thesis. Von

Neumann analysis was shown to be suitable also for describing the numerical dispersion of

finite difference schemes.
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0 

Figure 3.9: Phase velocity of the finite difference scheme of the ideal string for different

parameter values.



Chapter 4

Modeling an Acoustic Membrane

In this chapter, several types of finite difference membrane models will be reviewed. Most

of the concepts introduced in the previous chapter directly apply to the two-dimensional

schemes discussed in the following. However, numerical dispersion is an exception as the

direction-dependence of the phase velocity is unique to schemes with two or more spatial

dimensions. For this reason, emphasis will be laid on examining the dispersion properties

of each derived model.

Two different types of grids with two spatial dimensions will be shown, namely, the

ones that correspond to the Cartesian and triangular coordinate systems. Implementation

of the boundary conditions corresponding to a circular membrane will be discussed in great

detail. In the Cartesian case, it will be shown how to extend the model by taking additional

physical phenomena (damping and nonlinearity) into account.

In Section 4.5, four different models for the ideal membrane will be compared from

several points of view.

4.1 Discretization in Cartesian Coordinate System

Discretization of the PDE Let us proceed from the two-dimensional wave equation in

Cartesian coordinate system:

∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y2

)

. (4.1)

The displacement u(x, y, t) now depends on time and two space variables. Similarly to the

case of the string, we will attempt to solve initial-boundary value problems. For the square

membrane the problem can be formulated as

utt = c2 (uxx + uyy) (PDE)

u0(x, y) = f(x, y) (initial conditions)

ut,0(x, y) = g(x, y)

u(0, y, t) = u(L, y, t) = 0 (boundary conditions)

u(x, 0, t) = u(x,L, t) = 0.

(4.2)

39
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For the circular membrane, only the boundary conditions are different. According to

Chapter 2, the boundary conditions are

u(x, y, t) = 0 if (x − x0)
2 + (y − y0)

2 ≥ R2 (4.3)

For the membrane of the size L × L we will use R = x0 = y0 = L/2.

The time and space-shift operators may be defined as follows:

M{vn
m,l} = vn

m+1,l M−1{vn
m,l} = vn

m−1,l

L{vn
m,l} = vn

m,l+1 L−1{vn
m,l} = vn

m,l−1

Z{vn
m,l} = vn+1

m,l Z−1{vn
m,l} = vn−1

m,l

(4.4)

The fact that the letter L denotes both the spatial shift operator along the y axis and the

length along side of the square membrane should not cause confusion since the context will

always clarify what L denotes in the particular expression. As it was shown in Chapter 3,

the derivatives in the PDE can be approximated by finite differences1:

(utt)
n
m,l ≈ 1

k2

(

Z − 2I + Z−1
)

{vn
m,l} = δ2

t {vn
m,l} (4.5)

(uxx)nm,l ≈ 1

h2

(

M − 2I + M−1
)

{vn
m,l} = δ2

x{vn
m,l} (4.6)

(uyy)
n
m,l ≈ 1

h2

(

L − 2I + L−1
)

{vn
m,l} = δ2

y{vn
m,l} (4.7)

As a shortcut for the spatial operators, we also define the δ2
+ operator as

δ2
+ = δ2

x + δ2
y (4.8)

(see Fig. 4.1). By substituting these expressions into the wave equation according to

Eq. (4.1), we obtain

(

Z − 2I + Z−1
)

{vn
m,l} = c2λ2

(

M − 2I + M−1 + L − 2I + L−1
)

{vn
m,l} (4.9)

that is,

vn+1
m,l =

[

c2λ2
(

M + M−1 + L + L−1
)

+ 2
(

1 − 2c2λ2
)

I − Z−1
]

{vn
m,l} (4.10)

The mesh ratio, λ, is again defined as λ = k/h. As each derivative in the PDE is approxi-

mated by a second-order accurate operator the overall scheme will be accurate of the order

(2, 2). This scheme can be implemented by evaluating the difference equation

vn+1
m,l = c2λ2

(

vn
m+1,l + vn

m−1,l + vn
m,l+1 + vn

m,l−1

)

+ 2
(

1 − 2c2λ2
)

vn
m,l − vn−1

m,l

(4.11)

for a set of values of m and l determined by the boundary conditions and for each time

step n of interest.

1The same grid spacings will be used along the x and y axes because the mathematical model under

review does not imply otherwise. It is possible that in a more realistic model, which takes the anisotropy

of the material into account using different values for the spatial grid spacings along the two coordinate

axis has some advantages.
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(m, l) (m + 1, l)(m − 1, l)

(m, l + 1)

(m, l − 1)

Figure 4.1: Illustration of the δ2
+ operator. The points involved in the approximation of

the spatial derivatives are filled with black.

Discretization of Initial and Boundary Conditions According to the boundary

conditions, the displacement in the points with indices m = 0, m = Γ − 1, l = 0 and

l = Γ − 1, where Γ is again defined by L = (Γ − 1)h, is zero for all time steps, so the

above expression has to be evaluated for only the (Γ − 2)2 inner points (see Fig. 4.2). The

displacement is also identically zero in the rest of the grid points outside the boundary

(see Eq. (2.15)), so they have not to be stored and calculated. Discretization of the initial

displacement u0(x, y) is evident, however, the consideration of the initial velocity needs

some explanation. The Taylor-series expansion for u(x, y, (n + 1)k) yields

un+1
m,l ≈ un

m,l + k (ut)
n
m,l (4.12)

that is, the initial velocity can be taken into account by setting the values of v for time

step 1 according to the equation

v1
m,l = v0

m,l + kut,0(mh, lh) = v0
m,l + kg(mh, lh). (4.13)

According to the results of Section 3.2.4, this initialization procedure does not degrade the

overall accuracy of the scheme. So far we have obtained the following discretized form of

the initial-boundary value problem for the square membrane:

vn+1
m,l = a1

(

vn
m+1,l + vn

m−1,l + vn
m,l+1 + vn

m,l−1

)

+ a2v
n
m,l − vn−1

m,l

v0
m,l = f(mh, lh)

v1
m,l = v0

m,l + kg(mh, lh)

vn
0,l = vn

Γ−1,l = 0

vn
m,0 = vn

m,Γ−1 = 0

(4.14)

where a1 = c2λ2, a2 = 2 (1 − 2a1) and m, l ∈ [1,Γ − 2].
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x/h

y/h

Γ − 1Γ − 20 1 2

0

1

2

Γ − 2

Γ − 1

Figure 4.2: Illustration of the boundary conditions for the square membrane. The circles

filled with black denote the points of the boundary. The displacement in these points and

also outside the boundary is identically zero for all time steps, the difference equation of

the scheme has to be evaluated only for the inner points denoted by empty circles.

Implementation of Circular Boundary Conditions The circular boundary condi-

tions can be discretized in the following way. The solution u(x, y, t) is zero for all time

steps if the x and y coordinates satisfy the inequality
(

x − L

2

)2

+

(

y − L

2

)2

≥
(

L

2

)2

. (4.15)

To be suitable for implementation, the continuous variables in this expression have to be

replaced by indices. This can be achieved by using the substitutions

x = mh (4.16)

y = lh (4.17)

L = (Γ − 1)h (4.18)

so we obtain
(

mh − Γ − 1

2
h

)2

+

(

lh − Γ − 1

2
h

)2

≥
(

Γ − 1

2
h

)2

. (4.19)

The parameter h is present in each term, so the inequality simplifies to
(

m − Γ − 1

2

)2

+

(

l − Γ − 1

2

)2

≥
(

Γ − 1

2

)2

(4.20)

hence we obtain the following discretized form of the boundary conditions:

vn
m,l = 0 if

(

m − Γ − 1

2

)2

+

(

l − Γ − 1

2

)2

≥
(

Γ − 1

2

)2

. (4.21)

This form of the circular boundary conditions can be directly implemented. Fig. 4.3 shows

how the boundary refines as the grid spacing is decreased.
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Figure 4.3: Circular boundary conditions for the 8× 8, 16× 16, 32× 32 and 64× 64-point

membrane models discretized in Cartesian coordinate-system. The displacement of the

points outside the area bounded by the solid black line and on the line itself is identically

zero for all time steps.

Excitation Before implementing the model, the initial conditions, that is, the excitation

of the membrane has to be specified. Since the membrane model is to be used as a

component of a drum model, the excitation should be chosen according to this purpose.

