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Kivonat

Kivonat

Jelen munka a kétdimenziós, görbült, változó vastagságú, ortotróp héjak fizkai alapú mod-
ellezéséről szól, ami alkalmas lehet a harang hangjának modellezésére. A modellezéshez a
függvénytranszformációs technikát alkalmaztuk, amelynek egyik lépését a véges differencia
módszer segítségével végeztük el.

A modellezés első lépése egy megfelelő fizikai modell, vagyis differenciálegyenlet létre-
hozása. A görbült héjakat alapvetően csatolt differenciálegyenlet renszerrel lehet leírni,
amelyben nemlinearitás is felmerül. Ennek elkerülése érdekében létrehoztunk egy olyan
egyszerűsített egyenletet, amely a lemez transzverzális kitérését leíró egyenlettől egyetlen,
differenciálhányados nélküli tagban különbözik. A kapott egyenlet általánosan görbült, vál-
tozó falvastagságú ortortóp héjakra is használható.

A modellezés második lépése a kapott egyenlet számítógépen való implementálása. Ehhez
először ismertetjük a főbb hangmodellezési technikákat, majd a két felhasznált technikát
részletesen bemutatjuk. Közben kitérünk az adjungált differenciáloperátor fogalmára, és
számítási módjaira, ami fontos szerephez jut a függvénytranszformációs technika alka-
lmazásakor. Ezenkívűl előállítjuk a véges differencia módszernek egy olyan változatát, amit
használni tudunk a felmerülő sajátérték-problémák numerikus megoldására. Végül a java-
solt hibrid modellt alkazzuk egy közönséges hengeres és egy harangformájú héjra, valamint
bemutatunk néhány eközben felmerülő problémát.
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Abstract

Abstract

This thesis is about the physics-based modeling of two-dimensional orthotropic curved
shells with variable thickness, which could be suitable for the synthesizing of the sound of
bells. The functional transformation method is employed, but one of its steps is performed
by the help of the finite difference method.

The first task of the modeling is to derive an appropriate physical model, that is a
differential equation. Curved shells can be described basically by means of a coupled system
of differential equations, wherein often arise nonlinearities too. To avoid this, we introduce a
simplified shell equation which differs from the plate equation in one term only, containing
no derivatives. The resulting equation can be applied to universally curved orthotropic
shells with variable thickness too.

The second step of the modeling is the implementation of the differential equation.
Towards this, the most important modeling methods are outlined first, then the applied
methods are introduced in detail. The concept of adjoint differential operator is outlined
too, which plays in important rule in the functional transformation method. In addition a
modified version of the finite different method is introduced, which is capable to solve the
arising eigenvalue-problems numerically. Finally the proposed hybrid method is applied to
ordinary cylindrical shells and a bell-shaped shell. Several arising difficulties are presented
too.
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Introduction

Introduction

Physics-based sound synthesis is one of the most active field of sound synthesis and ac-
cording to the increasing growth of the speed of computers the perspectives are widening
continually. Several methods have evolved, which model the vibrations of the resonator
part of the musical instruments. Two methods are employed in this thesis, the finite differ-
ence and the functional transformation method. The former one is a widely used, relatively
simple method, while the second one, which is developed at the Chair of Multimedia Com-
munications and Signal Processing of the University Erlangen-Nuremberg, is a less known
but much more practical method.

By the physics-based modeling of musical instruments the starting-point is usually a
differential equation, which describes the motion of the resonator part of the instrument.
These resonators can be treated usually as one or two-dimensional vibrating bodies, most of
them can be described by means of a single differential equation. In the vibration of curved
shells, however, plays the in-plane motion an important role too. Accordingly, they can be
described basically by coupled system of differential equations, which can be nonlinear too.
The implementation of such a differential equation is rather complicated. Hence, one of our
aims was to develop a simplified governing equation, which is based on a single differential
equation for the sake of simplicity, but takes the additional stiffness arising due to the
curvature into account in the possible restricted manner.

The functional transformation method was applied to such types of vibrating bodies
previously, which can be treated analytically. In many possible cases, however this can not
be carried out, hence our second aim was to develop a method which is suitable to treat
these cases numerically. The main task of this method is to solve an eigenvalue-problem
of a differential operator. This gives the kernels of a transform arising in the functional
transformation method. In this thesis we adopt the finite different method to solve this
eigenvalue-problem. In this way a hybrid method is constructed, which is able to treat
two-dimensional shells possessing cylindrical symmetry and variable thickness.

The thesis begins with the overview of the most important sound synthesis methods in
section 1. Several considerations and the introduction of the concept of adjoint differential
operator can be found in section 2. In the following two sections the applied sound synthesis
methods are introduced, the functional transformation method in section 3, while the finite
difference method in section 4. In section 5 we develop the governing equation of the
orthotropic plate and reveal what happens if we take the in-plane motions into account
too. In section 6 the simplified equation of the cylindrical shell is deduced first, then the

1



equation is adopted to arbitrary curved shells. Several variants of the shell equation are
implemented in section 7 by the help of the developed synthesis method. In section 8 the
achieved results and the possible directions of development are summarized. The physical
concepts on which the derivations of the differential equations are based can be found in
Appendix F.1.

This thesis is based on the report written at the University of Erlangen-Nuremberg in
the spring semester 2009. Two sections are dropped out, while the section dealing with
the required physical concepts is removed to the Appendix. The section treating the sound
synthesis methods, the introduction of the adjoint operator and the finite different method,
and the application of the resulting hybrid method were added posterior.

2



Chapter 1

About Sound Synthesis

In this chapter the aim of sound synthesis and the main trends of it are presented. Only
an overview of the relevant and widely used methods is given, a wider and more detailed
overview can be found in [18]. Two methods are employed in this thesis, these will be
detailed in chapters 3 and 4.

1.1 The Aim of Sound Synthesis

The practical purpose is seemingly the reproduction of the sounds of different musical
instruments and hereby to create a device, which is capable to replace the instrument.
This proves useful in certain cases only, however. In the case when the real instrument is
expensive or/and hardly movable, it can be beneficial to create a substitute model indeed,
things are like this in the cases of the piano and church organ. In most cases, however, the
set-up of the musical instrument is not too complex and can be built at a relatively low
price, while the sound or physical process can be far too difficult which raises the price
of the model. Cases in point are the flutes, by which the vocal tract of the musician have
to taken in consideration too by modeling. Not to mention that the musicians are used
to the manner of playing of the instrument in question. In fact this is what they make
master themselves of during the practice, and for this reason it can not be modified. This
makes the model costly in certain cases. In the case of the string instruments for example,
probably almost the complete instrument should be built up to let a musician capable to
play on it, similar is the situation by the flutes too. In pipe organ and piano models the
wide-spread MIDI keyboards seem to be utilizable. Though the reaction of the strings or
the trackers are not modeled, it is an accepted resort.
A further difficulty is to create a loudspeaker-system, which is capable to play-back the
synthesized sounds, and this is not only a question of quality but of power too. The sound
of church bells reach the threshold of pain in the near-field for example. Thus the cost of
a loudspeaker-system of appropriate quality and power have to be taken into account too,
if one wants to replace a musical instrument with its model.

The substitution of real instruments with those models is thus questionable in the most
cases but the physics-based sound synthesis has at least three other kind of motivation.

3



1. About Sound Synthesis

On the one hand one get acquainted with the physical concepts operating the musical
instrument in question during the preparation of the model. Usually we do not use the
physical models derived from a group of phenomena to describe the phenomena in question
only, but we try to wide the scope of the model by means of generalization (which has to
be verified of course). Analogously, we do not get information of the investigated musical
instrument only, and herewith we arrived at the other two motivations of physics-based
sound synthesis. On one hand, the created model can be used to produce the sound of new,
costly or not at all build able instruments. On the other hand, in the case of a suitably
accurate model, it can be of assistance to the designing and development of real musical
instruments.

This thesis is motivated by these latter three factor, especially the first one. Thus we did
not aspire to create a substitute model, but much rather to describe the physical problem
and to collect the relevant knowledge.

1.2 Sound Synthesis Methods

According to the employed method the sound synthesis methods can be divided into three
families. Namely we can speak about physics-based modeling, signal-based modeling and
abstract methods. These latter ones are usually discussed with the sampling synthesis
together, which is owing to its simplicity and effectiveness a widely used method, but is
rather a kind of sound compression than sound synthesis.

1.2.1 Abstract Methods & Sampling Synthesis

The methods based upon abstract algorithms have evolved in the early years of sound
synthesis. All of them intended to generate – by the human auditory system – pleasant
and natural considered sounds. Of this kind are the harmonious sounds for example, in
which the frequencies of overtones are the multiples of the one of the fundamental.

FM Synthesis In the case of FM synthesis we are producing harmonious-like sounds
exploiting the properties of frequency-modulated signals. In the simplest case the output
signal of a sine wave generator (carrier) is modulated by an other sine wave (signal), in
this way we get a spectrum periodically distributed around the carrier frequency, with a
period of the signal frequency. In the case of the so-called feedback FM synthesis one can
keep hands on the model parameters easier, thanks to various feedbacks.

Waveshaping Synthesis This method utilizes the overtones arising from the nonlinear
distortion. It is easily implementable: we store the nonlinear characteristic curve in a vector
or table, then addressing this table with a sine-wave signal the read values form the desired
output signal. The structure of harmonics is controllable by means of the characteristic
curve.
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1.2. Sound Synthesis Methods

Karplus-Strong Algorithm Karplus and Strong developed a very simple method to
model percussion and plucking string instruments. They were able to model the initial
sharp transients and the clearer, more periodic falloff sound by means of a Wavetable,
filled up with random-like data and having various low-pass filters in its feedback.

Sampling Synthesis The denomination refers practically speaking to play-back of sounds
recorded in advance. It differs from the simple repetition therein, that on behalf of the re-
duction of data to store, not the entire sustained sound, but only the initial transient and
one period of the steady sound are stored. At the play-back these components are interlaced
and the latter one iterated, altering its volume according to the falloff (at best imitating the
frequency dependence of the falloff by means of filtering). It is conventional also to reduce
the amount of required data by means of pitch shifter1 and other compression methods.

1.2.2 Signal-based Sound Synthesis

In the case of signal-based sound synthesis, we study the sound of the musical instrument
in question, try to get the relevant properties of the sound and generate the synthesized
sound on the grounds of this knowledge.

In contrast to the abstract methods these methods are capable to model the sound of
real musical instruments. Since we take only the properties of the sound into consideration,
the complexity of the sound presents the difficulty and it is irrelevant how complicated
the mechanism creating the sound is. The signal-based method is very universal in the
sense, that it is adaptable to several instruments by altering the values of its parameters
only, in contrast to the physics-based methods where this can be said only of instruments
having similar structure. Basically, the signal-based models are appropriate to model slowly
varying sounds, rather circumstantial transformations need to be done to consider the
transients too. Along with the sampling synthesis, its utmost disadvantage is that it needs
a new record or set of parameters for each note.

The signal-based approach can be divided into two truly distinct synthesis methods, the
other ones differ in the employed apparatus only, or include several supplements.

Additive Synthesis As the denomination refers to, this method composes the synthe-
sized sound by means of summing simpler signals. These signals are usually sine-waves
with different frequencies. Their amplitudes (and frequencies) are modulated by the help
of slowly-varying control signals.

In the case of the resynthesis of real sounds, the control signals are extracted from the
original sound and are approximated by a set of linear functions for the sake of variability
and reduction of the amount of data. The difference between the original and resynthesized
sounds is the error function, which contains spectral components of small amplitude and
the transient respectively. From this error function the transient is retrievable by the help
of spectral analysis, while the rest is usually approximated by means of a quasi random

1Not the entire gamut is stored, and the missing tones are obtained from the adjacent tones by means
of pitch shifting.
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1. About Sound Synthesis

function with given amplitude spectrum. Both technics are employed by the transient
modeling synthesis, only the latter one by the spectral modeling synthesis.

Subtractive Synthesis We speak about subtractive synthesis or source-filter synthesis if
we create the desired sound from a more complex one by the help of time-variant filtering.
Since the human voice is generated in the same wise, in the case of voice synthesis the
model parameters are determinable from the physical concepts of voice generation. In the
case of musical instruments we can only recline upon the sound itself.

The signal of departure is usually some broadband or harmonic-rich sound. If the desired
sound is harmonious we can set out from an impulse train of the wanted frequency for
example. By means of time-variant filtering the change of formants over the time can be
modeled too.

1.2.3 Physics-based Sound Synthesis

The denomination refers to the fact that we start out from the behaviour of the body
which is generating the sound. The modeling consists of two steps in this case, the first one
is the construction of a physical model: we examine the sound generation mechanism and
the properties of sound radiation and simplify them with the fidelity in view. The second
step is the implementation of the physical model typically on a computer or an appropriate
hardware.

This is the most dynamically developing branch of sound synthesis in our days. The
utmost advantage of it is that the arising model behaves musical instrument-like, its pa-
rameters are, in contrast to the signal-based models related to the instrument itself and
are well interpretable also to the musicians. It is very beneficial in the case of such instru-
ments, which sound is determined by more factors. Of this kind is the violin. The sound
of the violin depends on the speed and pressure of the bow, we can sound given a tone
on more than one string, the strings can be plucked, the gentle fluctuation of the place of
fingers – the vibrato – results in a tone of new character too. In the case of the signal-based
synthesis for each of these playing styles an extra set of parameters needs to be set up,
which is, taking the combinations of playing styles into account too, almost hopeless. In
the case of physics-based sound synthesis, however, the modifications are evident and well
determined. These methods have usually the highest computing demand, however.

To find out, what is negligible during the construction of the physical model, we have
to examine the sound of the instrument and the properties of the human auditory system
too. We do not need to model the torsional motion of the bars of a carillon for example,
since it produces sounds with low efficiency. Sometimes certain components of the arisen
sound are not audible due to the properties of the auditory system or other effects.

Finite Different Method The starting-point of this method is the differential equation
describing the motion of the resonator part of the musical instrument in question. In
the case of many instruments this equations is already known. Modeling the violin, the
piano or the guitar, to a first approximation the governing equation of the ideal string
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1.2. Sound Synthesis Methods

has to be utilized with boundary conditions according the type of termination. In the case
of a drum, the differential equation of the ideal membrane is the starting-point. In the
case of the marimba and xylophone the governing equation of the rod has to be applied.
These equations are, in the case of simple initial and boundary conditions, analytical
solvable. Since, however in a suitably elaborate model both the equation and the boundary
conditions are difficult, we can rely on numerical computation only. Thus, the solution
is sought in discrete spatial and temporal points, and the differential equation has to be
transformed into a difference equation accordingly. In this way we get a recurrence equation
finally, which gives the values of the sought function in every spatial points on the grounds
of the values in the preceding time-step. The top disadvantage of this method is, that the
the time-step has to be chosen gratuitously small for the sake of the stability.

Digital Waveguide Similarly to the finite difference method, the solution of the govern-
ing differential equation is sought, but now we utilize the knowledge, that every functions
of the form y(x, t) = y+(x − ct) and y(x, t) = y−(x + ct) are solutions of the ideal string
equation for example. Here c is the frequency independent velocity of the arbitrary wave-
forms running in the positive and negative directions, respectively. The digital waveguide
model consists of two delay lines which carry the two waves, running in opposite direction.
On the ends, carrying out the transformations according to the terminations, the signal
is sent in the other delay line. This corresponds to the reflection on the boundaries. On
any point of the string, the sought quantity is determined as the sum of the corresponding
values in both delay lines. By means of an adequate filtering the losses and dispersion can
be modeled too. This is the most-used method. Since we fulfilled a part of the solution
of the equation in advance, it has a lower computational demand as the finite difference
method does.

Finite Element Method The motion of a distributed vibrating system can be approx-
imated by means of numerous, to each other connected simple ideal mechanical elements
(masses, springs and dampers). In this way we have to solve a number of simple equations.
We do not need, thus the differential equation, what is favorable in the case of bodies
with complicated geometry (e.g. church bell). It can be shown (see [4]) that the difference
equation can be derived from the mass-spring model of the string for example.

Functional Transformation Method This method sets out from the governing partial
differential equation, similarly to the finite difference method. It employs, however func-
tional transformations, and generates a multidimensional analogue of the transfer functions
used in system theory. The differential equations arising in physical-based sound synthesis
are initial and boundary value problems. In the functional transformation method the tem-
poral derivatives are removed first by means of the well-known Laplace-transform. Then
we construct an other transformation to remove the spatial derivatives from the remain-
ing boundary value problem. In this way, an algebraic equations arises which contains the
transforms of the sought and excitation functions and some optional additive terms accord-
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ing to the initial conditions. This is rearranged into a multidimensional transfer function
form which is then discretized and the inverse transformations are carried out. This method
results in an alternative description of the system, which is implementable by the help of
a digital filter bank. Feeding this filter bank with the temporal function of the separated
excitation function we get the values of the sought function at fixed spatial coordinates in
the output.

1.3 The Two Steps of Bysics-based Sound Synthesis

In this section we want to pan out about the two steps of physics-based sound synthesis.
The first step is thus to create a physical-mathematical model about the system in

question. In the cases of the finite difference and functional transformation methods this
model is the differential equation of the vibrating body. We usually achieve the desired
model by means of several simplifying steps. Our choice of what we consider negligible
influences decisively, how relevant our model will be. We can easily commit such a fault
which results in a model describing either not the system, we want to model with it, or
even a physically unreal system.