The realistic modeling of the drumstick and the interaction between the drum and the

drumstick yield a much more complicated coupled initial-boundary value problem whose

analysis is out of the scope of this thesis. However, the impact of the drumstick may be

approximately modeled by setting the initial displacement of the membrane to zero and

specifying non-zero initial velocity for a small section of the membrane.

u0(x, y) = 0 (4.22)

ut,0(x, y) = g(x, y) (4.23)

The initial velocity will be specified as a period of a two-dimensional raised cosine function

(2D Hann window), as follows:

g(x, y) =

{

0.5 cos (πD/Re) + 0.5 if D ≤ Re

0 if D > Re

(4.24)
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Figure 4.4: Calculated displacement of the 64× 64 point membrane model at time step 2.

where Re denotes the radius of the excitation and D is the distance from the point where

the membrane is ‘hit’. The expression for g(x, y) has yet to be discretized, too. The

following notation will be used:

x coordinate of the center of excitation: xe = meh

y coordinate of the center of excitation: ye = leh

radius of excitation: Re = reh

The distance from the center, D, can be expressed as

D =

√

(x − xe)
2 + (y − ye)

2 =

=

√

(mh − meh)2 + (lh − leh)2 =

= h

√

(m − me)
2 + (l − le)

2

Substituting this into the expression for g(x, y) yields the discretized form of the initial

velocity:

g(mh, lh) =







0.5 cos

(

π
re

√

(m − me)
2 + (l − le)

2

)

+ 0.5 if (m − me)
2 + (l − le)

2 ≤ r2
e

0 otherwise

Note that contrary to the indices m and l the parameters of the excitation, me, le and re,

need not to be integers.
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The displacement of the implemented circular membrane model is shown in Fig. 4.4,

4.5 and 4.6. It can be seen that, similarly to the string model, the parameters of the finite

difference membrane model has to be chosen properly to maintain stability. The next

section is devoted to the stability analysis of two-dimensional models. Fig. 4.7 shows the

effect of numerical dispersion to the mode frequencies of the membrane model. It can be

seen that, contrarily to the case of the string, numerical dispersion is present even at the

parameter values that correspond to the empirical stability margin. This phenomenon will

be investigated in detail in Section 4.1.2.
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Figure 4.5: Calculated displacement of the stable 64 × 64 point circular membrane model

at time steps 25 and 48.
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Figure 4.6: Calculated displacement of the unstable 64×64 point circular membrane model

at time steps 25 and 48.
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Figure 4.7: The FFT spectra of the displacement-time functions of the membrane with

parameter values h = ck
√

2 (stability margin) and h = 5ck, respectively. The dashed lines

show the mode frequencies obtained by analytical solution of wave equation.
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4.1.1 Von Neumann Stability Analysis

The procedure that was presented in Section 3.2.3 can be easily applied to two-dimensional

problems, however, the spatial Fourier-transform has now to be performed along both

coordinate axes. This is equivalent to applying the two-dimensional Fourier-transform

defined as follows:

Definition 4.1: (Spatial Fourier-transform in two dimensions)

F{u(x, y)} = U(βx, βy) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
u(x, y)e−jβxxe−jβyydxdy (4.25)

F
−1{U(βx, βy)} = u(x, y) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
U(βx, βy)e

jβxxejβyydβxdβy (4.26)

F{vm,l} = V (βx, βy) =
1

2π
h2

∞
∑

l=−∞

∞
∑

m=−∞
vm,le

−jmhβxe−jlhβy (4.27)

F
−1{V (βx, βy)} = vm,l =

1

2π

∫ π
h

−π
h

∫ π
h

−π
h

V (βx, βy)e
jmhβxejlhβydβxdβy (4.28)

Note that the above definition of the discrete-space Fourier-transform is not entirely precise

as the spatial frequency variables are not always βx and βy. These variables are determined

by the interpretation of the indices of the grid function. As an example, let us consider

the two-dimensional sequences ai,j and bi,j, which are obtained by spatial sampling of the

continuous-space functions a(x, y) and b(x,w), respectively. The former is given in the

Cartesian, the latter in the triangular coordinate system. If the grid functions a and b are

defined as

ai,j = a(ih, jh) (4.29)

bi,j = b(ih, jh) (4.30)

then the statement ai,j = bi,j implies that also their Fourier-transforms according to

Eq. (4.27) have to be equal. Although the spectra are indeed identical in a formal sense,

no sensible conclusions can be deduced from this equality as the expressions on the two sides

are defined in different coordinate systems. This is a source of some inconvenience when

the spectra of grid functions defined in different coordinate systems are to be compared,

however, it can be easily resolved as it will be shown in Section 4.4 and in Appendix B.

The shift theorem presented in Section 3.2.3 can also be easily extended for the two-

dimensional case:

Theorem 4.1: (Shift Theorem of the 2-D Discrete-space Fourier-transform)

F{vm+K,l} = ejKhβxF{vm,l} (4.31)

F{vm,l+K} = ejKhβyF{vm,l} (4.32)

for any integer K.
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By performing the two-dimensional Fourier-transform on the difference equation

vn+1
m,l =

[

c2λ2
(

M + M−1 + L + L−1
)

+ 2
(

1 − c2λ2
)

I − Z−1
]

{vn
m,l} (4.33)

we obtain

V n+1(βx, βy) =

[

c2λ2
(

ejhβx + e−jhβx + ejhβy + e−jhβy − 4
)

+

+2

]

V n(βx, βy) − V n−1(βx, βy) = (4.34)

= 2
[

c2λ2 (cos hβx + cos hβy − 2) + 1
]

V n(βx, βy) − V n−1(βx, βy)

which is equivalent to

V n+1(βx, βy) = 2DV n(βx, βy) − V n−1(βx, βy) (4.35)

where

D = c2λ2 (cos hβx + cos hβy − 2) + 1. (4.36)

The amplification polynomial thus can be written in the form

Φ(g) = g2 − 2Dg + 1 = 0 (4.37)

which is the same as what was derived in Section 3.2.3 for the ideal string (see Eq. (3.60)),

only D is different. It can be seen that D cannot be greater than one, so, according to

Theorem 3.6, the scheme is stable if D ≥ −1, that is,

c2λ2 (cos hβx + cos hβy − 2) ≥ −2 (4.38)

c2λ2 ≤ 0.5 (4.39)

c ≤ 1

λ
√

2
(4.40)

which, as expected, corresponds to the empirical stability margin of the membrane model.

4.1.2 Numerical Dispersion in Two Dimensions

Numerical dispersion has been shown to cause the phase velocity of the string model depend

on the wave number β. In the two-dimensional case, however, the phase velocity depends

on the wave numbers along both x and y axes, which is responsible for a phenomenon that

is specific to multidimensional schemes, namely, direction-dependent numerical dispersion.

First, let us define the phase velocity in two dimensions in accordance with the one-

dimensional case. Applying the Fourier-transform to the two-dimensional wave equation

defined as

∂2u

∂t2
(x, y, t) = c2

(

∂2u

∂x2
(x, y, t) +

∂2u

∂y2
(x, y, t)

)

(4.41)
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the following equation is obtained:

∂2U

∂t2
(βx, βy, t) = c2

(

(jβx)2 + (jβy)
2
)

U(βx, βy, t) =

= −c2
(

β2
x + β2

y

)

U(βx, βy , t) (4.42)

As in Section 3.2.5, this ordinary differential equation can be solved by making the substi-

tution

U(βx, βy, t) = A(βx, βy)e
st (4.43)

which yields

s2 = −c2
(

β2
x + β2

y

)

(4.44)

s = ±jc
√

β2
x + β2

y (4.45)

The solution thus can be written as

U(βx, βy, t) = A+(βx, βy)e
jc
√

β2
x+β2

y t + A−(βx, βy)e
−jc

√
β2

x+β2
y t (4.46)

where A+ and A− are, again, determined by the initial conditions. After sampling this

solution, we obtain

U(βx, βy, nk) = A+(βx, βy)
(

ejc
√

β2
x+β2

y k
)n

+ A−(βx, βy)
(

e−jc
√

β2
x+β2

y k
)n

(4.47)

U(βx, βy, nk) = A+(βx, βy)
(

ejϕ(βx,βy)
)n

+ A−(βx, βy)
(

e−jϕ(βx,βy)
)n

(4.48)

thus the phase velocity of the ideal membrane is defined by

c(βx, βy) =
ϕ(βx, βy)

k
√

β2
x + β2

y

(4.49)

It can be seen that the phase velocity of the ideal membrane depends linearly on the

length of the vector β = [βx, βy], i.e., the Eucledian distance from the origo of the spatial

frequency plane (spatial DC), and it is independent of the direction of β defined by the

angle

arctan

(

βy

βx

)

. (4.50)

Linearity and direction-independence of the phase speed causes waves corresponding to

any point of the spatial frequency plane propagate with the same speed. The solution of

the difference equation Eq. (4.35) can be written as

V n(β) = A+(βx, βy)g
n
+ + A−(βx, βy)g

n
− (4.51)

After comparing this equation with Eq. (4.48), the phase velocity of the two-dimensional

finite difference scheme can be defined as

γ(βx, βy) =
arc(g+)

k
√

β2
x + β2

y

. (4.52)
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Fig. 4.8 shows the phase velocity of the membrane model at the stability margin. It

can be seen that in diagonal direction, i.e. if |βx| = |βy|, the phase speed corresponds

to the analytic solution of the PDE, however, for any other point of the spatial frequency

plane, this is not true. In Fig. 4.9, it can be seen that inside the stability margin, dispersion

appears also in the diagonal direction, this decreases the direction-dependency of the phase

speed to some extent. Direction-dependence in these figures appears as contour lines that

are not circular. In the subsequent sections, methods for reduction of direction-dependence

will be presented.
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Figure 4.8: Phase speed of the membrane model with parameter values c = 1/(
√

(2)λ)

(stability margin) as a function of the spatial frequencies βx and βy. The theoretical value

of c is 314.98 m/sec.
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Figure 4.9: Phase speed of the membrane model with parameter values c = 1/(2λ) as a

function of the spatial frequencies βx and βy. The theoretical value of c is 222.73 m/sec.
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4.1.3 Higher-Order Accurate Schemes

In this section, we will introduce a scheme for the two-dimensional wave equation that is,

contrary to the rest of the schemes under review, fourth-order accurate with respect to

space.