As a first simplification we usually enter the concept of neutral surface or middle sur-
face. This is the surface in a bent plate which is neither stretched nor compressed during
bending movements. The motion of this surface will be determined only. The second sim-
plification is to take only certain type of motion into account. In the case of percussion
instruments we are concerned in such vibrations which are accountable for the radiated
sound principally. These are the transversal or bending waves. Sought is thus the differen-
tial equation describing the transversal deflection w(x1, x2, t) of the middle surface. It can
happen, however, that we have to determine the in-plane motion of the middle surface too,
to be able to get the transversal deflection correctly. This is the case by the strings of the
piano, where certain components of the sound can be modeled in this wise only2. In such
a case the differential equations describing the different type of motions get coupled with
each other, and often cause nonlinearity too.

The differential equations can be determined on the grounds of considerations of ge-
ometry, kinematics, elasticity theory and dynamics, the required concepts are reviewed in
Appendix F.1. The derivation of the equations can be decomposed into five more or less
well separable tasks, which are in every case similar. For the sake of the uniform and trans-
parent presentation these steps will be reviewed here, and we will follow them in chapters
5 and 6. Note, that sometimes this treatment can seem circuitous and the related books
usually do not separate these tasks, but by the reason of perspicuity it will be helpful.

The five steps of the deduction of governing differential equations of mechanical vibrating
systems are the following:

1. Kinematics (strain – displacement relation): Developing the relationship be-
tween the deflection function w and the strains ε by means of simple geometrical

2See in [1].
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1.3. The Two Steps of Bysics-based Sound Synthesis

considerations. As it was detailed the transversal deflection w is a special part of
the displacement vector u(r). Similarly, usually we do not need to determine the
complete ε strain tensor either, but only the relevant components.

2. Hooke’s law (stress – strain relation): Determining the stress σ according to
the strain ε by the help of Hooke’s law.

3. Resultants (moment of force & tension – stress relation): Introducing new
quantities, which makes easier to develop the balance equations for a differential ele-
ment of the mechanical system. These new quantities are different types of moments
and in-plane force densities. They can be determined by integration over thickness.

4. Balance of moments (shearing force – moment of force relation): Determin-
ing the Q shear forces according to the M torques by the help of balance of moment
equations (section F.1.2).

5. Balance of forces (displacement – shearing force relation): Developing the
relation between the deflection w, its derivatives and the shear force Q and in-plane
force densities N by the help of Newton’s second law (section F.1.1).

Note, that these steps can be carried out in different order too, the advantage of this
sequence is, that we use always the results of the preceding steps and in this way the
deduction has a linear structure.

It is often worthwhile to treat more derivatives together and designate with a differential
operator for the sake of transparency. Differential operator is the Laplace operator of
Laplace’s and Poisson’s equations for example, but we can define other ones too, if it
facilitates our work.

The second step of physics-based sound synthesis is the implementation of the given
mathematical model. This is a signal processing and programming task, which is deter-
mined by means of the chosen method fairly accurately. Some unique solutions can be
needed but usually one of the methods overviewed in the preceding section is used.
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Chapter 2

Preliminary Considerations

In this section some considerations arising during the derivation of the differential equations
is presented and the applied modeling method is presented.

2.1 Physical, Geometrical and Mathematical Considerations

One of our aims was to be able to describe a relatively general family of the two-dimensional
vibrating bodies. The differential equations of the isotropic plate and the membrane are
relatively simple and well-known. Some generalizations are are proposed in the followings.

One of them is to assume orthotropy instead of isotropy. This means different physical
properties in different directions (see F.1.6). As a result the number of elastic properties
increase and the spatial differential operator of the governing equation decomposes in more
terms. An other possible generalization is to take the variable thickness into account. For
the sake of this the thickness and consequently other terms have to be considered the
function of the spatial coordinates. The third possibility is to consider the curved plates
or shells. In this case further elastic effects have to be considered. The shells have an
additional stiffness due to their curvature, this is demonstrated on a differential element
of a cylindrical shell on figure 2.1. Applying a transversal force fe on the shell, in-plane
forces N arise and the differential element is contracted (or stretched). Thus the shell has
a bigger resistance against the excitation. We will try to take this effect into account in a
manner simply enough to let the functional transformation method applicable. The upper
three generalization can be considered simultaneously too, we will perform this in section
7.

During application of the functional transformation method the concept of the adjoint of
differential operators will be required, the mathematical concept of this adjoint is presented
in the following subsection.

2.1.1 Not Self-adjoint Differential Equations

The concept of adjoint of differential operators can be introduced on the grounds of the
same property of matrices, as it can be found in [8]. Here a short outline is presented about
the association detailed there.
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2. Preliminary Considerations

N N

fe

dx1

Figure 2.1: In-plane forces arise due to transversal excitation force in the
curved shell.

2.1.1.1 The Adjoint Operator

Our starting-point is the fact that a differential operator can be concerned as a matrix of
infinite size, or in other words as a system of infinite number of equations and variables.
This can be seen on the grounds of the possibility of approximation of differential operators
by the help of the finite difference method. This will be presented in section 4.

The adjoint of a matrix is usually defined as the conjugate of the transpose. This op-
eration can be carried out in the case of finite sizes only, and is not helpful in point of
view of the differential equations. It is possible, however to define the adjoint matrix in a
way which is applicable in the case of infinite sizes too. Wee need for this definition the
fundamental transposition rule of matrix calculus only:

ÃB = B̃Ã. (2.1)

Since the inner product of of two vectors 〈v1, v2〉 = ṽ1v2 is a scalar1, which adjoint is the
conjugate, we can write

[ṽ1v2]∗ ≡ ṽ2v1, (2.2)

where the asterisk represents conjugation. If we write v2 as Av3, we get that

[ṽ1Av3]∗ ≡ ṽ3Ãv1. (2.3)

This fundamental identity is called bilinear identity. The adjoint of the infinite sized ma-
trices representing the differential operators have to satisfy this equation as well. Moreover
the identity can be used as the definition. According to the association between differen-
tial operators and matrices (see section 4) the bilinear identity (2.3) can be adapted to

1The vi vectors are column vectors.
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differential operators, thus with a more practical notation

〈u,A{v}〉∗ ≡
〈
v, Ã{u}

〉
(2.4)

where A{.} is the operator in question, Ã{.} is the adjoint of it, while u and v are arbitrary
continuous sufficiently differentiable functions. This counterpart of the bilinear identity is
called Green’s identity. The inner product in the identity is defined by

〈g, f〉 =

∫
g∗(x)f(x)dx, (2.5)

where x represents a point in the multi-dimensional space, dx is the volume element and the
integration should be carried out on the domain of definition. In the case of real functions
the conjugation can be skipped, accordingly Green’s identity is

∫
A{v(x)}u(x)dx =

∫
v(x)Ã{u(x)}dx. (2.6)

By the help of this identity we can determine if a pair of operators are in adjoint relation,
moreover we can determine the adjoint of a given operator.

2.1.1.2 Determination of the Adjoint Operator

The differential operators, in them selfs give not an unambiguous description about the
system, the missing information is in the boundary conditions. As we will see in section
4, a differential operator in itself corresponds to an incomplete system of equations. Thus
boundary conditions have to be considered too by the application of Green’s identity. In this
way the identity gives not the adjoint operator only, but the adjoint boundary conditions
too. The adjoint operator can be determined analytically in two steps, as it is presented
in [8].

Extended Green’s Identity In the first step we concern functions u and v in the
Green’s identity (2.6) sufficiently differentiable only, they do not have to fulfill the boundary
conditions. In this case the right side is not zero, and a term called boundary term arises.
This depends on the values of functions u and v and its derivatives on the boundaries, that
is ∫ (

u(x)A{v(x)} − v(x)Ã{u(x)}
)

dx ≡ boundaryterm. (2.7)

This identity is called extended Green’s identity. Let us assume that we succeed to write
the integrand in the following from:

u(x)A{v(x)} − v(x)Ã{u(x)} ≡
∑

α

∂

∂xα
Fα(u, v), (2.8)

where the terms Fα(u, v) are bilinear functions of u and v and xα are the independent
variables. Now, considering Fα(u, v) as components of a vector, we can write according to
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Gauss’s integral theorem that
∫ (

u(x)A{v(x)} − v(x)Ã{u(x)}
)

dx ≡
∫ ∑

α

∂

∂xα
Fα(u, v)dx =

∫ ∑

α

Fα(u, v)ναdS,

(2.9)
where να are the components of the outward pointing unit normal field of the boundary
S. Thus we got the desired form where the right side is the boundary term, which will
determine the adjoint boundary conditions.

Let us examine if the extended Green’s identity (2.7) can be written in the form of (2.8).
The effect of a linear differential operator A{.} on a function v(x) can be written as the
linear combination of v(x) and its derivatives. A typical term is thus

q(x)
∂w(x)

∂xi
, (2.10)

where q(x) is a given function of variables xi and w(x) is an arbitrary partial derivative of
v(x). We can reduce the order of derivative, by applying the product rule of differentiation
on the product of u(x)q(x)w(x):

u(x)q(x)
∂w(x)

∂xi
=

∂

∂xi
[u(x)q(x)w(x)]− ∂

∂xi
[u(x)q(x)]w(x). (2.11)

This step can be applied on the second term on right side (by emphasizing a new derivative
from the derivatives included in w(x)) again and again, in this way we can liberate v(x)

from all derivatives. This argument can be used to all terms of the operator and we can
rewrite the product uA{v} in such a way, where v(x) is unhinged from each last term,
while the remaining terms are of the form ∂

∂xα
Fα(u, v), that is

u(x)A{v(x)} = v(x)Ã{u(x)}+
∑

α

∂

∂xα
Fα(u, v). (2.12)

We have thus arrived at the desired formula and we got a method for the derivation of the
adjoint operator and the boundary term.

Adjoint Boundary Conditions The second step is the determination of the adjoint
boundary conditions. These are determined by means of the demand that the right side
of the Green’s identity must be zero. Thus the boundary conditions are those conditions
which we have to put on u(x) beyond the conditions on v(x) to let the boundary term
disappear.

This is thus the analytical method of determination of the adjoint operator, based on the
definition. As we will see we can proceed much easier by the help of the finite difference
method. Namely if the matrix of the differential operator is given, it is enough take its
adjoint. We will use this latter method in our model.
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2.2. The Applied Modeling Method

2.2 The Applied Modeling Method

We will use the functional transformation method and the finite difference method together,
constructing a relatively universal method. We will see in next section that during the
application of the functional transformation method one has to solve a function-valued
eigenvalue-problem. This means the solution of a boundary value problem, which is solvable
analytically in special cases only. According to [5] the separation of variables can be used
in the case of the rectangular plate only if the plate has at least two opposite edges simply
supported. Thus the problem of the rectangular plate with all the edges free can not be
solved analytically either. For this reason we will solve the eigenvalue problems by the help
of the finite difference method.

In this way we keep the advantage of the functional transformation method, that is it
results in an effectively implementable parallel filter bank structure. But at the same time
we extend its applicability to problems which are analytically not or hardly solvable.
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Chapter 3

Functional Transformation Method

In this section we introduce the Functional Transformation Method by following up the
introduction presented in [7], [14] and [13], respectively. In section 3.1 we shortly summarize
the steps required, then in section 3.2 the details on the specific example of the string is
introduced. In section 3.3 the method is adopted to non self-adjoint operators, finally in
section 3.4 we analyse the results, and give some notices.

We assume the partial differential equation of the process given, and our aim is to
transform the equation into an other equivalent description, which is capable for digital
modeling. In this case this will be a parallel filter bank, where the coefficients are calculated
from the physical properties of the process.

3.1 The Steps of the Functional Transformation Method

The denomination alludes to the way how we get the coefficients of the filter bank from the
governing equation: functional transformations need to be done on the initial and boundary
value problem.

The steps and the equivalent descriptions of the system, which we get among the trans-
formations can be surveyed in the following enumeration and in figure 3.1.

1. Applying the Laplace transformation to the initial-boundary-value problem. In
this way we get a boundary-value problem, where the temporal derivatives are repre-
sented by means of the initial conditions and multiplication of the powers of complex
frequency s.

2. We apply the so-called Sturm–Liouville transformation to the boundary-value
problem, which behaves the same way in point of the space variable as the Laplace
transformation does in point of the temporal variable. Our most important task is
to find the transformation kernel of the Sturm-Liouville transformation, which is dif-
ferent for every initial-boundary-value problem. This can be determined analytically
in certain cases, but we have to resort to numerical methods mostly.

3. With the preceding two steps we turned the problem into an algebraic equation,
without any derivatives. This can be easily rearranged into a continuous-time mul-
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(1)

(2)

(3)

(4)

(5)

(6)

initial and boundary value problem

boundary value problem

algebraic equation

multidimensional
transfer function

discrete multidimensional
transfer function

discrete one-dimensional
transfer function

synthesis algorithm

L{·}

T {·}

rearranging

discretization

T −1 {·}

Z−1 {·}

Figure 3.1: The essential steps of the functional transformation method.

tidimensional transfer function, which gives the relation of the sought function to the
excitation function.

4. We rewrite the continuous-time transfer function into a discrete-time transfer func-
tion by the help of the impulse-invariant transformation. This way we arrive at
a discrete multidimensional transfer function. This new description of the system will
be well suited for implementing on an appropriate digital hardware.

5. We have to fulfill in the discrete-time domain the inverse of the first two transforma-
tions, firstly let us use the inverse Sturm-Liouville transformation. This way we
get a description containing the discrete complex-frequency and the spatial variable.
This description can be interpreted as a number of one-dimensional transfer functions
connected parallel.

6. The last step is to apply the inverse z-transform to the problem, which yields
the filter bank realization in the discrete time domain. Since the coefficients of every
single filters can be determined on the grounds of their transfer functions, this last
step do not have to be done from the point of view of implementation.

3.2 An Example: The String

In this section the steps of the functional transformation method will be applied to the
vibrating ideal string, on both end fixed. This problem is universal enough to be able to
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represent the method, but not too complex, to let us see the matter beyond the computa-
tion.

The investigated problem is thus, the transverse vibration of the string, both end fixed,
and subjected to certain axial tension. This tension together with the bending moments
arising in the bent string produce the restoring forces. Let us designate the mass density of
the string material by ρ, and the cross section by A, in this case the linear mass density is
ρA. The string constitutes according to the restoring forces and the mass density a vibrating
system. We can describe this vibrating system by the help of a partial differential equation.

Our starting point is thus the governing equation of the transverse vibration, and the
corresponding boundary and initial conditions. These are in this case

EI

ρA

∂4

∂x4
y(x, t)− Ts

ρA

∂2

∂x2
y(x, t) +

∂2

∂t2
y(x, t) +

d′1
ρA

∂

∂t
y(x, t) +

d′3
ρA

∂3

∂t∂x2
y(x, t) =

1

ρA
f ′(x, t),

(3.1)
where

y(x, t)|t=0 = 0, (3.2a)

∂

∂t
y(x, t)

∣∣∣∣
t=0

= 0, (3.2b)

and
y(x, t)|x=0 = 0, y(x, t)|x=l = 0,

∂2

∂x2
y(x, t)

∣∣∣
x=0

= 0, ∂2

∂x2
y(x, t)

∣∣∣
x=l

= 0.
(3.3)

Here y(x, t) stands for the transversal deflection of the string, where x and t are the spatial
and temporal coordinates, respectively. The arising material constants and coefficients
along with their designations and units are summarized in table 3.1.. The derivation of the
equation can be found in [5] for example.

Renaming the coefficients and the excitation in equation (3.1) in the same way as it can
be found in [7], we can turn it into a simpler form:

S4 ∂
4

∂x4
y(x, t)− c2 ∂

2

∂x2
y(x, t) +

∂2

∂t2
y(x, t) + d1

∂

∂t
y(x, t) + d3

∂3

∂t∂x2
y(x, t) = f(x, t), (3.4)

where

S4 = EI
ρA c2 = Ts

ρA d1 =
d′1
ρA d3 =

d′3
ρA f(x, t) = 1

ρAf
′(x, t). (3.5)

Thus, the initial-boundary problem is given, we are before the first step of section 3.1, in
the first box on figure 3.1 so far.
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Table 3.1: Physical constants and parameters of the differential equation.

Symbols Designations Units

E Young’s modulus N
m2

I Second moment of area m4

ρ Density kg
m3

A Cross-section area m2

Ts Tension N

d′1 Frequency independent damping kg
sm

d′3 Frequency dependent damping kgm
s

3.2.1 Laplace Transform

The first step is to apply the Laplace transformation to the governing equation (3.4). The
Laplace transformation of a function of one variable is

L{y(t)} = Y (s) =

∫ ∞

0
y(t)KL(t, s)dt =

∫ ∞

0
y(t)e−stdt, (3.6)

where KL(t, s) = e−st is the transformation kernel of the Laplace transformation. Ac-
cording to the differentiation theorem of the Laplace transformation, we can write for the
derivatives of y(t) the followings

L
{
∂

∂t
y(t)

}
= sY (s)− y(t)|t=0 , (3.7a)

L
{
∂2

∂t2
y(t)

}
= s2Y (s)− s y(t)|t=0 −

∂

∂t
y(t)

∣∣∣∣
t=0

. (3.7b)

In the case of our problem, however, accordingly to the initial conditions (3.2) the first
term matters only. The first step of section 3.1 ends thus with

S4 ∂
4

∂x4
Y (x, s)− c2 ∂

2

∂x2
Y (x, s) + s2Y (x, s) + d1sY (x, s) + d3s

∂2

∂x2
Y (x, s) = F (x, s), (3.8)

where Y (x, s) = L{y(x, t)}, and F (x, s) = L{f(x, t)}. The boundary conditions are ac-
cording to the linearity of the Laplace transform the followings

Y (x, s)|x=0 = 0 Y (x, s)|x=l = 0
∂2

∂x2
Y (x, s)

∣∣∣
x=0

= 0 ∂2

∂x2
Y (x, s)

∣∣∣
x=l

= 0.
(3.9)

Thus, we were able to eliminate the temporal derivatives and we arrived at the boundary
value problem. We will remove the spatial derivatives in the next step.

20



3.2. An Example: The String

3.2.2 Sturm–Liouville Transform

The Sturm-Liouville transformation can be universally written in the same form as the
Laplace transformation, the transform of Y (x, s) with respect to x is thus

Y (n, s) = T {Y (x, s)} =

∫ l

0
Y (x, s)K(n, x)dx, (3.10)

where n is the spatial frequency variable, while K(n, x) is the transformation kernel of the
SLT. Our aim is to determine the transformation kernel in such a way, that if we apply the
SL transformation to equation (3.8), it turns the spatial derivatives into a multiplication
by a function of the spatial frequency variable β(n). We can write this requirement in a
simple form by means of grouping the spatial derivatives into an operator

Lw {Y (x, s)} = S4 ∂
4

∂x4
Y (x, s) + (d3s− c2)

∂2

∂x2
Y (x, s). (3.11)

Our aim is thus
T {Lw {Y (x, s)}} = β(n)Y (n, s). (3.12)

If this is realized, equation (3.8) turns into the desired form

β(n)Y (n, s) + s2Y (n, s) + d1sY (n, s) = F (n, s), (3.13)

where F (n, s) = T {F (x, s)}. For the sake of the upper requirement, we have to create the
transformation kernel K(n, x) adequately. Namely, two conditions have to be fulfilled, on
the one hand

T {Lw {Y }} =

∫ l

0
Lw {Y }Kdx =

∫ l

0
Y L̃w {K} dx, (3.14)

on the other hand
L̃w {K} = β(n)K. (3.15)

In this case we get for the Sturm–Liouville transform of Lw {Y } that

T {Lw {Y }} =

∫ l

0
Y L̃w {K}dx =

∫ l

0
Y β(n)Kdx = β(n)

∫ l

0
Y Kdx = β(n)T {Y } .

(3.16)
The first condition is fulfilled automatically if the operator L̃w is the adjoint of Lw1. The
second condition is an eigenvalue problem concerning the operator L̃w.
Thus we have to determine the adjoint of Lw at first, than the eigenfunctions of this
adjoint operator have to be found. These are the transformation kernels. The eigenvalues
β(n) corresponding to the eigenvectors are the factors, by which the transformed function
Y (n, s) has to be multiplied to give T {Lw {Y }}.

In the case of the string the adjoint operator can be determined analytically, integration
by parts has to be employed practically as we have seen in section 2.1.1.2. The deduction

1This is the reason for the designation.

21



3. Functional Transformation Method

can be found in in [7], herein we give the solution only. The adjoint operator is

L̃w {K(n, x)} = S4 ∂
4

∂x4
K(n, x) + (d3s− c2)

∂2

∂x2
K(n, x), (3.17)

while the adjoint boundary conditions are

K(n, x)|x=0 = 0, K(n, x)|x=l = 0,
∂2

∂x2
K(n, x)

∣∣∣
x=0

= 0, ∂2

∂x2
K(n, x)

∣∣∣
x=l

= 0.
(3.18)

These agree with the operator Lw and the boundary conditions belonging to it, that means
that the operator with the given boundary conditions is self-adjoint2.

Now we can determine the transformation kernels K(n, x), which are the solution of
the eigenvalue problem (3.15) with boundary conditions (3.18). Since this is an ordinary
eigenvalue problem, but the exact process depends on the operator and the boundary
conditions, we transmit the result only3. The eigenfunctions are thus

K(n, x) = sin
(
nπ

x

l

)
, (3.19)

while the eigenvalues are functions of the physical parameters as follows

β(n, s) = S4
(nπ
l

)4
−
(
sd3 − c2

) (nπ
l

)2
. (3.20)

We have thus the exact form of the Sturm-Liouville transformation, which is defined, in
the case of the string, by (3.10), (3.19) and (3.20), respectively.

Note, that we could choose β, or nπ/l too as spatial frequency variable, as these and n are
mutually expressible with each other. Choosing either of the alternatives, it is clear, that
the spatial frequency variable has not a continuous codomain. Taken n, the codomain is the
set of positive integers. The transformation kernel K(n, x) and the transform Y (n, s) are
thus in fact two sets of functions, that is (K(1, x),K(2, x), . . .) and

(
Y (1, x), Y (2, x), . . .

)

respectively. Accordingly, the inverse Sturm–Liouville transformation will be a function
series expansion.

After the Laplace transformation the Sturm-Liouville transformation has been applied
too, we are thus in the third box of figure 3.1, after the second step. Equation (3.13) is the
desired algebraic equation.

2Note that if one would lay down homogeneous conditions on Y ′ and Y ′′, the adjoint boundary condi-
tions would concern K and K(3) and the operator Lw would not be self-adjoint.

3The solutions for the string with supported ends, the bar with free ends and the membrane with various
types of boundary conditions can be studied for example in [7].
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3.2.3 Rearranging the algebraic equation

The algebraic equation (3.13) can be easily rearranged into the form of a multidimensional
transfer function concerning F (n, s):

Ḡ(n, s) =
1

P̄ (n, s)
=
Ȳ (n, s)

F̄ (n, s)
=

1

s2 + d1s+ β(n, s)
, (3.21)

which agrees the third step, and we arrived at the fourth box on figure 3.1.
It is apparent, that function (3.21) describes a second order, continuous-time system for

each value of n. Let’s express the denominator by means of the poles

P̄ (n, s) = s2 + d1s+ β(n, s) = (s− sn)(s− s∗n). (3.22)

Seeking the poles in the form of

sn = σ(n) + jω(n), (3.23)

and taking into account equation (3.20) too, we get the imaginary and real parts of the
poles as

σ(n) =
1

2

(
d3

(nπ
l

)2
− d1

)

ω(n) =

√
S4
(nπ
l

)4
+ c2

(nπ
l

)2
− σ(n)2. (3.24a)

The poles are thus functions of the physical properties and determine the transfer function
(3.21) at the same time.

3.2.4 Impulse-invariant Transform

According to section 3.1 we have to turn the continuous-time system, described by (3.21)
into a discrete-time system. Since this equation describes a second order continuous-time
system for each value of n, our object is, to turn these systems into a discrete one, with n
as a parameter. Two well known methods for this purpose are the bilinear and the impulse-
invariant transformations. The former is capable to transform the transfer functions with-
out any aliasing effects, but now, we are able to control the bandwidth by means of the
number of the used second order filters, i.e. the modes. Thus, using the more complicated
bilinear transformation has no benefits in this case.

Accordingly, the impulse-invariant transformation will be used. Let decompose, thus,
the transfer function into partial fractions, which gives

Ḡ(n, s) =
1

s2 + d1s+ β(n)
=

1

(s− sn)(s− s∗n)
=

1
sn−s∗n
s− sn

+

1
s∗n−sn
s− s∗n

, (3.25)

the discrete-time transfer function is on the grounds of rules of the impulse-invariant trans-
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3. Functional Transformation Method

formation

Ḡd(n, z) =

1
sn−s∗n

1− esnT z−1
+

1
s∗n−sn

1− es∗nT z−1
, (3.26)

where T is the discrete time-step and z the discrete complex frequency, d in the exponent
refers to discrete functions. Our result takes shape after some calculation, in accordance
with the deconvolution (3.23), as

Ḡd(n, z) =
1

ω(n)

eσ(n)T sin(ω(n)T )z

z2 − 2eσ(n)T cos(ω(n)T )z + e2σ(n)T
. (3.27)

We realized the fourth step, the fifth transformation will be the inverse Sturm-Liouville
transformation.

Note, that we treated the spatial frequency variable n as a parameter in this section,
discretization was made only on the temporal variable. The discrete-time multidimensional
transfer function is thus the function of the continuous-spatial and the discrete-time fre-
quency variable, respectively.

3.2.5 Inverse Sturm-Liouville Transform

According to (3.27) we can write Y d
(n, z) as followings

Y
d
(n, z) = G

d
(n, z)F

d
(n, z). (3.28)

As it was mentioned in section 3.2.2, the inverse Sturm-Liouville transformation gives the
original function, in the case of self-adjoint spatial differential operators, in terms of an
orthogonal series expansion, thus

Y d(x, z) = T −1
{
Y
d
(n, z)

}
=
∑

n

1

N(n)
Y
d
(n, z)K(n, x), (3.29)

where

N(n) =

∫ l

0
(K(n, x))2 dx. (3.30)

Note, that in the case of non self-adjoint operators the inverse SL transformation differs
from the above expression, we will pan out about this in section 3.3. We can write thus on
the grounds of the equations (3.28) and (3.29)

Y d(x, z) = T −1
{
Y
d
(n, z)

}
=
∑

n

1

N(n)
G
d
(n, z)F

d
(n, z)K(n, x). (3.31)

After substituting the discrete multidimensional transfer function (3.27) we get

Y d(x, z) =
∑

n

1

N(n)

eσ(n)T

ω(n)
sin(ω(n)T )

z

z2 − 2eσ(n)T cos(ω(n)T )z + e2σ(n)T
F
d
(n, z)K(n, x).

(3.32)
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3.2. An Example: The String

It is practical to restrict the set of the possible f(x, t) excitation functions to the form

f(x, t) = fx(x)ft(t). (3.33)

Thus we suppose, that the spatial distribution of the excitation does not alter with time and
the excitation can be separated into a product of a space and a time dependent function.
This seems to be fair in the case of the struck or plucked string. With this assumption we
have

F (x, s) = fx(x)Ft(s),

F (n, s) = f̄x(n)Ft(s), (3.34)

F
d
(n, z) = f̄x(n)F dt (z).

Introducing some notations for the sake of simplicity

a(n, x) =
1

N(n)

eσ(n)T sin(ω(n)T )

ω(n)
f̄x(n)K(n, x), (3.35a)

Hd(z) =
z

z2 − 2eσ(n)T cos(ω(n)T )z + e2σ(n)T
, (3.35b)

whereby the z-transform of the sought function can be written as

Y d(x, z) =
∑

n

a(n, x)Hd(z)F dt (z). (3.36)

It is clearly visible the possibility of realization by means of a parallel filter bank from this
form. The transfer function of the filters are Hd(z), the outputs are weighted with a(n, x),
and the input signal of each filter is the ft[k] excitation function.

Let us label the output of the certain filters as followings

Ŷ d(n, z) = Hd(z)F dt (z) =
z

z2 − 2eσ(n)T cos(ω(n)T )z + e2σ(n)T
F dt (z). (3.37)

from here, by the help of rearranging

Ŷ d(n, z)z2 = 2eσ(n)T cos(ω(n)T )Ŷ d(n, z)z − e2σ(n)T Ŷ d(n, z) + F dt (z)z, (3.38)

thus, with the notation

c1 = 2eσ(n)T cos(ω(n)T ), (3.39a)

c2 = −e2σ(n)T (3.39b)

we get
Ŷ d(n, z) = c1Ŷ

d(n, z)z−1 + c2Ŷ
d(n, z)z−2 + F dt (z)z−1. (3.40)

By the help of this expression we are able to sketch the structure of the filter bank, see
figure 3.2. We do not need to perform the inverse z-transformation, we will do it for the
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3. Functional Transformation Method

sake of completeness, however.

3.2.6 Inverse Z-transform

According to equations (3.36), (3.37), and the linearity of the z-transformation, we can
write

yd(x, k) =
∑

n

a(n, x)ŷd(n, k), (3.41)

where ŷd(n, k) is the inverse z-transform of Ŷ d(n, z), and on the grounds of equation (3.40)

ŷd(n, k) = Z−1
{
Ŷ d(n, z)

}
= c1ŷ

d(n, k − 1) + c2ŷ
d(n, k − 2) + fdt (k − 1), (3.42)

in accordance with the time shifting property of the Z-transformation

Z {x(k − κ)} = z−κX(z). (3.43)

Our result is thus the following

yd(x, k) =
∑

n=1

a(n, x)
[
c1ŷ

d(n, k − 1) + c2ŷ
d(n, k − 2) + fdt (k − 1)

]
. (3.44)

We obtained the discrete-time description of the model. This is a parallel filter bank
(see figure 3.2), which is easily and effectively implementable in real-time applications.
Each filter corresponds to a mode of the vibration, and the parameters are given according
(3.39), (3.24), (3.20), and (3.5) directly by means of the physical parameters.

As we mentioned previously in section 3.2.4, the bandwidth of the model is controllable
by of the number of modes (nmax). Let us, thus choose nmax as follows

ω(nmax) ≤ 2πfs/2

ω(nmax + 1) > 2πfs/2 (3.45a)

where fs = 1/T is the sampling frequency. Depending on the computational capacity we
can choose nmax smaller of course. Thus, our result is more precisely

yd(x, k) =

nmax∑

n

a(n, x)
[
c1ŷ

d(n, k − 1) + c2ŷ
d(n, k − 2) + fdt (k − 1)

]
. (3.46)

The number of parallel filters is thus nmax and they span a predefined frequency range.

3.3 Extension to Non Self-adjoint Problems

This section provides an extension of the previously introduced method to non self-adjoint
problems. Only those steps which differ from the self-adjoint case are introduced. A more
detailed description can be found in [12].

We have seen in section 3.2.2, that we had to solve the Sturm–Liouville eigenvalue
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z−1 z−1

z−1z−1 a(1, x)
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fd
t (k)
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t (k)

yd(x, k)

ŷd(1, k)

ŷd(n, k)

ŷd(nmax, k)

Figure 3.2: The synthesis algorithm as a parallel filter bank.

problem (3.15) of the adjoint operator given by (3.14) to be able to remove the spatial
differential operator. In the case of the string the operator Lw was self-adjoint, so the
inverse Sturm–Liouville transformation was given by means of a series expansion with the
K(n, x) functions. In the case of non self-adjoint operators, however the eigenvectors of L̃w
do not form an orthogonal system, and thus can not be used as the basis of the expansion.

In this cases the eigenfunctions of the original operator Lw, thus the solutions of equation

Lw {J(n, x)} = β(n)J(n, x) (3.47)

has to be determined too. This, and equation (3.15) are the adjoint boundary value prob-
lems of each other. It can be shown, that their eigenvalues are the same, and the eigenvec-
tors form a biorthogonal system, thus

〈J(n, x),K(m,x)〉 =

∫
J(n, x)K(m,x)dx = 0 ha (n 6= m). (3.48)

We demonstrate that function Y d(x, z) has to be expressed by means of a series expansion
of J(n, x), thus we seek the function in the form

Y d(x, z) =
∑

n

anJ(n, x). (3.49)

Multiplying this equation by K(m,x) and integrating over the entire domain we get, ac-
cording to the biorthogonal property of functions J and K, one and only not zero term on
the right side. Namely the term in which n = m, that is

∫
Y d(x, z)K(m,x)dx = am

∫
J(m,x)K(m,x)dx. (3.50)
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3. Functional Transformation Method

The coefficients am are thus, after introducing the designation Nm = 〈J(m,x),K(m,x)〉,
expressible by means of the transform Y

d
(m, z):

am =

∫
Y d(x, z)K(m,x)dx

Nm
=
Y
d
(m, z)

Nm
. (3.51)

The sought function Y d(x, z) is thus given by the sum

Y d(x, z) =
∑

n

Y
d
(n, z)

Nn
J(n, x). (3.52)

This is the inverse Sturm–Liouville transformation in the non self-adjoint case.
Accordingly, we have to solve two eigenvalue problems. We use the eigenfunctions of the

adjoint problem in the SL transformation, but the eigenfunctions of the original operator
form the basis of the series expansion in the inverse SL transformation.

3.4 Summary

We managed to convert the governing differential equation of the string into a parallel
filter bank structure. The process is similar for the rod, the membrane, the plate or the
cylindrical shell. The steps are the same, the difference lies in the values of σ(n) and ω(n)

and the shape of the transformation kernels K and J . Thus it is sufficient to determine
these quantities and to modify the parameters of the filter bank accordingly. Either a new
instrument is investigated or the underlying governing equation is refined, the parallel filter
bank remains.

The eigenvalue problem (3.47) of the transformation kernel J is actually the equation
solved after separation of variables in the well-known process of solving differential equa-
tions. Thus functions J(n, x) describe the form of the modes. The inverse Sturm–Liouville
transformation expresses the sought function by means of these mode shape functions.
Thus our model can be considered as the superposition of the time-varying mode shape
functions.

Since no spatial discretization has been done, we can choose an arbitrary point of the
domain of definition, in which we want to calculate the sought function. We can assume
an excitation with arbitrary spatial distribution too. Only the weighting factor a(n, x) has
to be calculated accordingly.

According to the parallel filter structure this model suggests the additive synthesis with
the significant difference that the coefficients of the filters are not obtained from the study of
the voice but from physical parameters. The functional transformation method combines
thus the benefits of the physical and additive modeling. Namely the voice is controlled
by the physical properties but the computational demand is commensurable to the one
of additive models and can be run efficiently on DSP-s according to the filter structure.
This has of course a price, the amount of the preliminary computation. In the case of
the finite difference method the difference equation is solved directly, the computational

28



3.4. Summary

demand is high, but we are able to solve easily nonlinear equations too. In the case of the
digital waveguide we use d’Alambert’s solution which reduces the computational demand
drastically, but it is hard to apply the method on dispersive systems for example. In the
case of the functional transformation method we arrive at the most simple parallel filter
structure at the expense of the most preliminary computation.
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Chapter 4

Finite Difference Method

We introduce the finite difference method in this section, that is the way how one can turn
the differential equations into a recurrence equation, which we mentioned in section 1.2.3.
This is one of the simplest methods to solve a differential equation numerically. It could
be used to implement the investigated differential equations directly, but as we mentioned
this is a relatively computation costly method, thus it is not worthy to use it in real-time
applications for the present. We will use it to compute the transformation kernels of the
functional transformation method. This do not need to be calculated in real-time as long
as we do not want to alter the parameters of the instrument during the usage.