Let us consider the Taylor-series expansion of the continuous function u(x) around the

grid point xm. The value of u in the surrounding grid points can be expressed as follows:

um±1 = um ± h(ux)m +
h2

2!
(uxx)m ± h3

3!
(uxxx)m +

+
h4

4!
(uxxxx)m ± h5

5!
(uxxxxx)m + O(h6) (4.53)

um±2 = um ± 2h(ux)m +
4h2

2!
(uxx)m ± 8h3

3!
(uxxx)m +

+
16h4

4!
(uxxxx)m ± 32h5

5!
(uxxxxx)m + O(h6). (4.54)

By taking the sum of um+1 and um−1, we obtain

um+1 + um−1 = 2um + h2(uxx)m +
h4

12
(uxxxx)m + O(h6). (4.55)

Let us also take the sum of um+2 and um−2:

um+2 + um−2 = 2um + 4h2(uxx)m +
4h4

3
(uxxxx)m + O(h6). (4.56)

It can be seen that the fourth-order derivative in these expressions can be eliminated by

subtracting Eq. (4.56) from Eq. (4.56) multiplied by 16, which yields

16 (um+1 + um−1) − (um+2 + um−2) = 30um + 12h2(uxx)m + O(h6). (4.57)

By expressing the second-order derivative on the right-hand side, we obtain the following

approximation:

(uxx)m =
−um+2 + 16um+1 − 30um + 16um−1 − um−2

12h2
+ O(h4) = (4.58)

=

(−M2 + 16M − 30I + 16M−1 − M−2

12h2

)

{um} + O(h4). (4.59)

According to Def. 3.7, this is a fourth-order accurate approximation of the second-order

spatial derivative. Accordingly, the second-order spatial derivatives of the continuous func-

tion u(x, y) of two spatial dimensions can be approximated by the following expressions:

(uxx)nm,l ≈ 1

12h2

(

16
(

M + M−1
)

−
(

M2 + M−2
)

− 30I
)

{vn
m,l} (4.60)

(uyy)
n
m,l ≈ 1

12h2

(

16
(

L + L−1
)

−
(

L2 + L−2
)

− 30I
)

{vn
m,l}. (4.61)

These expressions can be directly substituted into the two-dimensional wave equation. For

the time derivative, we keep the second-order accurate approximation that was used so far

(utt)
n
m,l ≈ 1

k2

(

Z + Z−1 − 2I
)

{vn
m,l} (4.62)
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so the resulting scheme, which can be written as

vn+1
m,l =

[

c2λ2

12

(

16
(

M + M−1 + L + L−1
)

−

−
(

M2 + M−2 + L2 + L−2
)

− 60I
)

+ 2I − Z−1

]

{vn
m,l} (4.63)

is (2,4) accurate. By comparing this difference equation with Eq. (4.10), it can be seen that

the calculation of the (2,4)-accurate scheme requires four additional additions per every

grid point.

Stability Let us examine the stability of this scheme. By performing spatial Fourier-

transform on Eq. (4.63), we obtain

V n+1(βx, βy) =

[

c2λ2

6

(

16 (cos hβx + cos hβy) − (cos 2hβx + cos 2hβy) −

−30
)

+ 2

]

V n(βx, βy) − V n−1(βx, βy) (4.64)

which is equivalent to

V n+1(βx, βy) − 2DV n(βx, βy) + V n−1(βx, βy) = 0 (4.65)

where

D =
c2λ2

12
(16 (cos hβx + cos hβy) − (cos 2hβx + cos 2hβy) − 30) + 1. (4.66)

It can be easily shown that the maximum of D is one, in which case the stability condition

was shown to be D > −1 (see Theorem 3.6). This stability criterion is satisfied if

c2λ2 (16 (cos hβx + cos hβy) − (cos 2hβx + cos 2hβy) − 30) ≥ −24. (4.67)

This can be satisfied for all values of βx and βy if

c2λ2 (16 (−2) − (2) − 30) ≥ −24 (4.68)

c2λ2 ≤ 3

8
. (4.69)

Hence the stability criterion is

c ≤
√

3

8

1

λ
(4.70)

which is a stricter condition than the one for the simpler, (2,2)-accurate scheme.
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Numerical Dispersion As in the previous section, the phase velocity of the scheme

can be numerically calculated. Fig. 4.10 and 4.11 shows the phase speed with respect

to the wave numbers βx and βy for parameter values that are at and inside the stability

margin, respectively. It can be seen that the increased order of accuracy has no direct

beneficial effect on the dispersion properties of the scheme, that is, numerical dispersion

is still present and the direction-dependence has not been decreased. According to [Bilbao

2001], the (2,4)-accurate scheme combined with the interpolation technique that will be

presented in the next section can be effectively used to minimize direction-dependence of

numerical dispersion, however, this will not be discussed in this thesis.
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Figure 4.10: Phase speed of the (2,4) accurate membrane model with parameter values

c =
√

(3/8)/λ (stability margin) as a function of the spatial frequencies βx and βy. The

theoretical value of c is 272.78 m/sec.
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Figure 4.11: Phase speed of the (2,4) accurate membrane model with parameter values

c = 1/(2λ) as a function of the spatial frequencies βx and βy. The theoretical value of c is

222.73 m/sec.
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(m, l) (m + 1, l)(m − 1, l)

(m, l + 1) (m + 1, l + 1)(m − 1, l + 1)

(m, l − 1) (m + 1, l − 1)(m − 1, l − 1)

ah

Figure 4.12: Bilinear interpolation of the membrane model discretized in Cartesian

coordinate-system. As the grid function is undefined in the points denoted by empty

circles, the displacement of the membrane has to be interpolated using the surrounding

points (filled circles).

4.2 Interpolated Schemes

The direction-dependence of numerical dispersion in two-dimension can be reduced by using

interpolated schemes. The method discussed here was proposed for correcting dispersion

error of the digital waveguide mesh ([Savioja and Välimäki 1997], [Savioja and Välimäki

2000]) but it can also be applied to finite difference schemes ([Aird 2002]).

The idea behind this method is to use eight neighboring points in the finite difference

approximation of the spatial derivatives instead of four. According to Fig. 4.12, the points

denoted with empty circles are also used in the approximation. However, the grid function

v is undefined in these points, so interpolation has to be used to obtain the approximate

value of displacement. Due to its relative simplicity, we will use bilinear interpolation

defined as follows:

vn
+,+ =

[

a2ML + a(1 − a) (M + L) + (1 − a)2I
]

{vn
m,l} (4.71)

vn
−,− =

[

a2M−1L−1 + a(1 − a)
(

M−1 + L−1
)

+ (1 − a)2I
]

{vn
m,l} (4.72)

vn
+,− =

[

a2ML−1 + a(1 − a)
(

M + L−1
)

+ (1 − a)2I
]

{vn
m,l} (4.73)

vn
−,+ =

[

a2M−1L + a(1 − a)
(

M−1 + L
)

+ (1 − a)2I
]

{vn
m,l} (4.74)

where a = 1/
√

2 and vn
+,+, vn

−,−, vn
+,− and vn

−,+ denote the displacement in the four in-

terpolated points on the circle. That is, the displacement in each of the four additional
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points (empty circles in Fig. 4.12) is approximated as a linear combination of the displace-

ment in the four surrounding grid points. The spatial derivatives can be approximated

by using only the four interpolated points in a way analogous to the before-mentioned

approximations:

∂2u

∂x2
+

∂2u

∂y2
≈ K

h2

(

vn
+,+ + vn

−,− + vn
+,− + vn

−,+ − 4vn
m

)

= δ2
⋆{vn

m,l}. (4.75)

The consistency of this approximation can be analyzed by Taylor-series expansion. It

can be shown that δ2
⋆ is a consistent, second-order accurate approximation of the spatial

derivatives if K = 1/(2a). It is easy to see that the linear combination of consistent

operators is also consistent if the sum of their coefficients is one, so we obtain our final

expression for the spatial approximation:

∂2

∂x2
+

∂2

∂y2
≈ 1

2

(

δ2
+ + δ2

⋆

)

. (4.76)

Substituting this expression into the two-dimensional wave equation yields

vn+1
m,l =

[

a1

(

ML + M−1L−1 + M−1L + ML−1
)

+

+a2

(

M + M−1 + L + L−1
)

+ a3I − Z−1
]

{vn
m,l} (4.77)

which is equivalent to

vn+1
m,l = a1

(

vn
m+1,l+1 + vn

m−1,l−1 + vn
m+1,l−1 + vn

m−1,l+1

)

+

+a2

(

vn
m+1,l + vn

m−1,l + vn
m,l+1 + vn

m,l−1

)

+ a3v
n
m,l − vn−1

m,l (4.78)

where the constans are

a1 = c2λ2a/4 (4.79)

a2 = c2λ2(2 − a)/2 (4.80)

a3 = c2λ2(a − 4) + 2. (4.81)

By applying Von Neumann analysis in the usual way, we obtain the stability condition

c ≤ 1

λ

√

1

2 − a
. (4.82)

The phase speed with respect to spatial frequencies is shown in Fig. 4.13 and 4.14. In can

be seen that the direction-dependence of the phase speed is greatly reduced.

Another approach for correcting direction-dependent dispersion is presented in [Bilbao

and Smith 2003]. Let us furst define the operator δ2
×, which is also a second-order accurate

approximation of ∂2/∂x2 + ∂2/∂y2 (see Fig. 4.15):

δ2
× =

1

2h2

(

ML + M−1L−1 + M−1L + ML−1 − 4I
)

. (4.83)

The spatial derivatives may be approximated by the linear combination of two consistent
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Figure 4.13: Phase speed of the interpolated scheme at the stability margin as a function

of the spatial frequencies βx and βy. The theoretical value of c is 391.76 m/sec.
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Figure 4.14: Phase speed of the interpolated scheme at the inside the stability margin as

a function of the spatial frequencies βx and βy. The theoretical value of c is 347.16 m/sec.
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(m + 1, l + 1)(m − 1, l + 1)

(m + 1, l − 1)(m − 1, l − 1)

Figure 4.15: Illustration of the δ2
× operator. The points involved in the approximation of

the spatial derivatives are filled with black.

finite difference operators:

∂2

∂x2
+

∂2

∂y2
≈

(

pδ2
+ + (1 − p)δ2

×
)

. (4.84)

It can be shown that if p = 1 − a/2 = 0.6464 then Eq. (4.84) is equivalent to Eq. (4.76).