4.1 Derivation of the Recurrence Equation

We set out from the definition of the derivative and since it does not presents difficulty,
we start with the two-dimensional case.

4.1.1 The Difference Quotients

The partial derivative of a function of two variables with respect to one of the variables
is defined as the ordinary derivative with respect to the variable in question1. That is the
partial derivative of v(x1, x2) with respect to x1 is

∂v(x1, x2)

∂x1
= lim

∆x1→0

v(x1 + ∆x1, x2)− v(x1, x2)

∆x1
. (4.1)

In the case of the finite difference method we determine the sought function (the transversal
deflection for example) in certain predefined points of the domain of definition (the plate
or shell) only. In the simplest case these points are defined by means of an equidistant
partition in both directions, in this way the points form an equidistant grid (see figure
4.2), and the difference quotients are expressible by means of simple formulas. We will see
in section 7.2 that sometimes the geometry prevents this kind of division, in such cases the

1See [2] for example.
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4. Finite Difference Method

formulas get elaborate. Let thus the partition in both directions be

x1min ≤ x1 ≤ x1max ⇒ x1min = x11, x12, . . . , x1n = x1max, (4.2a)

x2min ≤ x2 ≤ x2max ⇒ x2min = x21, x22, . . . , x2m = x2max. (4.2b)

With this partition, the number of points is nm, while the step-size in directions x1 and
x2 are ∆x1 = (x1max − x1min)/(n− 1) and ∆x2 = (x2max − x2min)/(m− 1) respectively.
Let us introduce a simplifying designation as well, let the values of v(x1, x2) in the above
defined points be

v(x1i, x2j) ≡ vi,j . (4.3)

Since the function is given in predefined points only, we are not able to determine
the limit in the formula (4.1) of the derivative, and we have to use approximation. One
possibility is the so-called forward difference

∂v(x1, x2)

∂x1

∣∣∣∣
(x1i,x2j)

∼= vi+1,j − vi,j
∆x1

≡ ∆1v

∆x1
, (4.4)

where, adopted the customary designation, ∆i stands for the finite difference in the nu-
merator. The subscript indicates the variable, according to which the difference have to
be taken. The so-called backward and central differences are in use too, which are the
followings

∇1v

∆x1
≡ vi,j − vi−1,j

∆x1
,

δ1v

2∆x1
≡ vi+1,j − vi−1,j

2∆x1
. (4.5)

4.1.2 The Error of Difference Quotients

We can estimate the errors of the various difference quotients by the help of the Taylors
series. Let us see the central difference for example. Applying the Taylor expansion on
function v(x1, x2), we can write

vi+1,j = vi,j +

(
∂v

∂x1

∣∣∣∣
(x1i,x2j)

∆x1

)
+

(
1

2!

∂2v

∂x2
1

∣∣∣∣
(x1i,x2j)

∆x1
2

)
+

+

(
1

3!

∂3v

∂x3
1

∣∣∣∣
(x1i+Θa∆x1,x2j)

∆x1
3

)
,

vi−1,j = vi,j −
(
∂v

∂x1

∣∣∣∣
(x1i,x2j)

∆x1

)
+

(
1

2!

∂2v

∂x2
1

∣∣∣∣
(x1i,x2j)

∆x1
2

)
−

−
(

1

3!

∂3v

∂x3
1

∣∣∣∣
(x1i−Θb∆x1,x2j)

∆x1
3

)
, (4.6)
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Figure 4.1: The stencil of the differential operator L{.} = ∂4

∂x21∂x
2
2

where (0 < Θa,Θb < 1), and we get for the difference quotient that

δ1v

2∆x1
=

∂v

∂x1

∣∣∣∣
(x1i,x2j)

+
1

3!

∂3v

∂x3
1

∣∣∣∣
(x1i+Θa∆x1,x2j)

∆x1
2

2

+
1

3!

∂3v

∂x3
1

∣∣∣∣
(x1i−Θb∆x1,x2j)

∆x1
2

2
=

∂v

∂x1

∣∣∣∣
(x1i,x2j)

+O(∆x2
1). (4.7)

Thus if v is three times differentiable with respect to x1, than the discretization error is
proportional to the square of spacing ∆x1. It can be shown in the same way, that the error
of the forward and backward differences is proportional to the step-size.

4.1.3 Higher-order Difference Quotients

Since the higher order derivatives are defined as the derivatives of the lower ones, the
higher order difference quotients can be derived from the first order quotient. We can get
the second order central difference quotient with respect to x2 in the following manner2

∂2v

∂x2
2

∼= ∆2(∇2vi,j) = ∇2(∆2vi,j) =
vi,j+1 − 2vi,j + vi,j−1

∆x2
2

. (4.8)

It can be shown that this approximation has an error of order of ∆2x2.
We can establish the higher order and mixed difference quotients with the same tech-

nique. The finite difference quotients approximating the third and fourth order and the

2See in [19] for example.
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twice second order mixed derivatives are the followings:

∂3v

∂x3
1

∼= vi+2,j − 2vi+1,j + 2vi−1,j − vi−2,j

2∆x3
1

,

∂4v

∂x4
1

∼= vi+2,j − 4vi+1,j + 6vi,j − 4vi−1,j + vi−2,j

∆x4
1

, (4.9)

∂4v

∂x2
1∂x

2
2

∼= vi+1,j+1 − 2vi,j+1 + vi−1,j+1 − 2vi+1,j + 4vi,j − 2vi−1,j

∆x2
1∆x2

2

+
vi+1,j−1 − 2vi,j−1 + vi−1,j−1

∆x2
1∆x2

2

.

The finite differences determine which adjacent function values with what weight have to
be taken in the approximation of the given derivative at the given point. These data can
be illustrated by the help of the so-called stencil. In the case of the upper mixed finite
difference the stencil is illustrated in figure 4.1.

4.1.4 The Differential Operator as a Matrix

Consider a differential equation in operator form

D{v} = f. (4.10)

Since the function is sought in points given by (4.2) only, it is worthwhile to apply the
designation (4.3) to function f too. For the sake of the matrix form we have to modify our
designation further, however. Let us construct two one-dimensional arrays from the values
of vi,j and fi,j as follows: let form the function values at points x1 = x11, x12, . . . , x1n, x2 =

x21 the first n element of the arrays. Let the function values at x1 = x11, x12, . . . , x1n, x2 =

x22 form the next n element, and so on. In this case the one-dimensional arrays are

v = [v1,1, v2,1, v3,1, . . . , vn,1 , v1,2, . . . , vn,2 , v1,3, . . . , v1,m, v2,m, . . . , vn,m]T , (4.11a)

f = [f1,1, f2,1, f3,1, . . . , fn,1 , f1,2, . . . , fn,2 , f1,3, . . . , f1,m, f2,m, . . . , fn,m]T , (4.11b)

where vT stands for the transpose of v. This designation corresponds to a numbering of
the points (see figure 4.2).

Let us suppose as an example, that the differential equation (4.10) stands for

∂2v

∂x2
1

+
∂2v

∂x2
2

= f. (4.12)

The finite difference approximation of this equation in point (x1i, x2j) is

vi+1,j − 2vi,j + vi−1,j

∆x2
1

+
vi,j+1 − 2vi,j + vi,j−1

∆x2
2

= fi,j , (4.13)

or switching over to our new notation (4.11) and entering the designation S1 = 1/∆x2
1 and

S2 = 1/∆x2
2, we can say that the i + (j − 1)n-th element of f depends on the following
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Figure 4.2: The serial numbers of the points of domain of definition.

elements of v

S1vi+1+(j−1)n − 2S1vi+(j−1)n + S1vi−1+(j−1)n+

+S2vi+jn − 2S2vi+(j−1)n + S2vi+(j−2)n = fi+(j−1)n. (4.14)

This linear combination is, of course, expressible by means of a matrix too

Dv = f, (4.15)

where the quadratic block matrix D of size (nm× nm) has the following form in this case

D =




B S2I 0 0 · · · 0 0 0

S2I B S2I 0 0 0 0

0 S2I B S2I 0 0 0

0 0 S2I B 0 0 0
...

. . .

0 0 0 0 B S2I 0

0 0 0 0 S2I B S2I
0 0 0 0 0 S2I B




. (4.16)

Herein matrix I is the unit matrix of size (n × n), while B is a quadratic matrix of the
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same size, which is

B =




−2(S1 + S2) S1 0 · · · 0 0

S1 −2(S1 + S2) S1 0 0

0 S1 −2(S1 + S2) 0 0
...

. . .

0 0 0 −2(S1 + S2) S1

0 0 0 S1 −2(S1 + S2)




.

(4.17)
Thus we managed to convert the differential equation (4.12) into the matrix represen-

tation (4.15) by the help of the finite different method. It is apparent that we get the
differential equation back when ∆x1 → 0 and ∆x2 → 0, but the size of matrix D and vec-
tors v and f become infinite. We referred to this matrix – differential operator connection
in section 2.1.1.2, as we defined the adjoint differential operator.

One can construct the matrix D corresponding to any differential operator in the same
way. We will use this version of the finite difference method to solve the Sturm–Liouville
eigenvalue-problems arising in the functional transformation method.

As we mentioned in section 2.1.1.2, the differential operator gives not a complete de-
scription about a system, we need boundary conditions too.

4.1.5 Boundary Conditions

The upper derived matrix D gives a correct description about the differential operator in
those points only, where all those points exist which are necessary for the approximation
of the operator in the point in question. In the case of the upper example, matrix D sees
four adjacent points on the edges and three adjacent points in the corners only, thus D is
not enough to determine the functional value in this points.

The conditions on the sought function and its derivatives prescribed by the boundary
conditions can be described by the help of finite difference approximations also. Let the
boundary conditions corresponding to the operator, defined by equation (4.12), be the
followings for example

∂2v

∂x2
1

∣∣∣∣
(x1min,x2)

= 0, (4.18a)

∂v

∂x1

∣∣∣∣
(x1max,x2)

= 0, (4.18b)

∂2v

∂x2
2

∣∣∣∣
(x1,x2min)

= 0, (4.18c)

∂v

∂x2

∣∣∣∣
(x1,x2max)

= 0. (4.18d)

We have at least two different possibility to take the boundary conditions into considera-
tion.
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Virtual Points One possible solution is to consider virtual points outside the domain of
the operator. With the help of these the finite difference operator can be expressed in the
same form on the edges too. In this case these points are defined by the coordinates

(x10, x2i), (4.19a)

(x1(n+1), x2i), (4.19b)

(x1i, x20), (4.19c)

(x1i, x2(m+1)) (4.19d)

beyond the edges

(x1, x2) = (x1min, x2), (4.20a)

(x1, x2) = (x1max, x2), (4.20b)

(x1, x2) = (x1, x2min), (4.20c)

(x1, x2) = (x1, x2max) (4.20d)

In these points the values of vi,j are expressed by means of the finite different approxima-
tions of the boundary conditions. In our example the following algebraic equations can be
derived from the boundary conditions (4.18):

v0,j − 2v1,j + v2,j

∆x2
1

= 0, (4.21a)

vn+1,j − vn−1,j

2∆x1
= 0, (4.21b)

vi,0 − 2vi,1 + vi,2
∆x2

2

= 0, (4.21c)

vi,m+1 − vi,m−1

2∆x2
= 0, (4.21d)

where (i = 1, 2, . . . , n) and (j = 1, 2, . . . ,m). Thus v0,j , vn+1,j , vi,0 and vi,m+1 are all ex-
pressible from values inside the domain of the operator. We can say according the first
equation for example that v0,j = 2v1,j − v2,j . Thus as we are evaluating the stencil cor-
responding to D in points v1,j , and we need the S1-fold of points v0,j , we can take them
into account as S1(2v1,j−v2,j). Accordingly, the stencil suffers some distortion near by the
edges. We can take into account other types of boundary conditions in the same way.

One-sided Differential Quotients In the case of the other method we are distorting
the finite differences of the boundary conditions in such a way that they rely on values inside
the domain of the operator only. In the upper example we have to use backward differences
to approximate the boundary condition on edge (x1, x2) = (x1max, x2) for example. Note
that by the help of the Taylor series we are able to construct any non-symmetric finite
difference quotient for the approximation of any derivative.

It can come up the question if the upper two methods leads to different result, that is
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4. Finite Difference Method

they result in different distortion of the stencil. Let us thus investigate the edge (x1, x2) =

(x1max, x2) of our example. According to the first method we get that along this edge
vn+1,j = vn−1,j , thus vn−1,j has to be taken 2S1 times instead of S1 times.
In the second case we get on the grounds of the backward difference that vn,j = vn−1,j .
The difference operator has not to be considered on points (x1n, x2j), where the solution is
determined by the upper equation. The difference operator is thus in point (x1(n−1), x2j)

S1(vn−2,j − vn−1,j) + S2(vn−1,j+1 − 2vn−1,j + vn−1,j−1) = fn−1,j . It is apparent thus that
the two methods result in different stencil.

4.2 The Eigenvalue Problem

We want to use the matrix representation of differential operators to solve the eigenvalue
problem (3.15) arising in the functional transformation method. The eigenvalue problem
of a differential operator can be expressed as

D{v} = λnv. (4.22)

On the right side of equation (4.10) can thus be found not a given function f , but the
multiple of v itself. Here do we profit by the matrix representation as we do not have to
change anything in our upper train of thought. We have to simply write

Dv = λnv (4.23)

where D can be determined as formerly. The difference is only, that we are seeking not
the specific solution of the linear algebraic system of equations (4.15) in view of f, but
those vectors v and corresponding scalars λn which satisfy equation (4.23). This means
the solution of an ordinary matrix eigenvalue-problem, for which long standing numerical
methods exist3, MatLab offers the functions eig and eigs for eigenvalue calculations (see
[16]).

4.3 Non Self-adjoint Problem

We have introduced an analytical method for the derivation of the adjoint of a differential
operator in section 2.1.1.2, but we mentioned that the finite different method can be used
for this aim too. In our case this will be the more effective way, because with the matrix D
corresponding the original operator in hands we can easily get the matrix corresponding
to the adjoint operator as the adjoint of matrix D (see in [8]). On the grounds of this
adjoint matrix we can determine the corresponding differential operator and boundary
conditions, that is the adjoint operator. We do not need this last step, however, as the
eigenvalue-problem of the adjoint operator will be solved by the help of the adjoint matrix
itself.

Note that according to our experiences the matrix of the adjoint operator L̃ coincides

3See in [17] for example.
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4.3. Non Self-adjoint Problem

with the adjoint of matrix of the original operator L in certain simple cases, but by the
more complex operators some difference occurs. We can not explain this symptom, but we
assume, that we can use the adjoint matrix to determine the adjoint eigenfunctions in the
case of small step-sizes.
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Chapter 5

Plate Equations

In this section the derivation of the differential equations of plates is introduced. In section
5.1 the governing equation of transverse motion is derived following the steps suggested
in Appendix 1.3. During the derivation variables are introduced, by the help of which the
in-plane motion of the plate can be taken into account too. These are utilized in section 5.2,
where the governing equations of in-plane motion of the plate are developed. These and
the governing equation of the transverse motion form a coupled system of three differential
equations.

5.1 Equation of the Transverse Motion

The well known plate equation of an isotropic plate with constant thickness is

D∇4w + ρh
∂2w

∂t2
= q, (5.1)

where w(x1, x2, t) is the transverse deflection, D the bending rigidity, ρ the mass density,
h the thickness of the plate and q the distributed excitation (force per unit area) applied
to the plate, respectively. This equation describes the transverse motion of the plate, and
gives no guidance regarding the influence of the in-plane stresses.

In this section a more elaborate governing equation will be derived. We will assume the
material of the plate being orthotropic1 with coordinate axes being the axes of symmetry.
The in-plane tension will be taken into account too, which will give rise to take curvatures
into account in section 6.

The simplifications will be carried out on the grounds of [9], however, the steps will be
arranged according to section 1.3. The notation introduced in Appendix F.1 will be used,
which differs slightly from the one used in [9].

Let us consider the neutral surface of the plate, which lies in the case of an orthotropic
plate of constant thickness midway through the thickness. We suppose that the lines ini-
tially perpendicular to the neutral surface remain straight and perpendicular during the
motion. Accordingly, the transversal motion of the plate is completely described by the

1See Appendix F.1.6.

41



5. Plate Equations

transversal motion of the neutral surface. Let us denote the transversal deflection by
w(x1, x2), where the plane x1-x2 is the plane of the plate. Our aim is to derive a gov-
erning differential equation for w(x1, x2) which can be solved according the excitation and
initial and boundary conditions, respectively.

The excitation is the force per unit area acting on the plate and will be denoted by
q(x1, x2, t).

Let us follow the steps proposed in section 1.3.

5.1.1 Kinematics (strain – displacement relation)

Sought is the relation between the deflection w(x1, x2) and the strains arising within the
plate. We are not interested in all the possible strains, the normal strains and the shearing
strain measured in the plane of the plate will be sufficient. These are according equations
(F.1.34) and (F.1.37) expressible by the help of the components of the displacement vector
u(r)

ε1 =
∂u1

∂x1
, (5.2a)

ε2 =
∂u2

∂x2
, (5.2b)

γ12 =
∂u1

∂x2
+
∂u2

∂x1
. (5.2c)

The components u1 and u2 depends not only on the coordinates x1 and x2, but also on
the curvature of the plate. Thus, the strain varies along the cross-section. Let us consider
figure 5.1. For the sake of simplicity depicted is only one coordinate of the plane of plate,
the strain can be determined in a same way for both directions, however, thus the abscissa
denotes both the coordinates. The displacements ui on the neutral surface are denoted by
ûi, thus according the figure point p undergoes a displacement of ûi and shifts into the point
P . The point o above p by a distance of z moves into O and it is clear that it undergoes
a smaller displacement. The difference of displacements is z ∂w

∂xi
, thus the displacement in

the plane above the neutral surface by a distance of z is given by the system of equations

u1 = û1 − z
∂w

∂x1
, (5.3a)

u2 = û2 − z
∂w

∂x2
. (5.3b)

Substituting these equations into equations (5.2) gives
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5.1. Equation of the Transverse Motion

w

xi

∂w
∂xi

O

o

P

p

ui

ûi

z

z

Figure 5.1: Deformed element of the plate. The points o and p shift into O
and P . Due to the bending of the plate element point o undergoes
a smaller displacement as p.

ε1 =
∂û1

∂x1
− z ∂

2w

∂x2
1

, (5.4a)

ε2 =
∂û2

∂x2
− z ∂

2w

∂x2
2

, (5.4b)

γ12 =
∂û1

∂x2
+
∂û2

∂x1
− 2 z

∂2w

∂x∂y
. (5.4c)

We have thus the strains within the plate, expressed by means of the transversal and
in-plane displacements of the middle surface.

5.1.2 Hooke’s law (stress – strain relation)

The material of the plate is considered orthotropic thus the Hooke’s law can be described
by means of equations (F.1.51) and (F.1.52). We are interested in strains ε1, ε2 and γ12

and the corresponding stresses, thus the rows according ε3, γ23 and γ31 and the columns
according to σ3, τ23 and τ31 can be deleted from the compliance matrix. This way we get




ε1

ε2

γ12


 =




1
E1

−ν12
E1

0

−ν21
E2

1
E2

0

0 0 1
G12







σ1

σ2

τ12


 . (5.5)

We have to determine the stiffness matrix from the compliance matrix, since we want
to express the stresses by means of the strains. This can be carried out by inverting the
compliance matrix, which yields
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5. Plate Equations




σ1

σ2

τ12


 =




E1
1−ν12 ν21

ν12E2
1−ν12 ν21 0

ν21E1
1−ν12 ν21

E2
1−ν12 ν21 0

0 0 G12







ε1

ε2

γ12


 . (5.6)

This is Hooke’s law concerning the relevant stresses and strains of the plate. Now, we are
able to substitute the expressions of strains (5.4) into the Hooke’s law and we get

σ1 =
E1

1− ν12 ν21

(
∂û1

∂x1
− z ∂

2w

∂x2
1

)
+

ν12E2

1− ν12 ν21

(
∂û2

∂x2
− z ∂

2w

∂x2
2

)
,

σ2 =
ν21E1

1− ν12 ν21

(
∂û1

∂x1
− z ∂

2w

∂x2
1

)
+

E2

1− ν12 ν21

(
∂û2

∂x2
− z ∂

2w

∂x2
2

)
,

τ12 = G12

(
∂û1

∂x2
+
∂û2

∂x1
− 2 z

∂2w

∂x∂y

)
. (5.7a)

We managed, thus to express the normal and shear stresses by means of the transversal
and in-plane deflections of the middle surface.

Note, that by the help of the symmetry constraint (F.1.52a)

ν21E1 = ν12E2 (5.8)

the number of independent elastic parameters is reducible to four, but for the sake of
simplicity we will use the five material constants, keeping in mind that they are linked
with each other by means of the symmetry constraint.

5.1.3 Resultants (moment of force & tension – stress relation)

We can obtain the in-plane normal and shearing force intensities N1, N2 and N12, the
bending moment intensities M1 and M2 and the twisting moment intensity M12 depicted
on figures 5.2 and 5.3 by integration over the thickness as follows

N1 =

∫ h/2

−h/2
σ1 dz,

N2 =

∫ h/2

−h/2
σ2 dz,

N12 =

∫ h/2

−h/2
τ12 dz,

M1 =

∫ h/2

−h/2
σ1z dz,

M2 =

∫ h/2

−h/2
σ2z dz,

M12 =

∫ h/2

−h/2
τ12z dz. (5.9)
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x1

x2

x3

dx1

dx2

N12 +
∂N12

∂x1
dx1

Q1 +
∂Q1

∂x1
dx1

N1 +
∂N1

∂x1
dx1

Q2 +
∂Q2

∂x2
dx2

N2 +
∂N2

∂x2
dx2

N12 +
∂N12

∂x2
dx2

N1N12

N12
Q1N2

Q2

q(x1, x2)

Figure 5.2: Forces on the plate element

x1

x2

x3

dx1

dx2

M1

M2

M12

M12

M1 +
∂M1

∂x1
dx1

M2 +
∂M2

∂x2
dx2

M12 +
∂M12

∂x1
dx1

M12 +
∂M12

∂x1
dx1

Figure 5.3: Moments on the plate element
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Let us determine the bending moment M1 for example, which arises due to the variation
of σ1 through the thickness. The integration gives

M1 =

∫ h/2

−h/2
σ1 z dz

=

∫ h/2

−h/2

1

1− ν12 ν21

(
E1
∂û1

∂x1
z + ν12E2

∂û2

∂x2
z − E1

∂2w

∂x2
1

z2 − ν12E2
∂2w

∂x2
2

z2

)
dz =

= −D1

(
∂2w

∂x2
1

+ ν21
∂2w

∂x2
2

)
, (5.10)

where equation (5.8) has been employed, and a new variable, the bending rigidity

D1 =
E1h

3

12 (1− ν12 ν21)
(5.11)

has been introduced. The terms containing odd powers of z are dropped out due to the
integration between symmetrical limits. We obtain the other moment integrals in a similar
manner

M2 = −D2

(
∂2w

∂x2
2

+ ν12
∂2w

∂x2
1

)
, (5.12a)

M12 = −2Dk
∂2w

∂x1∂x2
, (5.12b)

where

D2 =
E2h

3

12 (1− ν12ν21)
,

Dk = G12
h3

12
. (5.13)

The integrals concerning the in-plane normal and shear force densities are not developed
here. We would need the displacements ûi to determine these quantities, hence we would
get a coupled system of differential equations. This will be developed in section 5.2. In
the next steps we will take the in-plane forces into account, however, so we can derive the
system of equations easily in section 5.2.

5.1.4 Balance of moments (shearing force – moment of force relation)

The fourth task is to derive the balance of moments equation for the differential plate
element ( see figures 5.2, 5.3 and 5.4). Since the moments are summed in accordance with
the superposition principle, it is sufficient to determine the balance equations only about
the axes of coordinate.

Note, that dx1 and dx2 are both infinitesimal lengths, thus the surfaces of the plate
element given by equations x3 = h/2 and x3 = −h/2 have infinitesimal area too. Therefore
there does not arise any moment on these surfaces and there is not any moment about the
axis x3 on the other surfaces. Since there is not any moment about the axis x3 on the plate
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x1

x2

x3, w

dx1

dx2

∂w
∂x2

∂w
∂x1

∂w
∂x2

+ ∂
∂x1

∂w
∂x2

dx1

∂w
∂x1

+ ∂
∂x1

∂w
∂x1

dx1

∂w
∂x2

+ ∂
∂x2

∂w
∂x2

dx2

∂w
∂x1

+ ∂
∂x2

∂w
∂x1

dx2

∂w
∂x2

+ ∂
∂x1

∂w
∂x2

dx1

+ ∂
∂x2

(
∂w
∂x2

+ ∂
∂x1

∂w
∂x2

dx1

)
dx2

∂w
∂x1

+ ∂
∂x2

∂w
∂x1

dx2

+ ∂
∂x1

(
∂w
∂x1

+ ∂
∂x2

∂w
∂x1

dx2

)
dx1

Figure 5.4: Deformed middle surface of a plate element and the slopes on the
edges.

element, the balance of moments simplifies about this axis to N12 = N21, which is satisfied
automatically in accordance with equation (F.1.25).

Let us derive the balance of moments about axis x1. Moment arises from shearing force
intensity Q2, from moment intensities M12, M2 and in the case of the deformed plate (see
figure 5.4) from shearing force intensity N12. This last term multiplied by the small angle
∂w
∂x1

. The equation is thus

0 ∼= dL

dt
= Q2 dx1

dx2

2
+

(
Q2 +

∂Q2

∂x2
dx2

)
dx1

dx2

2
+

+N12
∂w

∂x1
dx1

dx2

2
+

(
N12 +

∂N12

∂x2
dx2

)(
∂w

∂x1
+

∂2w

∂x2∂x1
dx2

)
dx1

dx2

2
+

+M12 dx2 −
(
M12 +

∂M12

∂x1
dx1

)
dx2+

+M2 dx1 −
(
M2 +

∂M2

∂x2
dx2

)
dx1. (5.14)

It is apparent, that the moment of inertia was neglected. After simplifications and dividing
by dx1dx2 we get

0 ∼= Q2 +
∂Q2

∂x2

dx2

2
+N12

∂w

∂x1
+N12

∂2w

∂x2∂x1

dx2

2
+

+
∂N12

∂x2

∂w

∂x1

dx2

2
+
∂N12

∂x2

∂2w

∂x2∂x1

dx2
2

2
− ∂M12

∂x1
− ∂M2

∂x2
. (5.15)
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If we assume the terms containing dx2 or partial derivatives of w small enough to be
negligible, we arrive at

Q2 −
∂M12

∂x1
− ∂M2

∂x2

∼= 0. (5.16)

In the same way we get from the balance of moments about axis x2

Q1 −
∂M1

∂x1
− ∂M12

∂x2

∼= 0. (5.17)

Now, we are able to substituteM12 andM2 from equations (5.12b) and (5.12a) into (5.16).
By the help of the symmetry equation (5.8) we arrive at the expression for the shearing
force intensity

Q2 = − ∂

∂x2

(
D12

∂2w

∂x2
1

+D2
∂2w

∂x2
2

)
, (5.18)

where the notation
D12 = ν21D1 + 2Dk = ν12D2 + 2Dk (5.19)

is introduced. In the same way we get for Q1 that

Q1 = − ∂

∂x1

(
D1

∂2w

∂x2
1

+D12
∂2w

∂x2
2

)
. (5.20)

We succeed thus to express the shearing force intensities by means of the transverse de-
flection of the middle surface. The next step is to put down the balance of forces equation.

5.1.5 Balance of forces (displacement – shearing force relation)

Supposing small slopes, that is the tangent and the sine of the angles are taken equivalent
and the cosine are taken unity, and considering figures 5.2 and 5.4 we are able to write
down Newton’s second law in direction x3 as follows

ρ hdx1 dx2
∂2w

∂t2
=
∂Q1

∂x1
dx1 dx2 +

∂Q2

∂x2
dx1 dx2−

−N1dx2
∂w

∂x1
+

(
N1 +

∂N1

∂x1
dx1

)
dx2

(
∂w

∂x1
+
∂2w

∂x2
1

dx1

)
−

−N2dx1
∂w

∂x2
+

(
N2 +

∂N2

∂x2
dx2

)
dx1

(
∂w

∂x2
+
∂2w

∂x2
2

dx2

)
−

−N12dx1
∂w

∂x1
+

(
N12 +

∂N12

∂x2
dx2

)
dx1

(
∂w

∂x1
+

∂2w

∂x1∂x2
dx2

)
−

−N12dx2
∂w

∂x2
+

(
N12 +

∂N12

∂x1
dx1

)
dx2

(
∂w

∂x2
+

∂2w

∂x1∂x2
dx1

)
+

+ q dx1 dx2, (5.21)

where ρ is the mass density per unit volume, h is the thickness of the plate and ∂2w
∂t2

is the
acceleration of the middle surface in direction x3. Discarding the third-order differential
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terms, and dividing by the area dx1 dx2, we get

ρ h
∂2w

∂t2
=
∂Q1

∂x1
+
∂Q2

∂x2
+

∂

∂x1

(
N1

∂w

∂x1

)
+

∂

∂x2

(
N2

∂w

∂x2

)
+

+
∂

∂x1

(
N12

∂w

∂x2

)
+

∂

∂x2

(
N12

∂w

∂x1

)
+ q. (5.22)

This equation can be further simplified by the help of the stress equilibrium equations.
The stress equilibrium is generally determined by equation (F.1.23), however if we assume
the motion in directions x1 and x2 negligible, the static equilibrium equation (F.1.24) can
be used. Thus, according the symmetry equation (F.1.25) we get

∂σ11

∂x1
+
∂σ12

∂x2
+
∂σ31

∂x3
= 0,

∂σ12

∂x1
+
∂σ22

∂x2
+
∂σ32

∂x3
= 0. (5.23)

In order to apply these equations to the differential element, we have to integrate the
stresses σij over the surfaces given by xi = constant. Since the areas of the surfaces
determined by equations x3 = h/2 and x3 = −h/2 are infinitesimal, the stresses σ31 and
σ32 vanish. Assuming that integration over the surface xi = constant and differentiation
with respect to xi are commutable, the equations become according to equations (5.9)

∂N1

∂x1
+
∂N12

∂x2
= 0,

∂N12

∂x1
+
∂N2

∂x2
= 0. (5.24)

Thus, equation (5.22) turns into

∂Q1

∂x1
+
∂Q2

∂x2
+N1

∂2w

∂x2
1

+N2
∂2w

∂x2
2

+ 2N12
∂2w

∂x1∂x2
+ q = ρ h

∂2w

∂t2
. (5.25)

Now, we are able to substitute the shearing force intensities Q1 and Q2 from equations
(5.20) and (5.18). With this last step we arrive at the governing equation of the transversal
or bending motion of the orthotropic plate

D1
∂4w

∂x4
1

+2D12
∂4w

∂x2
1∂x

2
2

+D2
∂4w

∂x4
2

+ρ h
∂2w

∂t2
= N1

∂2w

∂x2
1

+N2
∂2w

∂x2
2

+2N12
∂2w

∂x1∂x2
+q, (5.26)

where D1, D2, D12 and ρ are material parameters and N1, N2 and N12 are the normal
and shearing force densities. The last terms are generally functions of coordinates x1 and
x2 and time t, and can be computed according equations (5.9). For the sake of this we
need to determine the in-plane motion of the plate too, and would get a coupled system
of three differential equations. This will be carried out in the next section. However, if the
longitudinal motion is neglected, that is we assume û1 = û2 = 0, the force densities become
equal to zero. With this assumption we arrive at the well-known plate equation, which is
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in the orthotropic case

D1
∂4w

∂x4
1

+ 2D12
∂4w

∂x2
1∂x

2
2

+D2
∂4w

∂x4
2

+ ρ h
∂2w

∂t2
= q. (5.27)

This equation turns in the case of isotropy, where E1 = E2 = E, ν12 = ν21 = ν, and
G = E/2(1 + ν) into

D

(
∂4w

∂x4
1

+ 2
∂4w

∂x2
1∂x

2
2

+
∂4w

∂x4
2

)
+ ρ h

∂2w

∂t2
= q, (5.28)

or using the more convenient ∇ operator

D∇4w + ρ h
∂2w

∂t2
= q. (5.29)

Note, that outgoing from equation (5.26) it is possible to create the governing equation
of the membrane too. By assuming the plate being thin enough to be D1, D2 and D12

negligible, equation (5.26) turns into

ρ h
∂2w

∂t2
= N1

∂2w

∂x2
1

+N2
∂2w

∂x2
2

+ 2N12
∂2w

∂x1∂x2
+ q. (5.30)

Here, the restoring force arises from N1, N2 and N12. In the case of the membrane much of
the force intensities originate in the tension applied on the edges, the term according the
motion gives only a small variation. Thus, the in-plane force intensities can be assumed
constant to a first approximation.

We obtained thus the governing equation of the transverse motion of an orthotropic
plate. The spatial difference operator is linear, thus we can develop a matrix corresponding
to the finite difference operator by the help of the finite difference method overviewed in
section 4.

The governing equation can be adapted to plates with variable thickness too. In this
case the thickness h and consequently the bending stiffness Di depends on the coordinates
xi, thus shear forces Qi have to be determined directly from equations (5.16) and (5.17)
and the product rule of differentiation have to be applied.

5.2 Equations of the in-plane Motion

In this section the equation of transverse motion is completed with the equations of in-plane
motions. We will see that these equations form a system of coupled differential equations,
and contain such products of derivatives, which cause nonlinearities.

We have to develop Newton’s second law for the motions in directions x1 and x2, that
is for û1 and û2. The situation is a bit more complicated compared with figure 5.4, as
shear strains arise in the plane of the plate. The sides of the differential element are not
perpendicular to each other any more and not parallel to the coordinate axes either. Every
side of the element rotates around every coordinate axis. This makes relatively complicated
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5.2. Equations of the in-plane Motion

to determine the components of the force and moment densities in a given direction for
the first sight. The problem can be solved in the following way.