According to [Bilbao and Smith 2003], the minimally direction-dependent numerical dis-

persion allowed by this scheme belongs to the parameter value p = 2/3. Besides, in [Bilbao

2001, p. 332], the combination of the techniques introduced in this and the previous section

is presented, that is, a (2,4)-accurate interpolated scheme. It is shown that by using this

method, higher degree of direction-independence can be achieved.
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4.3 Finite Difference Schemes for the Damped Membrane

4.3.1 Frequency-independent Damping

According to Chapter 2, damping can be represented by subtracting the term d1ut from

the two-dimensional wave equation, that is,

∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y2

)

− d1
∂u

∂t
. (4.85)

The additional term d1ut can be approximated in several ways. By applying the forward,

backward and central time operators (see Eq. (3.4), (3.5) and (3.6)), we obtain the following

finite difference schemes:

δ2
t {vn

m} =
[

c2
(

δ2
x + δ2

y

)

− d1δt+

]

{vn
m} (4.86)

δ2
t {vn

m} =
[

c2
(

δ2
x + δ2

y

)

− d1δt−
]

{vn
m} (4.87)

δ2
t {vn

m} =
[

c2
(

δ2
x + δ2

y

)

− d1δt0

]

{vn
m}. (4.88)

All of these schemes can be rearranged to the form of

vn+1
m,l =

[

a1

(

M + M−1 + L + L−1
)

+ a2I + a3Z
−1
]

{vn
m,l}. (4.89)

The constants a1, a2 and a3 are determined by the operator used for approximating ut

in the PDE, and are listed in Table 4.1. The complexity of the scheme is not affected

a1 a2 a3

FW c2λ2/(d1k + 1) (2(1 − 2c2λ2) + d1k)/(d1k + 1) −1/(d1k + 1)

BW c2λ2 2(1 − 2c2λ2) − d1k d1k − 1

CNT 2c2λ2/(d1k + 2) 4(1 − 2c2λ2)/(d1k + 2) (d1k − 2)/(d1k + 2)

Table 4.1: Values of the constants a1, a2 and a3 in Eq. (4.89) with regard to the way the

term ut in Eq. (4.85) is approximated. FW, BW and CNT denote the forward, backward

and central time approximation of ut, respectively.

by the choice of the operator. However, the stability of the scheme is influenced to some

extent. By applying the usual steps of von Neumann analysis to Eq. (4.89), we obtain the

amplification polynomial

Φ(g) = g2 − 2Dg − a3 (4.90)

where

D = a1 (cos hβx + cos hβy) +
a2

2
. (4.91)

The scheme is stable if the roots of Φ are less than or equal to one for all values of βx and

βy, that is,

|g±| =
∣

∣

∣
D ±

√

D2 + a3

∣

∣

∣
≤ 1. (4.92)
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FW BW CNT

c ≤
√

2+d1k
2λ

√
2−d1k
2λ

1
λ
√

2

Table 4.2: Maximal values of c that yield a stable scheme for Eq. (4.85) with the term ut

approximated by the forward (FW), backward (BW) and central (CNT) time operator,

respectively.

The stability limits for c obtained by solving this inequality are listed in Table 4.2. It can

be seen that the stability conditions are compatible with our previous results, that is, if d1

is zero then the stability conditions in Table 4.2 become simplified to the stability condition

of the undamped membrane (see Eq. (4.40)). Hereafter, the central approximation will be

used as the stability of the scheme obtained this way is independent of the value of d1.

Furthermore, this choice, contrarily to the other two methods, does not detract from the

overall accuracy of the scheme2.

Fig. 4.16 shows the effect of damping in the displacement-time functions generated by

the finite difference scheme according to Eq. (4.88) for several values of the parameter d1.

It can be seen that, as expected, the damping effect is more significant for larger values of

d1.

4.3.2 Frequency-dependent Damping

According to Chapter 2, the frequency-dependence of the damping can be taken into ac-

count by the following form of the wave equation:

∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y2

)

− d1
∂u

∂t
+ d2

∂

∂t

(

∂2u

∂x2
+

∂2u

∂y2

)

. (4.93)

The derivatives with respect to space in the rightmost term will be approximated in the

usual way using the operators δ2
x and δ2

y . For the first-order time derivative in the same

term, however, applying the central difference operator δt0, as in the previous section,

yields an implicit scheme. Implementation and analysis of implicit schemes is out of the

scope of this thesis. Therefore, in order to obtain an explicit scheme for Eq. (4.93), the

backward difference operator δt− will be used, that is,

δ2
t {vn

m,l} =
[

c2
(

δ2
x + δ2

y

)

− d1δt0 + d2δt−
(

δ2
x + δ2

y

)]

{vn
m,l}. (4.94)

After expressing the value of v on time level n + 1, we obtain

vn+1
m,l =

[

a1

(

M + M−1 + L + L−1
)

+ a2I
]

{vn
m,l} + (4.95)

+
[

a3

(

M + M−1 + L + L−1
)

+ a4I
]

{vn−1
m,l }

2The accuracy of δt0 is two while δt+ and δt− are first-order accurate approximations (see Table 3.1 in

Section 3.2.4).
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Figure 4.16: Displacement of a point of the the membrane model including frequency-

independent damping as a function of time. The top, center and bottom figures were

generated by setting the value of d1 to zero, 200 and 400, respectively.
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where the constants are defined as

a1 = 2ν
(

c2λ2 + d2µ
)

(4.96)

a2 = 4ν
(

1 − 2c2λ2 − 2d2µ
)

(4.97)

a3 = −2νd2µ (4.98)

a4 = ν (d1k + 8d2µ − 2) (4.99)

µ = k/h2 (4.100)

ν = 1/(2 + d1k). (4.101)

Neumann-analysis leads to the following stability condition:

c ≤
√

2h2 − 8d2k

2k
. (4.102)

The expression on the right-hand side has to be real which yields an additional restriction

for the value of d2:

d2 ≤ h2

4k
. (4.103)

By definition, the amplification factors g+ and g− describe how the spatial frequency

spectrum is changed while proceeding form time step n to n + 1. More precisely, the

spectrum is multiplied by the amplification factors in each time step. Accordingly, if the

magnitude of the amplification factors is one, it means that there is no damping in the

model, that is, the waves will not decay. If the magnitude is constant with respect to

the spatial frequencies, and it is less than one, then frequency-independent damping is

present, and each spatial frequency component of the waves decay at the same rate. If

|g±| is not constant with respect to βx and βy, then the damping is frequency-dependent,

which is illustrated in Fig. 4.17. The values of the parameter d2 were chosen with regard

to visualization purposes. For modeling the sound of a drum, usually d2 has to be chosen

to be less then 0.1. It can be seen in Fig. 4.17 that frequency-dependent damping can be

regarded as a low-pass filter in the spatial frequency domain.
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Figure 4.17: Magnitude of the amplification factors with respect to the wave numbers

βx and βy for the membrane model with frequency-dependent damping for the parameter

values d2 equals 0, 0.2 and 0.4, respectively.
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4.4 Discretization in Triangular Coordinate System

In this section, we will discuss the triangular discretization of a membrane in great detail.

Some of the results presented here can be found in [Aird 2002] and in [Bilbao 2001].

Discretization of the PDE Let us consider the triangular form of the two-dimensional

wave equation, which was introduced in Chapter 2:

∂2u

∂t2
= c2 2

3

(

∂2u

∂x2
+

∂2u

∂w2
+

∂2u

∂z2

)

. (4.104)

This form of the PDE suggests that the displacement u is a function of four variables,

however, the unit vectors along the three spatial coordinate axes x, w and z are linearly

dependent, hence the spatial variable z can be expressed as a linear combination of the

other two spatial variables. Consequently, u only depends on t, x and w. As before, the

continuous function u will be approximated only in a discrete set of points, however, these

points are now defined in the triangular coordinate system as follows:

u(xm, wq, tn) ≈ vn
m,q (4.105)

where

xm = mh (4.106)

wq = qh (4.107)

tn = nk. (4.108)

The index variables m, q and n are integers. The spatial indices in the triangular coordinate

system can be interpreted according to Fig. 4.18. The spatial shift operators can be defined

x/h

w/h

Γ − 1Γ − 20 1 2

0

1

2

Γ − 2

Γ − 1

Figure 4.18: Illustration of the indices of a grid function in triangular coordinate system.

The Γ × Γ point triangular mesh corresponds to a diamond-shaped domain of space with

length along side L, where L = (Γ − 1)h and m, q ∈ [0,Γ − 1].
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as follows:
M{vn

m,q} = vn
m+1,q M−1{vn

m,q} = vn
m−1,q

Q{vn
m,q} = vn

m,q+1 Q−1{vn
m,q} = vn

m,q−1.

The formal definition of the shift operators is identical with what was presented in Section

4.1 for the Cartesian coordinate system. However, as the coordinate axes are different, the

indices should be interpreted differently. The meaning of the identity operator is the same.

I{vn
m,q} = vn

m,q. (4.109)

For the reasons presented above, the unit shift operators along the z axis can be expressed

by the other operators as follows:

MQ−1{vn
m,q} = vn

m+1,q−1 (positive unit shift along the z axis) (4.110)

M−1Q {vn
m,q} = vn

m−1,q+1 (negative unit shift along the z axis). (4.111)

Let us also define the difference operators using the above definitions:

δ2
x =

1

h2

(

M − 2I + M−1
)

(4.112)

δ2
w =

1

h2

(

Q − 2I + Q−1
)

(4.113)

δ2
z =

1

h2

(

MQ−1 − 2I + M−1Q
)

. (4.114)

It can be easily seen that δ2
x, δ2

w and δ2
z are second-order accurate approximations of the

differential perators ∂2/∂x2, ∂2/∂w2 and ∂2/∂z2, respectively. By replacing the corre-

sponding derivatives in Eq. (4.104), we obtain

δ2
t {vn

m,q} = c2 2

3

(

δ2
x + δ2

w + δ2
z

)

{vn
m,q} (4.115)

which can be rearranged to the usual explicit form:

vn+1
m,q =

[

c2λ2 2

3

(

M + M−1 + Q + Q−1 +

+MQ−1 + M−1Q − 6I
)

+ 2I

]

{vn
m,q} − vn−1

m,q . (4.116)

The points that are needed by the approximation of the spatial derivatives are shown in

Fig. 4.19.

Implementation of Circular Boundary Conditions According to the results of

Chapter 2, the boundary conditions corresponding to a circular membrane in triangular

coordinate system can be formulated as follows:

u(x,w, t) = 0 if

(

x +
w

2
− x0 −

w0

2

)2

+

(√
3

2
w −

√
3

2
w0

)2

≥ R2 (4.117)
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(m, q) (m + 1, q)(m − 1, q)

(m, q + 1)

(m + 1, q − 1)

(m − 1, q + 1)

(m, q − 1)

Figure 4.19: The points involved in approximation of the spatial derivatives in triangular

coordinate system.

where R is the radius of the membrane. In order to maximally utilize the avalaible area,

the center of the circle has to coincide with the center of the diamond-shaped domain

shown in Fig. 4.18. This point corresponds to the triangular coordinates x0 = w0 = L/2.

However, contrary to the Cartesian discretization, the radius of the circle cannot equal

to L/2 because in this case the circle does not fit the available space (see Fig. 4.20 a) ).

The maximum value of the radius that yields a circle of appropriate size is R = L
√

3/4

(see Fig. 4.20 b) ). In order to construct a scheme that is comparable with the one that

was obtained by Cartesian discretization, however, the radius of the circle has to be equal

to L/2. While keeping the maximal utilization of the available area in view, this can be

accomplished in two ways:

• Increasing the values of L and h to L′ = L 2√
3

and h′ = h 2√
3

(see Fig. 4.20 c)).

• Increasing the value of L to L′ = L 2√
3

while keeping the value of h unchanged.

The first method has several advantages over the second one:

• The number of grid points is unchanged, thus the computational load is not increased.

• Contrary to the second case, the radius of the membrane can be modeled exactly. In

the second case, if Γ is integer then Γ′ = (L′/h + 1) is not an integer, that is, L′ and

the radius has to be approximated.

Accordingly, the first method will be used, which is illustrated in Fig. 4.20 c). For clarity,

we will not use the L′ and h′ notations, however, L and h will denote the modified values

of these parameters in the rest of this section.
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Figure 4.20: Implementation of circular boundary conditions.
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Figure 4.21: Circular boundary conditions for the 8×8, 16×16 and 32×32-point membrane

models discretized in triangular coordinate-system. The displacement of the points outside

the area bounded by the solid black line and on the line itself is identically zero for all time

steps.

Let us discretize the boundary conditions defined by Eq. (4.117) by making the following

substitutions:

x = mh (4.118)

w = qh (4.119)

x0 = w0 =
L

2
=

Γ − 1

2
h (4.120)

R = L

√
3

4
= (Γ − 1)

√
3

4
h (4.121)

We obtain

vn
m,q = 0 if

(

m +
q

2
− Γ − 1

2

3

2

)2

+
3

4

(

q − Γ − 1

2

)2

≥
(

(Γ − 1)

√
3

4

)2

(4.122)

which can be implemented directly. Fig. 4.21 shows how the boundary is refined as the

value of h is decreased. By comparing this to the circular boundary conditions discretized

in the Cartesian coordinate system shown in Fig. 4.3, it can be seen that the triangular

coordinate system yields a smoother boundary.

Excitation For the triangular model, the same excitation will be used that was presented

in Section 4.1, that is, the initial displacement is zero and the initial velocity, g(x,w), is

a two-dimensional raised cosine function. According to the above, the initial displacement

can be easily transformed to the triangular form needed by the triangular model. Without

dealing with the details, we only present the results. The initial velocity in triangular

coordinates can be expressed as follows:

g(mh, qh) =

{

0.5 cos
(

π d
re

)

+ 0.5 if d ≤ re

0 if d > re

where reh is the radius of excitation and dh is the distance from the center of excitation.

The variable d is defined as

d =

√

(

m +
q

2
− me −

qe

2

)2
+

3

4
(q − qe)

2 (4.123)
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The triangular coordinates of the center of excitation are meh and qeh.

According to the above results, the initial-boundary value problem representing a cir-

cular membrane can be written in the following form:

Scheme:

vn+1
m,q = a1

(

vn
m+1,q + vn

m−1,q + vn
m,q+1 + vn

m,q−1 + (4.124)

vn
m+1,q−1 + vn

m−1,q+1

)

+ a2v
n
m,q − vn−1

m,q

Initial conditions:

v0
m,q = 0 (4.125)

v1
m,q = kg(mh, qh) (4.126)

Boundary conditions:

vn
m,q = 0 if

(

m +
q

2
− Γ − 1

2

3

2

)2

+
3

4

(

q − Γ − 1

2

)2

≥
(

(Γ − 1)

√
3

4

)2

(4.127)

where a1 = c2λ2 2
3 and a2 = 2 (1 − 3a1). The displacement calculated according to this

model is shown in Fig. 4.22

Stability The two-dimensional spatial Fourier-transform according to Def. 4.1 can be

formally applied to any grid function with two spatial dimensions. However, as the spatial

variables of a grid function are different in the Cartesian and the triangular coordinate

systems, the spatial frequency variables are not expected to be the same either. That

is, the spatial frequency spectrum of a triangular grid function is dependent on the wave

numbers denoted by βx and βw. The shift theorem of the Fourier-transform, however,

holds true so Fourier-transformation of Eq. (4.116) yields

V n+1(βx, βw) =

[

2c2λ2 2

3

(

cos hβx + cos hβw + cos h (βx − βw) − 3

)

+

+2

]

V n(βx, βw) − V n−1(βx, βw). (4.128)

In order to be comparable with our foregoing results, Eq. (4.128) has to be expressed in

the wave numbers of the Cartesian coordinate-system, βx and βy. According to the results

of Appendix B, this can be accomplished by making the substitution

βw =
1

2
βx +

√
3

2
βy (4.129)

and dividing each term of the equation by the determinant of the transform

detS =
2
√

3

3
(4.130)
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Figure 4.22: Displacement calculated by the 64×64 point triangular membrane model ‘hit’

at its center at time steps 2 and 42. The parameter c equals
√

2/3/λ, which corresponds

to the stability margin.
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where S was defined in Chapter 2. After some trigonometry we obtain

V̂ n+1 =

[

2 + 2c2λ2 2

3

(

cos hβx + 2cos

(

h

2
βx

)

cos

(

h
√

3

2
βy

)

− 3

)]

V̂ n − V̂ n−1

(4.131)

where V̂ n is used as a notational shortcut for

3

2
√

3
V n

(

βx,
1

2
βx +

√
3

2
βy

)

. (4.132)

Eq. (4.131) results in the amplification polynomial of the usual form:

Φ(g) = g2 − 2Dg + 1 = 0 (4.133)

where

D = 1 + c2λ2 2

3

(

cos hβx + 2cos

(

h

2
βx

)

cos

(

h
√

3

2
βy

)

− 3

)

. (4.134)

Apparently, D cannot be greater than one, thus the usual stability criterion, i.e., D ≥ − 1

can be used (see Theorem 3.6). It can be shown that the minimum of the expression in

parentheses is

min
βx,βy

{

cos hβx + 2cos

(

h

2
βx

)

cos

(

h
√

3

2
βy

)}

= −3

2
(4.135)

which implies the following condition of stability:

c2λ2 2

3

(

−3

2
− 3

)

≥ −2 (4.136)

c2λ2 ≤ 2

3
(4.137)

that is,

c ≤ 1

λ

√

2

3
. (4.138)

By comparing this with the stability criterion of the Cartesian membrane model, which is

c ≤ 1

λ

1√
2

(4.139)

it can be seen that the triangular discretization allows using higher values of c (with the

other variables unchanged) without resulting in an unstable model.

Let us discuss the case when the number of grid points is chosen to be equal to the

number of grid points of the Cartesian model. As shown on page 72, a modified value of

h, i.e., h′ = h 2√
3

is used. Since

cmax ∼ 1

λ
=

h

k
(4.140)
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that is, the maximum value of c that yields a stable model is directly proportional to h,

the triangular discretization allows using a Λ times higher maximum value of c, where Λ

is calculated as

Λ =

2√
3

√

2
3

1√
2

=
4

3
. (4.141)

Accordingly, the stability condition for the triangular scheme with the grid spacing h′ = 2√
3

h

is

c ≤ Λ
1√
2

1

λ
=

1

λ

√

8

9
(4.142)

where λ = k/h.