If we determine the rotation matrices about the axes of coordinate with the approxi-
mation cos(.) = 1 according to the small angles and multiply them we get the matrix of
the general three-dimensional rotation. The six different matrices corresponding the six
different order of rotation differs from each other only in terms of order sin(.)2 or sin(.)3,
thus they can be treated equal. The rotation matrix is

R =




1 − sin(γ) sin(β)

sin(γ) 1 − sin(α)

− sin(β) sin(α) 1


 , (5.31)

where α, β and γ are the angles of rotation in the planes perpendicular to x1, x2 and x3,
respectively. Since the force and moment densities are parallel to the coordinate axis in
the rest position, their components after the rotation can be determined as multiples of
the columns of the rotation matrix, namely

g1 = (g1, 0, 0)T ⇒ g′1 = (g1, g1 sin(γ),−g1 sin(β))T , (5.32a)

g2 = (0, g2, 0)T ⇒ g′2 = (−g2 sin(γ), g2, g2 sin(α))T , (5.32b)

g3 = (0, 0, g3)T ⇒ g′3 = (g3 sin(β),−g3 sin(α), g3)T . (5.32c)

With these we can determine the components of the force and momentum densities in each
direction, and derive Newton’s second law concerning the in-plane deflections û1 and û2.
We get in direction x1

ρ hdx1 dx2
∂2û1

∂t2
= −N1 dx2 +

(
N1 +

∂N1

∂x1
dx1

)
dx2

−N12 dx1 +

(
N12 +

∂N12

∂x2
dx2

)
dx1

+Q2
∂w

∂x1
dx1 −

(
Q2 +

∂Q2

∂x2
dx2

)(
∂w

∂x1
+

∂2w

∂x2∂x1
dx2

)
dx1

+Q1
∂w

∂x1
dx2 −

(
Q1 +

∂Q1

∂x1
dx1

)(
∂w

∂x1
+
∂2w

∂x2
1

dx1

)
dx2

−N12
∂û1

∂x2
dx2 +

(
N12 +

∂N12

∂x1
dx1

)(
∂û1

∂x2
+

∂2û1

∂x1∂x2
dx1

)
dx2

+N2
∂û2

∂x1
dx1 −

(
N2 +

∂N2

∂x2
dx2

)(
∂û2

∂x1
+

∂2û2

∂x1∂x2
dx2

)
dx1. (5.33)

Dividing by the differential area dx1dx2 and neglecting the terms containing differential
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lengths we get

ρ h
∂2û1

∂t2
=
∂N1

∂x1
+
∂N12

∂x2
− ∂

∂x1

(
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∂x2
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(
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− ∂
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∂û2

∂x1

)
. (5.34)

Due to symmetry we can write for deflection û2 by means of the change of subscripts that

ρ h
∂2û2

∂t2
=
∂N2

∂x2
+
∂N12

∂x1
− ∂

∂x2

(
Q2

∂w

∂x2

)
− ∂

∂x1

(
Q1

∂w

∂x2

)

+
∂

∂x2

(
N12

∂û2

∂x1

)
− ∂

∂x1

(
N1

∂û1

∂x2

)
. (5.35)

The equation concerning deflection w remains the one derived in the preceding section. We
copy it here to let the three coupled differential equations see together:

ρ h
∂2w

∂t2
− q =

∂Q1

∂x1
+
∂Q2

∂x2
+

∂

∂x1

(
N1

∂w

∂x1

)
+

∂

∂x2

(
N2

∂w

∂x2

)
+

+
∂

∂x1

(
N12

∂w

∂x2

)
+

∂

∂x2

(
N12

∂w

∂x1

)
. (5.36)

We left the excitation q in the equation to indicate that even if the excitation transversal
is, in-plane motion arises due to the coupling. This in-plane motion affects the transversal
motion and has thus an effect on the radiated sound.

The in-plane force densities N1, N2 and N12 can be determined on the grounds of
equations (5.9) and (5.7):

N1 =
E1h

1− ν12ν21

(
∂û1

∂x1
+ ν21

∂û2

∂x2

)
, (5.37a)

N2 =
E2h

1− ν12ν21

(
∂û2

∂x2
+ ν12

∂û1

∂x1

)
, (5.37b)

N12 = G12h

(
∂û1

∂x2
+
∂û2

∂x1

)
. (5.37c)

It is apparent that the last four terms of the equations are responsible for the coupling,
but these cause the nonlinearity too. The equations can made linear by dropping these
terms out, but the coupling between the transversal and in-plane motions would vanish
too in this case and the benefit of the model would disappear.

This model offers a possible direction of improvement, but requires the ability of treating
nonlinearities too.
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Chapter 6

Shell Equations

6.1 The Cylindrical Shell

A number of approaches exist for the derivation of the equation governing the radial motion
of the cylindrical shell. The simplest one is the so-called membrane shell, where shearing
forces, twisting and bending moments are neglected. The derivation of the corresponding
equation and further references to other shell models can be found in [5].

In this section a simplified shell equation is presented, which takes the stiffness arising
due the curvature into account, but do not use the in-plane motion and the model remains
linear. The idea originates in a possible simplification of the ring equation derived in [5],
by which the coupling effect can be avoided. The result is a modified plate equation. We
will see, that the difference is only a term containing the deflection w, but no derivatives.
This is very helpful from a modeling point of view, since the transformation kernels of the
functional transformation method do not need to be modified.

We have to introduce a new coordinate system, which is in this case the cylindrical
coordinate system. Thus, the new coordinates r, ϕ and x2 are introduced, where r and ϕ
are the polar coordinates in the plane perpendicular to the axis of the cylindrical shell,
while x2 is measured along the axis of the cylindrical shell. It is worthwhile to introduce
the arc length x1 on the surface of the cylindrical shell too (see figures 6.1 and 6.2).

The radial motion of the cylindrical shell can be described by the function w(ϕ, x2, t),
or alternatively by w(x1, x2, t). The excitation is the force per unit area q(ϕ, x2, t) =

q(x1, x2, t) acting in radial direction.
Let us hence derive our simplified governing equation of the radial motion of cylindrical

shell by following up the steps suggested in section 1.3.

6.1.1 Kinematics (strain – displacement relation)

The first step is to relate the strains to the deflection. Similarly to the plate, we have to
express the in-plane normal strains ε1, ε2 and the in-plane shearing strain γ12 only. These
quantities are expressible from the displacement vector u(r) by means of the following
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equations:

ε1 =
∂u1

∂x1
,

ε2 =
∂u2

∂x2
,

γ12 =
∂u1

∂x2
+
∂u2

∂x1
. (6.1)

For the sake of simplicity we are neglecting the longitudinal motion in direction x2, that
is we assume û2

∼= 0. Due to the bendings strain arises however above and below the
middle surface, which can be expressed in the same way as in the case of the plate, thus
the longitudinal strain in direction x2 is

u2 = −z ∂w
∂x2

. (6.2)

In direction x1, owing to the radial motion strain arises in the middle plane too, the value
of which is, on the grounds of figure 6.2,

dû1 = dx′1 − dx1
∼= (w +R) dϕ−Rdϕ = wdϕ =

w

R
dx1, (6.3)

where the contribution of the differential increase ∂w/∂x1 of w to the value of dx′1 has
been neglected. Thus the deflection w of a differential element causes an elongation û1 in
direction x1. Thus higher force is required for the same deflection, since the force has to
cover the in-plane strains too. This gives the stability of shell structures (see figure 2.1).
The in-plane elongation du1 in the plane at a distance z above the middle plane is higher
as the one measured in the middle plane by z(dϕ′−dϕ), where the angle dϕ′ is (see figure
6.2)

dϕ′ = dϕ− ∂w

∂x1
− ∂2w

∂x2
1

dx1 +
∂w

∂x1
= dϕ− ∂2w

∂x2
1

dx1. (6.4)

Thus the in-plane elongation u1 is

u1 =
w

R
x1 − z

∂w

∂x1
. (6.5)

Substituting this and (6.2) into equations 6.1 gives the strains

ε1 =
w

R
− z ∂

2w

∂x2
1

,

ε2 = −z ∂
2w

∂x2
2

,

γ12 =
∂

∂x2

(w x1

R

)
− 2 z

∂2w

∂x1∂x2
. (6.6)

Note, that equation (6.3) is correct in the case when every point of the shell moves
radially only. In a real shell, however, longitudinal motion arises which compensate the
elongations of the differential elements, thus lower elongations are required. Our model
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6.1. The Cylindrical Shell

assigns a higher stiffness to the shell as necessary, this is the price if we want to avoid the
coupled system of equations.

6.1.2 Hooke’s law (stress – strain relation)

The second step is to relate the strains to the stresses by the help of Hooke’s law. In the
case of orthotropic material this can be carried out by substituting the determined strains
in equation 5.6, that is

σ1 =
E1

1− ν12ν21

(
w

R
− z ∂

2w

∂x2
1

− ν21z
∂2w

∂x2
2

)
,

σ2 =
E2

1− ν12ν21

(
ν12

w

R
− ν12z

∂2w

∂x2
1

− z ∂
2w

∂x2
2

)
,

τ12 = G12

(
∂

∂x2

(wx1

R

)
− 2 z

∂2w

∂x1∂x2

)
. (6.7)

6.1.3 Resultants (moment of force & tension – stress relation)

With these results we are able to determine the moment and force intensities acting on the
differential shell element as depicted on figure 6.1. According the definitions 5.9 we can get
for the intensities similarly to the treatment in section 5.1.3

M1 = −D1

(
∂2w

∂x2
1

+ ν21
∂2w

∂x2
2

)
, (6.8a)

M2 = −D2

(
ν12

∂2w

∂x2
1

+
∂2w

∂x2
2

)
, (6.8b)

M12 = −2Dk
∂2w

∂x1∂x2
, (6.8c)

N1 =
E1

1− ν12ν21

w h

R
, (6.8d)

N2 =
E2

1− ν12ν21
ν12

w h

R
, (6.8e)

N12 = G12 h
x1

R

∂w

∂x2
, (6.8f)

where again

D1 =
E1h

3

12 (1− ν12ν21)
, (6.9a)

D2 =
E2h

3

12 (1− ν12ν21)
, (6.9b)

Dk =
G12 h

3

12
. (6.9c)
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6.1.4 Balance of moments (shearing force – moment of force relation)

The balance of moments equation about axis x1 is, expressed by the moment and force
densities (see figure 6.1)

0 ∼= dL

dt
= Q2dx1

dx2

2
+

(
Q2 +

∂Q2

∂dx2
dx2

)
dx1

dx2

2
+

+N12
∂w

∂x1
dx1

dx2

2
+

(
N12 +

∂N12

∂dx2
dx2

)(
∂w

∂x1
+

∂2w

∂x2∂x1
dx2

)
dx1

dx2

2
+

+M12dx2 −
(
M12 +

∂M12

∂x1
dx1

)
dx2+

+M2dx1 −
(
M2 +

∂M2

∂x2
dx2

)
dx1, (6.10)

which is completely the same as equation 5.14 obtained in the case of the plate. Thus, with
the same simplifications we arrive at

Q2 −
∂M12

∂x1
− ∂M2

∂x2

∼= 0, (6.11)

and
Q1 −

∂M1

∂x1
− ∂M12

∂x2

∼= 0. (6.12)

Now, we are able to determine the shearing force intensities, which are according to equa-
tions 6.8

Q1 = − ∂

∂x1

(
D1

∂2w

∂x2
1

+D12
∂2w

∂x2
2

)
, (6.13a)

Q2 = − ∂

∂x2

(
D12

∂2w

∂x2
1

+D2
∂2w

∂x2
2

)
, (6.13b)

where the notation
D12 = ν21D1 + 2Dk = ν12D2 + 2Dk (6.14)

is introduced again.

6.1.5 Balance of forces (displacement – shearing force relation)

The last step is to develop Newton’s second law in radial direction, which differs from the
plate’s one in one term. The in-plane normal force intensity N1 has due to the curvature

56



6.1. The Cylindrical Shell
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Figure 6.1: Forces and moments acting on the differential element of a cylin-
drical shell.
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a much relevant component in radial direction. The equation is thus

ρ hdx1 dx2
∂2w
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−
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+

(
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dx1

(
∂w

∂x1
+

∂2w
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dx2

)
−

−N12dx2
∂w

∂x2
+

(
N12 +

∂N12

∂x1
dx1

)
dx2

(
∂w

∂x2
+

∂2w

∂x1∂x2
dx1

)
+

+ q dx1 dx2, (6.15)

which turns by means of the simplifications introduced in section 5.1.5 into

∂Q1

∂x1
+
∂Q2

∂x2
+N1

∂2w

∂x2
1

+N2
∂2w

∂x2
2

+ 2N12
∂2w

∂x1∂x2
− N1

R
+ q = ρ h

∂2w

∂t2
. (6.16)

The in-plane force intensities N1, N2 and N12 were neglected at this stage in the case of the
plate. Now, we can perform it partly only, since the term N1

R is accountable for the additive
restoring force caused by the cylindrical geometry. The other three terms containing in-
plane force intensities are much smaller, since they are multiplied by the derivatives of
the deflection. Furthermore they arise due to the bending motion of the shell, not due
to the radial dilatation. Accordingly, the latter terms will be considered negligible in the
followings and our equation simplifies to

∂Q1

∂x1
+
∂Q2

∂x2
− N1

R
+ q = ρ h

∂2w

∂t2
. (6.17)

Substituting the transversal shearing and in-plane force intensities from equations 6.13 and
6.8 we get the governing equation of the radial motion of the orthotropic cylindrical shell

D1
∂4w

∂x4
1

+ 2D12
∂4w

∂x2
1∂x

2
2

+D2
∂4w

∂x4
2

+ ρ h
∂2w

∂t2
+

E1

1− ν12ν21

w h

R2
= q. (6.18)

Comparing our result with the plate equation 5.27 it is apparent, that they differ only in
the term

E1

1− ν12ν21

w h

R2
. (6.19)

This term contains the deflection only but no derivatives. Thus, it is effortless to convert
the functional transformation model of plate with periodic boundary condition into the
model of the cylindrical shell. The transformation kernels remain the same, the imaginary
part of the poles alters only, as we will see.

This equation can be adapted to variable thickness similar to the plate equation, but
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6.2. Shells with Variable Curvature

also an other generalization can be done, by which we are able to describe general, in two
direction curved shells too. This will be presented in the next section.

It is important to note, that we performed a strong simplification in this section, which
causes an exaggeration of the stiffness arising due the curvature. In our model every point of
the shell moves radially only, and it is apparent that the mode shapes and modal frequencies
will be altered compared to the real one for this reason.

6.2 Shells with Variable Curvature

During the development of the shell equation we considered a differential element of the
shell only. Thus we based our equation upon local properties of the shell, and the value of
R can be treated as a local value. We did not have to know anything about the values of
R in the adjacent points, thus it can change point by point. Thus our model is capable to
describe shells with variable radius of curvature, where

R = R(x1, x2). (6.20)

Due to the symmetry the curvature in direction x2 can be considered in the same way.
Thus the model can be adapted to shells curved in both directions, and possessing variable
curvature.

Let us introduce the notations R1 = R1(x1, x2) and R2 = R2(x1, x2) for the radius of
curvatures in directions x1 and x2 respectively. This way we get for the strains that

ε1 =
w

R1
− z ∂

2w

∂x2
1

, (6.21a)

ε2 =
w

R2
− z ∂

2w

∂x2
2

, (6.21b)
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∂

∂x2

(
wx1

R1

)
+

∂

∂x1

(
wx2
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)
− 2z

∂2w
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, (6.21c)

from which the stresses are

σ1 =
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1− ν12ν21

(
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− z ∂

2w

∂x2
1

+ ν21
w

R2
− ν21z
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, (6.22a)
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∂x2
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, (6.22b)

τ12 = G12
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)
. (6.22c)
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Figure 6.2: The deformed neutral plane of the cylindrical shell and the slopes
on the edges.
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6.2. Shells with Variable Curvature

The in-plane force densities according to these stresses are

N1 =
E1h

1− ν12ν21

(
w

R1
+ ν21

w

R2

)
(6.23a)

N2 =
E2h

1− ν12ν21

(
w

R2
+ ν12

w

R1

)
(6.23b)

N12 = G12h

(
∂

∂x2

(
wx1

R1

)
+

∂

∂x1

(
wx2

R2

))
. (6.23c)

Due to the mutual symmetry of directions x1 and x2 Newton’s second law in radial
direction gives in this case

∂Q1

∂x1
+
∂Q2

∂x2
− N1

R1
− N2

R2
+ q = ρ h

∂2w

∂t2
. (6.24)

We arrive at the equation of general shells by substituting the in-plane force densities from
equation (6.23)

q = D1
∂4w

∂x4
1

+ 2D12
∂4w

∂x2
1∂x

2
2

+D2
∂4w

∂x4
2

+ ρ h
∂2w

∂t2

+
E1 h

1− ν12ν21

(
w

R2
1

+ ν21
w

R1R2

)
+

E2 h

1− ν12ν21

(
w

R2
2

+ ν12
w

R1R2

)
. (6.25)

This equation can be simplified in the case of isotropy too, and also variable thickness
can be introduced. Both can be executed in the same way as in the case of the plate. The
in-plane force densities in the last two terms are not differentiated, thus cause no difficulty.
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Chapter 7

Application of the Model to Shells

This section presents the second step of physics-based modeling, which is the solution of
the differential equations derived in the preceding two chapters, with given initial and
boundary conditions and excitation, respectively. The functional transformation method
is applied, but the transformation kernels are determined by means of the finite different
method.

Although the determined shell equations are capable to describe general curved shells,
we focus on shells with cylindrical symmetry. A cylindrical shell with constant thickness
is considered first, then the model is adapted to arbitrary variable thickness and along the
height variable cross-section. In this way we can try to apply our model to bell shaped
shells.

Not all the steps of the functional transformation method need to be executed again, it
is enough to compute the coefficients of the filters and the transformation kernels, since
these determine the filter bank completely. Practically, the solution of the Sturm–Liouville
eigenvalue problem is our main problem.

7.1 Cylindrical Shell

Although the cylindrical shell with constant cross-section can be treated as the model of
the tubular bell, it is more expedient to base the model on a beam equation, since the
dominant modal frequencies of the tubular bell are closely related to the ones of the beam
equation (see [3]). The modes arising due to the vibration of the tube as a shell play not
an important role in the sound.