Numerical Dispersion Numerical calculation of the phase velocity transformed to βx

and βy in the usual way yields Fig. 4.23 and 4.24. It can be seen that at the stability

margin, the surface around spatial DC is flat, that is, for low spatial frequencies, the effect

of numerical dispersion is not significant. The same is true for every consistent scheme,

however, in the triangular case, the flat area is wider than for the rest of the schemes

under review, which yields a wider set of wave numbers that are not affected by numerical

dispersion.

Fig. 4.24 was calculated with the value of c that corresponds to the stability margin

of the Cartesian membrane model. The flatness of the surface is not present in this case,

however, the direction-dependence of the phase velocity is not significant.
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Figure 4.23: Phase speed of the membrane model in triangular coordinate system at the

stability margin as a function of the spatial frequencies βx and βy. The theoretical value

of c is 419.98 m/sec.
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Figure 4.24: Phase speed of the membrane model in triangular coordinate system at the

stability margin of the Cartesian model as a function of the spatial frequencies βx and βy.

The theoretical value of c is 314.98 m/sec.
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Cartesian 4th-order Cartesian Interpolated Cartesian Triangular

cmax
1
λ

√

1
2

1
λ

√

3
8

1
λ

√

1
1−a

1
λ

√

8
9

Table 4.3: Stability margins of the schemes under discussion for the parameter c. The

constant a equals 1/
√

2.

4.5 Comparison of the Discretization Methods

In this section, we will compare four types of discretization techniques discussed so far,

namely, the simple Cartesian, the fourth-order, the interpolated and the triangular dis-

cretization from the following points of view: stability, numerical dispersion and computa-

tional complexity.

Stability The stability margins of the reviewed schemes for the undamped membrane

are summarized in Table 4.3. It can be seen that from this point of view, the triangular

discretization has the most advantageous properties as it allows using values of the para-

meter c almost twice as large as the simple Cartesian model and almost three times as

large as in the case of the fourth-order accurate scheme. The second best solution with

respect to stability is the interpolated Cartesian scheme.

On the other hand, according to the discussion in Section 3.2.3, if a membrane with

a given value of c is to be modeled then the triangular scheme needs a lower value of

the spatial grid spacing in order to be close to the stability margin. Operating near the

stability margin is advantageous with respect to numerical dispersion. Using more grid

points definitely improves the quality of the generated sound, however, it also increases

computational load.

Numerical Dispersion To compare the different types of finite difference schemes, we

may consider the maximal and minimal relative errors of the phase velocity. The definition

of these characteristics for the Cartesian scheme is illustrated in Fig. 4.25. The minimal and

maximal phase speed error curves for the discussed schemes for the undamped membrane

are shown in Fig. 4.26. These characteristics can be interpreted in the following way. If

both curves are relatively close to zero percent then the dispersion error is not significant.

It can be seen that the error of the phase velocity of the Cartesian scheme in diagonal

direction is zero, however, in other directions and for different parameter values, this is

not the case. In general, the overall dispersion error is smaller if the system is relatively

close to its stability margin. It can be seen that at the stability margin, the minimum and

maximum curves of the triangular scheme are close to zero, however, inside the stability

domain of parameters, the overall dispersion error of the fourth-order scheme can be less

significant.

Low level of direction-dependence of a scheme appears in the error plot as relatively

close minimum and maximum curves. It can be seen that the Cartesian and the fourth-
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Figure 4.25: Relative error of the phase velocity of the Cartesian scheme defined as
γ(βx,βy)−c

c
at the stability margin with respect to the normalized spatial frequencies

βx/(π/h) and βy/(π/h), respectively. The error along the direction of its highest and

lowest values is emphasized by thick lines.
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Figure 4.26: Minimal and maximal relative phase speed error curves for different types of

two-dimensional schemes with respect to the normalized spatial frequency (see Fig. 4.25).

The figures were generated by calculating the relative phase speed error defined as
γ(βx,βy)−c

c

for spatial frequencies that correspond to the directions of the highest and lowest values of

the error, respectively. The characteristics in the top row were generated using parameter

values corresponding to the stability margins of each scheme. The pictures in the bottom

row correspond to schemes with c = 1
λ

√

1
8 , which yields a stable scheme for each

discretization method under review.
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order schemes are quite poor from this point of view, and the triangular scheme has even

better properties than the one obtained by the interpolated Cartesian discretization.

In the field of instrument modeling, we are generally interested in the modal frequencies

of the discretized model. Although numerical dispersion causes the modes of the model

to differ from the theoretical modal frequency values, we will not attempt to precisely

describe this effect. However, some qualitative remarks can be made with respect to the

relation between the dispersion characteristics in Fig. 4.26 and the frequency spectra of

the displacement-time functions generated by the membrane models.

Fig. 4.27 shows the FFT spectra generated using the same values of c, k and h for each

scheme. The parameter values correspond to the second row of pictures in Fig. 4.26. The

lack of frequency components above 6-9 kHz is is due to spatial sampling, which restricts

the wave numbers to be less than π/h in all spatial directions. According to Eq. (2.22),

the temporal frequency that corresponds to the limit of the spatial frequencies is

fmax = βmax

c

2π
=

π

h

c

2π
=

c

2h
(4.143)

which in the case under discussion equals to 7.8 kHz, except for the triangular scheme.

According to Section 4.4, in order to model a circular membrane with the same number of

points as the Cartesian models, in the triangular scheme higher value of h, i.e. h′ = 2h/
√

3

has to be used. This implies a lower maximum frequency, 6.75 kHz, for the triangular

scheme. These are only theoretical values that correspond to the ideal case where the

phase speed equals c for all wave numbers. In the discretized models, the frequency limits

are slightly different due to numerical dispersion.

The phase velocity error of the fourth-order scheme, contrary to the others, can be

positive, which causes frequency components to be present above the 7.8 kHz limit. The

frequency components in the rest of the schemes are below the limits calculated above. The

most significant effect of numerical dispersion can be observed in the case of the interpolated

scheme, whose maximum frequency components are far below fmax compared to the other

schemes. From this, we may deduce that the significance of direction-dependence of the

numerical dispersion is secondary3, and the point is to keep the overall dispersion error

close to zero. This can be accomplished by using parameter values close to the stability

margin. The FFT spectra of the membrane models in this case are shown in Fig. 4.28.

Computational Complexity Besides stability and numerical dispersion, another im-

portant characteristic of the different types of schemes is computational complexity. Table

4.4 summarizes the number of additions, multiplications and memory access instructions

per grid point per time step required by the schemes under discussion. It can be seen

that the simple Cartesian scheme is the best and the triangular scheme is the second best

solution from this point of view. In the case of triangular discretization, the ratio of the

areas of the circle and the diamond-shaped domain (see Fig. 4.20), i.e., the ‘effective’ area

3This statement is not necessarily true for applications where real-time implementation is not a require-

ment. As proposed in [Savioja and Välimäki 2000], if no significant direction-dependence of the dispersion

is inherent in the model, the overall numerical dispersion can be almost perfectly removed by off-line

processing using frequency-warping techniques.
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Figure 4.27: FFT spectra of the displacement-time functions generated by finite difference

schemes using various discretization methods. The parameter values are identical for each

scheme: fs = 44.1 kHz, Γ = 64, c = 247.49 m/s.

Cartesian 4th-order Cartesian Interpolated Cartesian Triangular

ADD 5 9 9 7

MPY 2 2 3 2

LOAD 6 10 10 8

Table 4.4: Computational complexity of the different types of schemes under review. The

‘ADD’, ‘MPY’ and ‘LOAD’ rows of the table contain the number of addition, multiplication

and load from memory instructions required to calculate the new value of the displacement

in one grid point in a time step, respectively.
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Figure 4.28: FFT spectra of the displacement-time functions generated by finite difference

schemes using various discretization methods. While using the fixed parameter values

c = 500 m/s and fs = 44.1 kHz, the number of grid points, i.e., Γ and therefore the grid

spacing h was adjusted according to the stability margin of each scheme.
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compared to the entire area of the mesh is smaller than in the case of the other types of

discretization. This means that the displacement has to be computed in lower number

of grid points, which moderates the overall computational complexity of the triangular

scheme.

Let us summarize the results of this section. The effect of numerical dispersion is less

significant if the parameter values are close to the stability margin. If the theoretical phase

speed c and the temporal sampling period k is already determined by the environment and

the physical system that is to be modeled, then the value of the grid spacing h has to be

chosen to be as low as possible with respect to the stability condition and the available

computational resources. The discretization technique that can be implemented with the

lowest value of h, i.e., with the highest number of grid points, according to the above

considerations may be the best choice. The effect of numerical dispersion to the generated

sound from a perceptual point of view can be an object of future analysis, e.g., by per-

forming listening tests. However, using more grid points is advantageous even if numerical

dispersion is not considered because the increased number of grid points also increases the

number of normal modes taken into account, which results in a richer spectrum and higher

quality of the generated sound.
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4.6 Implementing Nonlinear Behaviour

The model examined in this section differs from the finite difference schemes discussed

so far in that the previously presented methods, e.g., the von Neumann analysis, cannot

be applied to this case. The reason we have still included this section is that the effect

of nonlinearity is essential in many types of drums. In spite of this fact, the technique

presented here has not been an object of research in the field of membrane modeling until

recently.

In the following, we will discretize the nonlinear membrane model including frequency-

dependent damping that was presented in Section 2.3.5. Let us consider the nonlinear

equation for the damped membrane according to Eq. (2.44):

∂2u

∂t2
= c(t)2

(

∂2u

∂x2
+

∂2u

∂y2

)

− d1
∂u

∂t
+ d2

∂

∂t

(

∂2u

∂x2
+

∂2u

∂y2

)

(4.144)

where

c2 =
T

ρS
=

T0 + aST1(t)

ρS
. (4.145)

The nonlinear tension, T1(t), can be calculated in the following way (see Eq. (2.40)):

T1(t) =
1

4

E

1 − p

1

L2

∫ L

0

∫ L

0

(

u2
x + u2

y +
1

2
u2

xu2
y

)

dxdy. (4.146)

This expression can be easily discretized by the finite difference method. Let us approxi-

mate the derivatives ux and uy by the center difference operators δx0 and δy0, that is,

(ux)nm,l ≈ δx0{vn
m,l} =

1

2h

(

vn
m+1,l − vn

m−1,l

)

(4.147)

(uy)
n
m,l ≈ δy0{vn

m,l} =
1

2h

(

vn
m,l+1 − vn

m,l−1

)

. (4.148)

In this section, we will use the notations Dx = δx0{vn
m,l} and Dy = δy0{vn

m,l}. The integrals

in Eq. (4.146) can be approximated by summation, which yields

T1(nk) = (T1)
n =

1

4

E

1 − p

1

L2
h2

Γ−1
∑

m=0

Γ−1
∑

l=0

(

D2
x + D2

y +
1

2
D2

xD2
y

)

. (4.149)

Note that n in (T1)
n indicates the time step and not raising to a power.

The discretized model for Eq. (4.144) with c(t) = c was already derived in Section

4.3.2:

vn+1
m,l =

[

a1

(

M + M−1 + L + L−1
)

+ a2I
]

{vn
m,l} + (4.150)

+
[

a3

(

M + M−1 + L + L−1
)

+ a4I
]

{vn−1
m,l }

In the nonlinear model, the parameters of the above equation that depend on c (i.e., a1

and a2) will not be constants as c is changed at every time-step. Accordingly, the nonlinear

model can be implemented by calculating the values of a1 and a2 for time step n and then
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evaluating Eq. (4.150). The expressions for (a1)
n and (a2)

n can be obtained by making

the substitution

c2 =
T0 + aS (T1)

n

ρS
(4.151)

into the formulae of a1 and a2 according to Eq. (4.96) and (4.97), which yields

(a1)
n = A1 + T

nB1 (4.152)

(a2)
n = A2 + T

nB2 (4.153)

where

A1 = 2d2µν (4.154)

B1 = 2νλ2/ρS (4.155)

A2 = 4ν (1 − 2d2µ) (4.156)

B2 = −8νλ2/ρS (4.157)

and

T
n = T0 + aS (T1)

n . (4.158)

Let us summarize the calculations that has to be performed in each time-step to im-

plement the nonlinear membrane model:

1. Calculate T n according to Eq. (4.158) and Eq. (4.149).

2. Calculate (a1)
n and (a2)

n according to Eq. (4.152) and Eq. (4.153).

3. Calculate the displacement at time step n + 1 according to Eq. (4.150).

Fig. 4.29 shows spectrograms generated by the membrane model with zero (left) and

nonzero (right) values of the parameter aS. If aS = 0 then the model is actually simplified

to the linear model shown in the previous sections. It can be seen in the figure on the

right-hand side that the modal frequencies of the nonlinear model are decreasing over time.

Fig. 4.30 shows the spectrograms of a recorded tom-tom sound sample and the nonlinear

membrane model. It can be seen that tension modulation can be used effectively to model

the time-varying pitch of real drums.
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Figure 4.29: Spectrograms calculated from the displacement of a point of the linear (left)

and nonlinear (right) membrane models, respectively. The modal frequencies of the non-

linear model are decreased over time.
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Figure 4.30: Spectrograms calculated from a recorded sound sample of a tom-tom drum

(left) and the displacement of a point of the nonlinear membrane model.
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4.7 Summary

In this chapter, we have discussed several types of finite difference schemes for the acoustic

membrane. The basic idea has remained the same as it was in the previous chapter, i.e.,

approximating the derivatives of the differential equation by finite differences. The difficul-

ties in discussing problems with two spatial dimensions are mainly due to the complicated

expressions that can be derived by the finite difference method. However, there are no

theoretical complications compared to the one-dimensional case.

The technique of von Neumann analysis, by using the two-dimensional Fourier-transform,

was shown to be applicable to the finite difference schemes derived in this chapter, except

for the nonlinear model. Stability analysis of each discussed scheme was shown to be

equivalent to solving a transcendental inequality. We have laid special emphasis on the

discussion of numerical dispersion in two dimensions. Direction-dependence of the phase

velocity due to dispersion has been examined for each scheme under review. It was shown

that, contrary to the case of the string discussed in the previous chapter, schemes with two

spatial dimensions inhere numerical dispersion even at the stability limit.

Four different types of discretization were compared in Section 4.5. According to the

results, it can be concluded that several factors have to be considered to find the most

suitable scheme for a given problem. It was shown that there is no easy way to make this

decision, however, performing listening tests using different types of drum models, which

can be one of the research directions of the future, may prove to be useful from this point

of view.

In Section 4.3.1, 4.3.2 and 4.6, damping and nonlinear behaviour have been added

to the membrane model discretized in the Cartesian coordinate system. Modeling these

effects is essential in creating a drum model with realistic sound. However, in the case of

the other discretization techniques, especially the triangular one, these effects have not yet

been implemented by the author, thus this can be one of the objects of future research.



Chapter 5

Conclusions and Future Directions

In this thesis we have discussed several aspects of physics-based membrane modeling and

summarized the fundamentals of the finite difference method. In Chapter 2, some essen-

tial remarks on partial differential equations with respect to instrument modeling were

presented. Most of the concepts introduced in this chapter have long history in scientific

research and are well understood. However, summarizing them in one place, as done in

this chapter, is uncommon in the literature.

In Chapter 3, the basics of the finite difference method were presented. The main result

of this chapter is that it has provided a uniform framework of well-established concepts for

the rest of the thesis. The fundamental notions of this field were explained in detail with

special respect to the technicalities of instrument modeling. It is believed by the author

that this chapter, together with the next one, can be a useful resource for anyone interested

in instrument modeling as the fundamentals of this method are reviewed here in a more

easily interpretable way than in most available textbooks.

In Chapter 4, several physical models for the membrane have been derived and reviewed.

For most of these models, stability conditions and figures illustrating the dispersion error

were provided. In Section 4.5, the discretization methods that had been discussed in the

previous sections were compared with respect to their stability- and dispersion properties

and computational complexity. Analyzing these properties, although it has resulted in

some useful remarks, has proven to be insufficient for comparing the physical models from

the viewpoint of sound quality. In the future, this difficulty could be resolved by performing

listening tests for the perceptual evaluation of the various models.

The author intends to continue the research on physics-based membrane modeling in

the future. Two main directions of future research can be foreseen, one of them focusing

on the theoretical and the other on the practical aspects of instrument modeling. However,

no definite borderline between the two category can be drawn as they are closely related.

The first direction includes further investigation of the theoretical aspects of finite differ-

ence modeling and its connection to other methods with regard to the digital waveguide,

and the time domain finite element methods. Some of the relations between the different

modeling techniques are well documented. Nevertheless, the discussion of the time domain

finite element method in the context of sound synthesis, for instance, is uncommon in the
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literature. In the opinion of the author, constructing more accurate instrument models

is a direct consequence of better understanding of several related methods. At a more

fundamental level, having a more thorough knowledge of the mathematics of partial dif-

ferential equations and their analytical solutions is also necessary for the future research.

Consequently, going further into this topic is also among future plans.

The practical direction of the future research include implementation and analysis of

finite difference models that has not yet been examined by the author. The questions of

real-time realization are planned to be answered by implementing the membrane models

on digital signal processors. Besides, the implementation of these models on PC in C or

C++ would accelerate experimentation with altering the model parameters compared to

the Matlab programs developed so far.

Both practical and theoretical perspectives are seen in improving the mathematical

models of the membranes and drums by making measurements on real instruments in-

cluding the effect of excitation on the overall sound. The ultimate goal from a practical

viewpoint is to construct models for the entire instrument and implement them in real-time.

The models have to be verified, from the viewpont of musical applicability, by performing

listening tests.

It can be seen that the list of possible future directions of research are quite lengthy.