We set out from the cylindrical shell in spite of these considerations, because it is a
relatively simple example to examine and introduce our model whereby. Furthermore it
can converted to the more general bell shaped shell.

Let us thus consider the governing equation of the cylindrical shell (6.18). We are not
concerning the losses for the moment, because we are interested in the modal frequencies
and mode shapes mostly. Thus our starting-point is the appropriately rearranged equation

S1
∂4w

∂x4
1

+ 2S12
∂4w

∂x2
1∂x

2
2

+ S2
∂4w

∂x4
2

+
∂2w

∂t2
+ Fw = e, (7.1)
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where

S1 =
D1

ρ h
, S12 =

D12

ρ h
, S2 =

D2

ρ h
, F =

E1

ρ(1− ν12ν21)R2
, e =

q

ρ h
. (7.2)

Initial & boundary conditions: We have to lay down the boundary and initial condi-
tions too. The initial conditions are now and hereinafter the followings:

w(x1, x2, t)|t=0 = 0, (7.3a)

∂w(x1, x2, t)

∂t

∣∣∣∣
t=0

= 0, (7.3b)

thus the shell is in rest at the beginning. The boundary conditions can be determined
according to the physical constraints on the edges. Since the shell is constructed by lock-
ing the opposite edges, the moment, shear and in-plane force densities have to cross this
connection continuously, that is

M1|x1=0 = M1|x1=L1
, (7.4a)

M12|x1=0 = M12|x1=L1
, (7.4b)

Q1|x1=0 = Q1|x1=L1
, (7.4c)

N1|x1=0 = N1|x1=L1
, (7.4d)

N2|x1=0 = N2|x1=L1
, (7.4e)

N12|x1=0 = N12|x1=L1
, (7.4f)

where L1 = 2Rπ. The other two edges are so-called free edges, here, the moment and shear
force densities have to be equal to zero since external forces do not act on them, that is

M2|x2=0,L2
= 0, (7.5a)

M12|x2=0,L2
= 0, (7.5b)

Q2|x2=0,L2
= 0. (7.5c)

It can be shown, that the conditions on shear moment densityM12 and shear force densities
Qi combine and give a single condition1, which is by means of equations (6.11), (6.12) and

1For the sake of this one has to express M12 by means of force couples perpendicular to the middle
plane. These with Qi form the quantity Vi. See [5] or [19].
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7.1. Cylindrical Shell

(6.8c) the following:

Vi = Qi −
∂M12

∂xj
= − ∂

∂xi

[
Di

(
∂2w

∂x2
i

+ νji
∂2w

∂x2
j

)]
− 4

∂

∂xj

(
Dk

∂2w

∂xi∂xj

)
,

i, j = {1, 2}, i 6= j. (7.6)

We are able now to express the boundary conditions by means of the partial derivatives of
w, which are according to (7.6), (6.8a), (6.8b) and (6.13)
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∂x1

[
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(
∂2w

∂x2
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+ ν21
∂2w

∂x2
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)∣∣∣∣
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=
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∂x1∂x2

)∣∣∣∣
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(7.7a)

−M1|x1=0 = D1

(
∂2w

∂x2
1

+ ν21
∂2w

∂x2
2

)∣∣∣∣
x1=0

=

= −M1|x1=L1
= D1

(
∂2w

∂x2
1

+ ν21
∂2w

∂x2
2

)∣∣∣∣
x1=L1

, (7.7b)

−V2|x2=0,L2
=

∂

∂x2

[
D2

(
∂2w

∂x2
2

+ ν12
∂2w

∂x2
1

)]
+ 4

∂

∂x1

(
Dk

∂2w

∂x1∂x2

)∣∣∣∣
x2=0,L2

= 0, (7.7c)

−M2|x2=0,L2
= D2

(
∂2w

∂x2
2

+ ν12
∂2w

∂x2
1

)∣∣∣∣
x2=0,L2

= 0. (7.7d)

The initial and boundary value problem is thus given. The first step if the functional
transformation method is to apply the Laplace Transformation on the equation.

The Laplace-transform This can be carried out in the same way as in the case of the
string. Since the spatial and temporal derivatives are independent, the spatial derivatives
can be liberated from the integral of the Laplace transform. The resulting boundary value
problem, taken the initial conditions into account too, is

S1
∂4W

∂x4
1

+ 2S12
∂4W

∂x2
1∂x

2
2

+ S2
∂4W

∂x4
2

+ s2W + FW = E, (7.8)

whereW (x1, x2, s) = L{w(x1, x2, t)} and E(x1, x2, s) = L{e(x1, x2, t)}. The boundary con-
ditions on W (x1, x2, s) remain the same as the ones on w(x1, x2, t) thanks to the linearity
of the Laplace transform.

Sturm–Liouville-transform We arrived thus at the main task, the determination of
the Sturm–Liouville transform. For the sake of this we have to solve the eigenvalue-problem
of the adjoint differential operator (see section 3.2.2). The differential operator is in this
case

L{.} = S1
∂4

∂x4
1

+ 2S12
∂4

∂x2
1∂x

2
2

+ S2
∂4

∂x4
2

, (7.9)
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while the the corresponding boundary conditions are given by (7.7). The eigenvalue problem

L̃{K} = β(n)K (7.10)

concerning K(x1, x2, n) is hardly solvable analytically, while in more complicated cases,
such as variable thickness or curvature, it is unsolvable. Hence, we use the finite difference
method for the solution. We construct the matrix L corresponding to the differential oper-
ator L and the boundary conditions. The adjoint L̃ of this will be the matrix corresponding
to the adjoint differential operator. The eigenfunctions of this are K(x1, x2, n), while the
corresponding eigenvalues give the values of β(n). Note that the K(x1, x2, n) functions will
be given in the vector form, introduced in section 4.1.4.

For the help of the construction of matrix L in MatLab we define a structure which
stores the i, j coordinates, the n = (i − 1)n1 + n2 serial number of the vector form, and
the numbers of those adjacent points, which are concerned by the finite difference stencil
for each points. It is worthwhile to construct a matrix which gives the serial number n
of each point on the basis of its coordinates i, j. With these help structures, those rows
of the matrix L, which belong to points far from the boundaries can be filled up by the
help of a relatively short MatLab code. In those points, however, which are close to the
boundaries enough to let the stencil point out from the domain, we have to distort the
stencil according the boundary conditions. On the both meeting edges we have to set the
fields containing the numbers of the adjacent points such a way that they refer to the
corresponding points on the opposite edge. In this way all the boundary conditions on
these edges are satisfied. Dealing with the two free edges is rather complicated. We used
the method of virtual points, which resulted in long MatLab code based on conditional
executions.

The matrix L corresponding to the operator L can thus be constructed. The adjoint of
this is simply the transpose due to the finite size and real elements. Since our matrices
contain relatively few non-zero elements it would be worthwhile to treat them as sparse
matrices and to solve the eigenvalue problem by the MatLab function eigs. According to
our experiences, however, the function eigs uses such an iteration algorithm, which results
not in a biorthogonal system for the eigenvectors of L and L̃. Hence we use the the function
eig with big memory and computation demand. If the matrix L̃ is given, the eigenvectors
K and eigenvalues β(n) can be computed by the help of the following code for example,
where n_modes is the number of the modelled modes (nmax), while vect_uns and value

n_modes =800;
[vect_uns ,value]=eig(L’,’nobalance ’);
[eigvalues ,indices] = sort(diag(value ));
vect = vect_uns(:,indices );
K=zeros(n2 ,n1,n_modes );
beta=eigvalues (1: n_modes );
for i=(1:1:15)

K(:,:,i) = (reshape(vect(:,i),n1,n2))’;
end

are the eigenvectors and eigenvalues determined by eig. These have to be sorted on the
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7.1. Cylindrical Shell

basis of the eigenvalues, this is done by the following two commands. Vector beta contains
the first nmax eigenvalues (β(1), β(2), . . . β(nmax)), while the three-dimensional K contains
the eigenvectors in two-dimensional form. This latter is filled up in the iteration.

We will need functions J(x1, x2, n) too, to perform the inverse Sturm–Liouville trans-
form, the approximation of these can be determined in the same way. These are actually
the mode shapes. The first fifteen of them, that is functions (J(x1, x2, 1), J(x1, x2, 2),

− . . . J(x1, x2, 15)) are depicted on figure 7.1 The first two modes are so-called rigid body
modes, which reflects the fact, that one of the possible transverse modes of the plate2 (on
which our shell model is based on) is the shifting without distortion. If one unfolds the
modes in mind, it becomes apparent that these are the transversal shiftings of the plate.
Since the plate has no resistance against this shifting, the corresponding frequency is zero.

The first of the displayed frequencies corresponds to the simple coiled plate, while the
second one to our shell model. It is apparent, that the relative distances of the modal
frequencies decreased, this happened due to the inaccuracy of the model. As we mentioned
earlier, the model exaggerates the stiffness arising due to the curvature. In the case of the
bell shaped shell the situation will be much better.

There are more mode shape pairs on the figure with identical frequencies, that is eigenval-
ues, these are the so-called degenerate modes. This means in the language of the eigenvalue-
problems that to the eigenvalue belongs an eigensubspace, instead of a single eigenvector.
This subspace is spanned by the degenerate eigenvectors. In this case every linear combina-
tion of these eigenvectors are solution of the eigenvalue-problem with the same eigenvalue.
Degeneracy arises in this case due to the cylindrical symmetry of the shell. Namely, every
non-symmetrical mode can be directed arbitrary, and at least two vectors are needed to
describe them. This accounts for the fact that the order of degeneracy is in our case always
two.

The MatLab command eig gives on certain reason complex valued eigenvectors in the
case of several degenerated mode shape pairs, in these cases the real parts coincide and
the imaginary parts differ only. Designating the vectors by J ′1 and J ′2, they have thus the
form of

J ′1 = a+ jb1, (7.11a)

J ′2 = a+ jb2. (7.11b)

(7.11c)

Since every pair of linearly independent vectors of the subspace suits, we can rewrite these

2Since the term F W is not considered yet, our model describes a plate for the present, with the
boundary conditions of the cylindrical shell. This model is identical with the one used in [13] and [6] apart
from the mixed derivative and some refinements of the boundary conditions.
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Figure 7.1: Several modes and the corresponding frequencies of a cylindrical
shell.
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7.1. Cylindrical Shell

mode shapes to real valued ones. Let the new modes be

J1 = −j(J ′1 − J ′2) = b1 − b2, (7.12a)

J2 =

(
b2

b2 − b1

)
J ′1 −

b1
b2
J ′2 = a, (7.12b)

(7.12c)

thus the difference of the imaginary parts, and the real part. This can be carried out by
means of the following code in MatLab.

for q=1: n_modes
for r=q+1: n_modes

if abs(beta(q)-beta(r))<1 && ...
abs(max(max(real(J(:,:,q))./ real(J(:,:,r)))) -...
min(min(real(J(:,:,q))./ real(J(:,:,r))))) <1e-3,

J(:,:,r) = imag(J(:,:,q))-imag(J(:,:,r));
J(:,:,q) = real(J(:,:,q));

end
if abs(beta(q)-beta(r))<1 && ...

abs(max(max(real(K(:,:,q))./ real(K(:,:,r)))) -...
min(min(real(K(:,:,q))./ real(K(:,:,r))))) <1e-3,

K(:,:,r) = imag(K(:,:,q))-imag(K(:,:,r));
K(:,:,q) = real(K(:,:,q));

end
end

end

An other problem is that the computed eigenvectors of L and L̃ corresponding to the
multiple eigenvalues are not biorthogonal, that is

〈K ′1(x1, x2, n), J2(x1, x2, n)〉 6= 0, (7.13a)

〈K ′2(x1, x2, n), J1(x1, x2, n)〉 6= 0. (7.13b)

In this case we can proceed similar to the Gram–Schmidt process of orthogonalisation3.
Let us thus alter the degenerate mode pairs K ′ to form a biorthogonal system with the
corresponding vectors J . It can be shown that seeking the function pair K1 and K2 in the
form of

K1(x1, x2, n) = K ′1(x1, x2) + aK ′2(x2, x1), (7.14a)

K2(x1, x2, n) = K ′2(x1, x2) + bK1(x2, x1), (7.14b)

than the choice of

a = −〈K
′
1, J2〉

〈K ′2, J2〉
, (7.15a)

b = −〈K
′
2, J1〉

〈K1, J1〉
(7.15b)

results in an appropriate pair of functions. This orthogonalisation is carried out by the
following MatLab code.

3See for example in [2]
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found =0;
for q=1: n_modes

degen_num =1;
V=K(:,:,q);
W=J(:,:,q);
for r=(q+1): n_modes

if abs(beta(q)-beta(r))<1e-2,
Vold = V;
Wold = W;
degen_num=degen_num +1;
V=zeros(n2,n1,degen_num );
W=zeros(n2,n1,degen_num );
V(:,:,1: degen_num -1)= Vold;
V(:,:, degen_num )=K(:,:,r);
W(:,:,1: degen_num -1)= Wold;
W(:,:, degen_num )=J(:,:,r);
num_r =[q,r];
found =1;

end
end
if found ==1

found =0;
a = -num_inner_product(V(:,:,1),W(:,:,2),d1,d2)/...

num_inner_product(V(:,:,2),W(:,:,2),d1,d2);
K(:,:,num_r (1)) = V(:,:,1)+a*V(:,:,2);
b = -num_inner_product(V(:,:,2),W(:,:,1),d1,d2)/...

num_inner_product(V(:,:,1),W(:,:,1),d1,d2);
K(:,:,num_r (2)) = V(:,:,2)+b*V(:,:,1);

end
end

We have determined the sampled approximations of the eigenfunctions K(x1, x2, n) and
J(x1, x2, n) and the corresponding eigenvalues β(n) we can thus proceed the next step of the
functional transformation method and determine the multidimensional transfer function.

Note that there are several modes depicted on figure 7.1, which are the bending modes
of a beam at first sight. These would be so in the case of a completely correct model, which
deals with the in-plane motion too, but now, these only are the modes of the plate with
one period along the circumference, unfortunately. The real bending modes of the beam
have much higher frequencies.

The multidimensional transfer function Let us transcribe equation (7.8) to multi-
dimensional transfer function form

β(n)W + s2W + FW = E, (7.16)

that is
W

E
=

1

s2 + β(n) + F
. (7.17)

This equation corresponds to (3.21), but d1s is missing now, as we do not deal with the
losses. Accordingly, the imaginary part of the poles are

ω(n) =
√
β(n) + F , (7.18)

while the real parts are equal to zero (σ(n) = 0) due to the absence of losses.
We do not have to follow the steps of the functional transformation method any further,
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as they are the same as in the case of the string. As a result we obtain the coefficients of
the filters, and the weighting factors of the outputs on the grounds of the same formulas.
These are the followings

c1(n) = 2 cos
(√

β(n) + F T
)
, (7.19a)

c2(n) = −1, (7.19b)

a(x1, x2, n) =
1

N(n)

sin
(√

β(n) + F T
)

√
β(n) + F

f̄x(n)J(x1, x2, n), (7.19c)

where

N(n) = 〈J(x1, x2, n),K(x1, x2, n)〉, (7.20a)

f̄x(n) = 〈fx(x1, x2),K(x1, x2, n)〉. (7.20b)

Since K(x1, x2, n) and J(x1, x2, n) are numerically given functions, the integral of the inner
product have to be executed numerically. The simplest method of numerical integration
is the midpoint rule, which means the multiplication of the matrices element by element
and weighting by the differential areas. This is a good approximation in the case of the
first modes, which are the most important for us. Our inner product function in MatLab
is thus the following, where f and g are the matrices corresponding the functions we want

function pr = num_inner_product(f,g,d1,d2)
pr = sum(sum(f.*g*d1*d2));

to multiply, while d1 and d2 the step-sizes of the partition.
In the MatLab code of the functional transformation method we have to determine the

former two inner products first, then the filter parameters for each filter. The value of
a(x1, x2, n) has to be calculated in the points, where the motion of the body is sought. If
we want to visualise the oscillation, we have to determine a filter for each point, calculate
the motion in the points, and depict the obtained values in an appropriate way. As an
example a few milliseconds after the strike is depicted on figure 7.2. Note that for the
visualisation we used the simple coiled plate model, since the other one has such a big
dispersion that the wavefront can not be recognised on it.

If we are concerned in the resulting voice only, it is enough to calculate the motion
in a few points and take a weighted sum of them4 Note that the factor F of our shell
model, representing the stiffness arising due the curvature, appears in the formula of ω(n)

only. This means that each modal frequency is shifted upwards, but the mode shapes are
unaffected. The resulting oscillation differs, however greatly. If we leave the factor F , that
is we consider the coiled plate model, the frequencies corresponding to the rigid body
modes becomes zero, and thus these modes increase to the infinity, if they are excited.
In the case of the plate this is correct. In the case of the cylindrical shell, however, this

4If we would investigate one point only, all the modes that have a node in that point would fall out
from the resulting sound.
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Figure 7.2: The vibration patter of the coiled plate after the strike, computed
by the help of the functional transformation method.
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corresponds to the infinite growth or fall of the radius (this can be seen on figure 7.2 too).
This is unnatural, and our shell equation offers a solution to this. Namely, if we take F in
the formula of ω(n) into account, then the frequencies of the rigid body modes becomes
nonzero, and the infinite growth or fall is avoided, since the rigid body modes start to
oscillate too.