However, the most urgent objective, according to the author’s opinion, is to form a firm

foundation for the future research by closer inspection of the mathematical principles phys-

ical modeling is based upon.
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Appendix A

Derivation of the Wave Equation in

Triangular Coordinate System

In this appendix, the derivation of the two-dimensional wave equation in triangular coor-

dinates will be presented. Let us proceed from the Cartesian form of the wave equation:

∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y2

)

. (A.1)

According to the definition of the triangular coordinate system, the directional derivatives

of the function u in the directions of the coordinate axes w and z can be expressed as

follows:

∂u

∂w
=

1

2

∂u

∂x
+

√
3

2

∂u

∂y
(A.2)

∂u

∂z
=

1

2

∂u

∂x
−

√
3

2

∂u

∂y
(A.3)

By making the sum and the difference of Eq. (A.2) and Eq. (A.3), we obtain the following

expressions for ux and uy:

∂u

∂x
=

∂u

∂w
+

∂u

∂z
(A.4)

∂u

∂y
=

√
3

2

(

∂u

∂w
− ∂u

∂z

)

. (A.5)

By repeatedly applying the formula of Eq. (A.4), the following expression can be obtained

for the second order derivative of u with respect to x:

∂2u

∂x2
=

∂

∂x

(

∂u

∂w

)

+
∂

∂x

(

∂u

∂z

)

= (A.6)

=

(

∂2u

∂w2
+

∂2u

∂w∂z

)

+

(

∂2u

∂w∂z
+

∂2u

∂z2

)

= (A.7)

=
∂2u

∂w2
+ 2

∂2u

∂w∂z
+

∂2u

∂z2
. (A.8)
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The expression for uyy can be derived in a similar fashion by using Eq. (A.5):

∂2u

∂y2
=

1

3

(

∂2u

∂w2
− 2

∂2u

∂w∂z
+

∂2u

∂z2

)

. (A.9)

By substituting these expressions into Eq. (A.1), we obtain the triangular form of the wave

equation:

∂2u

∂t2
= c2 4

3

(

∂2u

∂w2
+

∂2u

∂w∂z
+

∂2u

∂z2

)

. (A.10)

This formula can be simplified by observing that

2

3

∂2u

∂w2
+

4

3

∂2u

∂w∂z
+

2

3

∂2u

∂z2
=

∂2u

∂x2
(A.11)

which yields the final form of the wave equation in triangular coordinates:

∂2u

∂t2
= c2 2

3

(

∂2u

∂w2
+

∂2u

∂z2
+

∂2u

∂x2

)

. (A.12)



Appendix B

Coordinate Transform in the Spatial

Frequency Domain

In Section 4.4, we stated that the spatial spectrum of a grid function defined in the triangu-

lar coordinate system, V (βx, βw), can be expressed as a function of the spatial frequencies

of the Cartesian coordinate system, βx and βy, in the following way:

V (βx, βy) =
1

detS
V

(

βx, βw =
1

2
βx +

√
3

2
βy

)

(B.1)

where, according to Section 2.3.3,

S =

[

1 −
√

3/3

0 2
√

3/3

]

(B.2)

thus

detS =
2
√

3

3
. (B.3)

Without this transformation, the spectra of the two grid functions defined in different

coordinate systems could not be compared. In this appendix, the derivation of Eq. (B.1)

will be presented.

First, let us define the two-dimensional spatial Fourier-transform using vector notation.

Definition B.1: (Spatial Fourier-transform in two dimensions (vector notation))

U(β) =
1

2π

∫

R2

u(x)e−jβTxdx (B.4)

u(x) =
1

2π

∫

R2

U(β)ejβTxdβ (B.5)

V (β) =
1

2π
h2
∑

m∈Z2

v(m)e−jhβTm (B.6)

v(m) =
1

2π

∫

[−π
h

, π
h ]

2
V (β)ejhβTmdβ (B.7)
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where

x =

[

x1

x2

]

,β =

[

β1

β2

]

,m =

[

m1

m2

]

(B.8)

x1, x2, β1, β2 ∈ R (B.9)

m1,m2 ∈ Z. (B.10)

The interpretation of the variables depends on the coordinate system, e.g., in the Cartesian

coordinate system x1 and x2 correspond to x and y, respectively.

Let us start with deriving the relationship between the spectra of a two-dimensional

continuous-space signal u(x) and the discrete-space signal (i.e., grid function) v(m) which

is obtained by periodic sampling of the continuous signal. In two and more dimensions,

contrarily to the one-dimensional case, periodic sampling can be performed in many ways.

However, for our purpose, the review of the simplest case, the square sampling, is sufficient.

In this case, the discrete signal is obtained by

v(m) = u(hm) (B.11)

that is, the sampling is performed along the x and y axes, and the sampling period is equal

(h) along both axes1. According to Eq. (B.5),

v(m) = u(hm) =
1

2π

∫

R2

U(β)ejhβTmdβ. (B.12)

The integral over an infinite domain can be expressed as an infinite sum of integrals over

finite domains as follows:
∫

R2

U(β)ejhβTmdβ =
∑

p∈Z2

∫

D(p)
U (β) ejhβTmdβ (B.13)

where p = [ p1 p2 ]T and the domain D(p) is defined as

D(p) =

{

βx :
1

h
(−π − 2πp1) ≤ βx <

1

h
(π − 2πp1) ,

βy :
1

h
(−π − 2πp2) ≤ βy <

1

h
(π − 2πp2)

}

. (B.14)

That is, the spatial frequency-domain is divided into squares whose length along sides

equals to 2π/h. By making the formal substitution

β = ξ − 2π

h
p (B.15)

Eq. (B.14) can be written as

D(p) = D =

{

ξx :
−π

h
≤ ξx <

π

h
,

ξy :
−π

h
≤ ξy <

π

h

}

(B.16)

1The general form of Eq. (B.11) which applies to all types of two-dimensional sampling is v(m) = u(Sm)

where S is the sampling matrix (see [Dudgeon and Mersereau 1995, Chapter 1]).
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thus, Eq. (B.13) takes the form of2

∫

R2

U(β)ejhβT mdβ =

∫

[−π
h

, π
h ]

2

∑

p∈Z2

U

(

ξ − 2π

h
p

)

ejh(ξ− 2π
h

p)
T
mdξ =

=

∫

[−π
h

, π
h ]

2

∑

p∈Z2

U

(

ξ − 2π

h
p

)

ejhξTm e−j2πpTmdξ. (B.17)

The second exponential on the right-hand side of Eq. (B.17) is one for all values of the

integer vectors m and p, so, after eliminating the dummy variable ξ, we obtain the final

form of the expression:

∫

R2

U(β)ejhβT mdβ =

∫

[−π
h

, π
h ]

2





∑

p∈Z2

U

(

β − 2π

h
p

)



 ejhβTm dβ. (B.18)

After substituting this into Eq. (B.12) and comparing with the inverse formula of the

discrete-space Fourier-transform (Eq. (B.7)), it is apparent that the expression between

square brackets in Eq. (B.18) is the spectrum of the sampled signal, that is,

V (β) =
∑

p∈Z2

U

(

β − 2π

h
p

)

. (B.19)

This relation is the two dimensional expression of the well known effect of periodic sampling,

namely, that the spectrum of the sampled signal is the periodic extension of the analog

signal.

Another relation is yet to be derived, namely, the one that connects the spectra of a

continuous-space signal in Cartesian and triangular coordinate systems. The relationship

between the space-domain signals and their spectra is known:

u1(x) ⇐⇒ U1(β) (B.20)

u2(x
′) ⇐⇒ U2(β

′). (B.21)

The vectors x and x′ contain the spatial variables of the Cartesian and the triangular

coordinate systems, respectively. Similarly, β and β′ contain the spatial frequency variables

corresponding to the two coordinate systems. What we are looking for is the relationship

between U1(β) and U2(β
′) if we know that, according to Section 2.3.3, the triangular form

of the function u1(x) is defined as

u2(x
′) = u1(S

−1x′) (B.22)

where the matrix of the linear transform S is defined by Eq. (2.30). According to Eq. (B.4),

the Fourier-transform of u1(x) is

U1(β) =
1

2π

∫

R2

u1(x)e−jβTxdx. (B.23)

2The mathematically precise definition of the domain of integration is
�
− π

h
, π

h

�2
, however, if the

integrand does not contain Dirac delta components, which we assume, then using
�
−π

h
, π

h

�2
makes no

difference.
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Similarly, the Fourier-transform of u2(x
′) is defined as

U2(β
′) =

1

2π

∫

R2

u2(x
′)e−j(β′)Tx′

dx′ = (B.24)

=
1

2π

∫

R2

u1(S
−1x′)e−j(β′)Tx′

dx′ (B.25)

By making the substitution x′ = Sx, we obtain

U2(β
′) =

1

2π

∫

R2

u1(S
−1Sx)e−j(β′)TSxd (Sx) = (B.26)

=
1

2π

∫

R2

detS u1(x)e−j(β′)TSxdx = (B.27)

= detS
1

2π

∫

R2

u1(x)e−j(STβ′)
T
xdx. (B.28)

By comparing Eq. (B.28) with Eq. (B.4), it can be seen that

U2(β
′) = detS U1

(

STβ′
)

. (B.29)

The grid function u2(m) can be obtained by periodic sampling of u2(x
′), defined by

Eq. (B.22), according to Eq. (B.11). By applying the above results (Eq. (B.19) and

Eq. (B.29)), the following relationship can be derived:

V2(β
′) =

∑

p∈Z2

U2

(

β′ − 2π

h
p

)

= (B.30)

= detS
∑

p∈Z2

U1

(

STβ′ − 2π

h
p

)

= (B.31)

= detS V1

(

STβ′
)

(B.32)

that is,

V2(β
′) = detS V1

(

STβ′
)

. (B.33)

The inverse relation can be obtained by making the substitution β′ =
(

ST
)−1

β

V1 (β) =
1

detS
V2

(

(

ST
)−1

β
)

. (B.34)

As β = [βx, βy]
T, and

(

ST
)−1

=

[

1 0

1/2
√

3/2

]

(B.35)

we obtain

V1

([

βx

βy

])

=
3

2
√

3
V2

([

βx

1
2 βx +

√
3

2 βy

])

(B.36)

This equation can be rewritten in the scalar form

V1 (βx, βy) =
3

2
√

3
V2

(

βx,
1

2
βx +

√
3

2
βy

)

(B.37)

that is, we have proven Eq. (B.1).