7.1.1 Variable Thickness

If we want to model the vibrations of the cylindrical shell with variable thickness of wall,
we have to modify our finite difference matrix, because our starting point is in this case
equation (6.17) instead of (6.18), where the shear force densities are

Q1 =
∂M1

∂x1
+
∂M12

∂x2
= − ∂

∂x1

[
D1

(
∂2w

∂x2
1

+ ν21
∂2w

∂x2
2

)]
− ∂

∂x2

[
2Dk

∂2w

∂x1∂x2

]
, (7.21a)

Q2 =
∂M2

∂x2
+
∂M12

∂x1
= − ∂

∂x2

[
D2

(
∂2w

∂x2
2

+ ν12
∂2w

∂x2
1

)]
− ∂

∂x1

[
2Dk

∂2w

∂x1∂x2

]
. (7.21b)

Here the thickness h and thus D1, D2 and Dk are each space dependent. Executing the
partial derivatives we get the coefficients of the various partial derivatives of w. These
terms are certain functions of the upper space dependent parameters and their derivatives.
Thus it is worthwhile to construct a MatLab code which generates these derivatives. For
this sake the values of Di and h are stored in matrices, and we generate the derivatives
by the help of shiftings. Because of the great number of the occurring types of derivative
the resulting code is a relatively long on conditional execution based function, the first
rows are copied here. The columns and rows of the input Min and output matrices Mout

function Mout=finitediff_SLEP_old(Min ,dim ,n,m,d1 ,d2,n1,n2)

switch dim %the independent variable(s), with respect to...
%the derivative should be taken

case 1
Mout=(Min(n,mod(m+1-1,n1 )+1)...

-Min(n,mod(m-1-1,n1 )+1))/(2* d1);
case 2

Mout=(Min(min(n+1,n2),mod(m-1,n1 )+1)...
-Min(max(n-1,1),mod(m-1,n1 )+1))/(2* d2);

case 11
Mout=(Min(n,mod(m+1-1,n1 )+1)...

-2*Min(n,mod(m-1,n1 )+1)...
+Min(n,mod(m-1-1,n1 )+1))/ d1^2;

case 22
Mout=(Min(min(n+1,n2),mod(m-1,n1 )+1)...

-2*Min(n,mod(m-1,n1 )+1)...
+Min(max(n-1,1),mod(m-1,n1 )+1))/ d2^2;

case {12 ,21}
Mout=(Min(min(n+1,n2),mod(m+1-1,n1 )+1)...

-Min(max(n-1,1),mod(m+1-1,n1 )+1)...
-Min(min(n+1,n2),mod(m-1-1,n1 )+1)...
+Min(max(n-1,1),mod(m-1-1,n1 )+1))/(4* d1*d2);
.
.

correspond to the coordinates x1 and x2. With the help of the expression mod(m-1,n1)+1

in the second indices we can address the adjacent points on the meeting edges. On the free
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7. Application of the Model to Shells

edges it is undecided how to determine the values of the thickness. It is seems evident to
treat the thickness zero beyond the edges, but in the case of constant thickness it is always
treated constant beyond the edges too. We also considered the thickness constant at the
boundaries, because it simplified the resulting MatLab code greatly. The expressions of
type max(n-1,1) in the first indices are accountable for this treatment.

Thus the matrix of the difference operator can be created in this case also. We use
MatLab to solve the eigenvalue-problem again.

As an application let us break the cylindrical symmetry of the system, and let the
thickness be variable around the circumference

h(x1, x2) = C1 + C2 cos(
2π

L1
x1), (7.22)

where C2 < C1 are arbitrary constants. The degenerate mode pairs have to disappear in
this case, since they arose even due to the cylindrical symmetry. The arisen mode shapes
and corresponding modal frequencies can be investigated in figure 7.3. It is apparent that
each modal frequencies are different as we expected.

7.2 Cylindrical Shell with Variable Radius of Curvature (Bell)

If we want to apply our model to a bell-shaped shell, we have to generalize our MatLab
code further. The filter bank of the functional transformation method remains the same,
the matrix according to the differential operator alters however. Namely we have to take
into account the variable cross-section too beside the variable thickness. The bell can be
treated as a cylindrical shell which curvature R = R1 alters along the axis of symmetry.
This change in the curvature induces a curvature R2 in the perpendicular direction. Due
to the variation of the circumference the step-size ∆x1 alters too. Step-size ∆x2 could be
treated constant, but for the sake of generality we consider it variable. The cylindrical
symmetry remains however, thus the step-sizes are functions of coordinate x2 only

∆x1 = ∆x1(x2), (7.23a)

∆x2 = ∆x2(x2). (7.23b)

We will exploit this symmetry, but the finite difference quotients get fairly complicated
despite of this.

The step-sizes have to be stored in vectors, and the stencils of the difference operators
will be variable. Let see two examples. The first order central difference quotients are
relatively simple:

∂w

∂x1

∣∣∣∣
(x1,x2)=(i∆x1,j∆x2)

≈ wi+1,j − wi−1,j

2∆x1j
, (7.24a)

∂w

∂x2

∣∣∣∣
(x1,x2)=(i∆x1,j∆x2)

≈ wi,j+1 − wi,j−1

∆x2j + ∆x2j−1
, (7.24b)
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7.2. Cylindrical Shell with Variable Radius of Curvature (Bell)

Figure 7.3: Several mode shapes and modal frequencies of the non symmetric
cylindrical shell.
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7. Application of the Model to Shells

where ∆x1j = ∆x1|x2=j∆x2
and ∆x2j = ∆x2|x2=(j+1/2)∆x2

. The second order difference
quotient with respect to x2 is yet much more complicated as earlier

∂2w

∂x2
2

∣∣∣∣
(x1,x2)=(i∆x1,j∆x2)

≈ 2

∆x2j

(
∆x2j + ∆x2j−1

)wi,j+1 −
2

∆x2j∆x2j−1
wi,j

+
2

∆x2j−1

(
∆x2j + ∆x2j−1

)wi,j−1. (7.25)

The higher order ones are complicated increasingly. We present the code calculating the
third order difference quotient with respect to x2. Here are d1 and d2 vectors already and

function Mout=finitediff_SLEP(Min ,dim ,n,m,d1 ,d2,n1,n2)

d2M = d2(max(n-2 ,1));
d2m = d2(max(n-1 ,1));
d2p = d2(min(n,n2 -1));
d2P = d2(min(n+1,n2 -1));
d1m = d1(max(n-1 ,1));
d1p = d1(min(n+1 ,1));
switch dim %the independent variable(s), with respect to...

%the derivative should be taken
.
.

case 222
Mout=Min(min(n+2,n2),mod(m-1,n1)+1) *2 /d2P /(d2P+d2p) /(d2p+d2m )...

-2*Min(min(n+1,n2),mod(m-1,n1)+1) *2 /d2P /d2p /(d2m+d2p )...
+Min(n,mod(m-1,n1)+1) *2 *( 1/( d2p*(d2P+d2p )*(d2m+d2p)) -...

1/( d2m*(d2m+d2M )*(d2m+d2p)) )...
+2* Min(max(n-1,1),mod(m-1,n1)+1) *2 /d2m /d2M /(d2m+d2p )...
-Min(max(n-2,1),mod(m-1,n1)+1) *2 /d2M /(d2M+d2m) /(d2m+d2p);

.

.
end

store the step-sizes, the variables of type d2M are the shifted copies of these. It is apparent,
that the middle term is not zero any more.

The formulas of the boundary conditions have to be reformed according the new differ-
ence quotients too. The boundary conditions themselves remain the same except of one of
the free edges. The shell of the bell is modeled up to the shoulder, where the shell can be
treated as it would be clamped, thus the deflection w and its derivative with respect to x2

is zero

w|(x1,x2)=(x1,0) = 0, (7.26a)

∂w

∂x2

∣∣∣∣
(x1,x2)=(x1,0)

= 0. (7.26b)

(7.26c)

Our starting-point is in this case the governing equation of the universally curved shell
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7.2. Cylindrical Shell with Variable Radius of Curvature (Bell)

(6.24) which is, divided by ρ h and Laplace transformed, the followings

E =
∂2

∂x2
1

[
S1

(
∂2W

∂x2
1

+ ν21
∂2W

∂x2
2

)]
+

∂2

∂x1∂x2

[
2Sk

∂2W

∂x1∂x2

]

+
∂2

∂x2
2

[
S2

(
∂2W

∂x2
2

+ ν12
∂2W

∂x2
1

)]
+

∂2

∂x1∂x2

[
2Sk

∂2W

∂x1∂x2

]

+
E1

ρ(1− ν12ν21)

(
1

R2
1

+ ν21
1

R1R2

)
W +

E2

ρ(1− ν12ν21)

(
1

R2
2

+ ν12
1

R1R2

)
W + s2W.

(7.27)

where shear force stresses are given by (7.21) and we introduced the coefficients S again.
Here, the additive term arising due to the curvature is not constant, but the function of x2

F (x2) =
E1

ρ(1− ν12ν21)

(
1

R1(x2)2
+ ν21

1

R1(x2)R2(x2)

)

+
E2

ρ(1− ν12ν21)

(
1

R2(x2)2
+ ν12

1

R1(x2).R2(x2)

)
(7.28)

Accordingly, it can not be liberated from the Sturm–Liouville transform. Thus we have to
consider it as the part of the spatial differential operator. It do not present any difficulty,
since only a diagonal matrix has to be added to the matrix L, which contains the values of
F for each point (keeping to our convention of reshaping matrices into vectors, see section
4.1.4).

The matrix L of the difference operator can be constructed with these considerations
again. We measured the necessary data, that is the curvature R1 and thickness values h
from a cross-section figure of a bell off. Curvature R2 can be computed from R1, since this
latter one is represented on the cross-section by means of a function of one variable. The
curvature R2 is accordingly

R2 =

∣∣∣∣∣∣∣

[
1 +

(
dR1
dl

)]3/2

d2R1
dl2

∣∣∣∣∣∣∣
, (7.29)

where l is the height measured along the axis of symmetry. Since R1 is a sampled function
we evaluated this formula by the help of the finite difference method too.

The arisen mode shapes and modal frequencies are depicted on figure 7.4. The important
modes of the bell can be found on the figure, but other type of modes appear too. If
we search for the modes hum, prime and tierce5, the frequencies of which should be in
the ratio of about (0.5 : 1 : 1, 2), we find that in our case these are in the ratio of
(2425 : 3940 : 6260) = (0, 5 : 0, 81 : 1, 29). Which is thus much better what we espected
on the grounds of arisen modal frequencies of the cylindrical shell. The lowest mode is,
however not the hum, but an expansion-type mode, which in the reality have a much
higher frequency, since it is far harder to expand the sound ring as press it according the
hume-shape. There are several other unespected modes in the figure too.

In the case of the ordinary cylindrical shell the modal frequencies where affected by the

5See [3] or [15] about the sound properties of the bells for example.
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Figure 7.4: Several mode shapes and the corresponding modal frequencies of
the bell-shaped shell.
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7.2. Cylindrical Shell with Variable Radius of Curvature (Bell)

additional term F of our shell model, here it affects the difference operator, and act on the
modal frequencies and mode shapes through it.

The frequency spectrum of the synthesized sound is depicted on figure 7.5 evaluated in
two different points. It is apparent how these points affect the resulting spectrum. The
information about how these points have to affect the sound is hidden in the weighting
factors a(x1, x2, n) of the filters.

7.2.1 Losses

We concentrated only on the modal shapes and mode frequencies so far. However, we have
to introduce the losses, if we want to produce acceptable musical sounds. According to the
experience, a damping of perceptually good quality can be achieved by introducing the
following two additional terms in the governing equation (see [1])

D1 = d1
∂w

∂t
, (7.30a)

D2 = d2
∂

∂t

(
∂2w

∂x2
1

+
∂2w

∂x2
2

)
. (7.30b)

The firs term causes a frequency independent damping, while the second one damps the
modes with higher frequencies increasingly. The frequency independent damping can be
incorporated in the same way as in the case of the string. The second term, however can
not attached to the spatial differential operator, since it contains the factor s due to the
Laplace transform, and this variable can not be handled by means of our numerical process.

We know, however, that this term have to appear in the real part of the poles σ(n). In
the case of the string it arose as a multiple of the square of n in the formula. This means
that the damping grows with increasing n, that is with increasing frequency. We want to
achieve a same behaviour in this case too, thus a possible solution is the imitate the σ(n)

of the string. Let us thus concern it as

σ(n) =
1

2

(
d′3n

2 − d1

)
, (7.31)

where d′3 is different from d3 since the upper formula is just an approximation. If we would
determine how d3 arises in σ it would be probably a much more elaborate formula, since
the mode frequencies are located unevenly. The formula of σ(n) can be modified, however,
arbitrarily, the exponent could be a fraction either for example.
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Figure 7.5: The waveform and spectrum of the synthesized sound of bell-
shaped shell.
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Chapter 8

Conclusion and Possibilities of
Development

8.1 Results

We have thus managed to create a simple model for the modeling of two-dimensional
vibrating bodies and to apply it to the cylindrical and the bell-shaped shell. We had to
execute two main tasks for this sake, first we had to deduce an appropriate differential
equation, then to solve the Sturm–Liouville eigenvalue-problem by the help of the finite
difference method. Our method has proved to be operable, but we have seen its limits too.

We wanted to avoid the nonlinear system of differential equations, but to be able to
represent the stiffness arising due to the curvature, for the sake of this we have constructed
a simplified differential equation, in which the curvature is represented by means of a term
of no derivatives. In the case of the ordinary cylindrical shell, where the factor of this
term was a constant number, it influenced the modal frequencies only and shifted them
unnaturally high. In the case of the bell, where the factor was space dependent, it acted
through the spatial differential operator. Using our master bell cross-section we managed
to obtain the frequency ratio of the main modes approximately, the modal shapes were
acceptable too.

We have managed to convert the finite difference method into a form which is given by
a matrix and is capable to compute the mode shapes and modal frequencies. The resulting
MatLab code can be applied to arbitrary shells with variable thickness but having cylin-
drical symmetry. We have performed two transformations on the resulting mode shapes to
let them form a biorthogonal system in every case.

The MatLab code of the filter bank of the functional transformation method is based
on numerical integration according to the numerical given mode shapes, and it computes
the resulting wave form, or sound.

This is thus a possible way to avoid the application of coupled nonlinear system of
differential equations in the case of curved shells. We have to keep in mind, however, that
some of the modes appear with highly false frequencies in the spectrum.

Our model can not be treated as a substitute model for the present, but it behaves
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8. Conclusion and Possibilities of Development

musical instrument-like anyway. It can be treated as a physical-abstract method rather,
since we have used physical concepts in the derivation of the method, but have not managed
to get an accurate model.

8.2 Possible Developments

8.2.1 Nonlinear Coupled Differential Equation

The adaptation of the coupled system of differential equations introduced in section 5.2
would be a much better approximation of the problem. This needs the ability of dealing
with nonlinearities. By the help of ordinary finite difference method this is not difficult.
We have developed such a model to the cylindrical shell, but we had not enough time
to investigate it. One can read about the handling of nonlinearities by the help of the
functional transformation method in [11]. It seems, that this method can be adapted to
our problem too, but it needs further investigation.

8.2.2 Modeling the Excitation and Sound Radiation

The modeling of excitation has been proved very important in the case of the piano (see
[1]) and drums (see [4]) and during our former investigations of the tubular bell and
glockenspiel. This is a crucial point in the case of percussion instruments, since the auditory
system is very sensitive to short-course strike notes. It is worthwhile to create the excitation
model also based on the physical background. The ordinary finite difference method can
be connected to physics-based excitation models, for this sake we use the deflection values
in the striking points. Since these quantities are available in the case of the functional
transformation method too, the modeling of the excitation could be executed probably
similarly. A hybrid method could be built, in which the excitation is modeled by means
of finite different method, while the motion of the resonator by means of the functional
transformation method.

It would be worthwhile too, to model the radiated sound, or the directionality and
frequency response of the instrument as a sound source leastwise. The determination of
the directionality is rather a matter of principle, since it would be difficult to reproduce
electro acoustically. The frequency response could be modeled by means of a filter, which
coefficients would be determined on the grounds of acoustic considerations.

8.2.3 Curvilinear Coordinates

The description of general curved shells by means of curvilinear coordinates would be a
natural and very smart way. From the point of view of such a coordinate system, suited to
the shell, it would have the same structure as the plate has in the cartesian coordinate sys-
tem. The derivatives are in this system rather complicated but well determined however1.
It can be worthwhile to use this description.

1About curvilinear coordinates see [10] for example.
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Appendix

Appendix

F.1 Concepts of Dynamics and Elasticity Theory

This Appendix gives an outline about the basic physical concepts, used to derive the
governing equations of the mechanical structures in chapters 5 and 6.

In Appendices F.1.1 and F.1.2 the relevant basic laws of linear and circular motion will
be reviewed. According to Euler’s rotation theorem every motion of a physical body can
be decomposed into a linear motion of any point of the body, and a circular motion around
an axis through that point, respectively. Thus it is sufficient to analyse these two types of
motion. The linear motion is described by means of the concept of linear momentum, or
simply momentum, the circular motion can be described by help of the angular momentum.

The simplest model of the solid bodies, like rods, plates or cylindrical shells is the rigid
body, in which deformations are negligible. That is, independently from the external forces
acting on it, the relative position of all point pairs within the rigid body are constant.
It is clear, however that this model is inappropriate to describe the elastic properties of
the solid bodies being examined. Thus, we have to assume that under external forces
these bodies suffer some deformation and also internal stresses rise within them. These
concepts are examined by the elasticity theory. In Appendices F.1.3 and F.1.4 the basic
concepts of elasticity theory, the stress and strain, and their relevant properties will be
introduced. Appendix F.1.5 will present the relationship between stress and strain, the
method for its description, and four significant types, the anisotropy, the orthotropy, the
transversely isotropy and the isotropy, respectively. Appendix 1.3 presents some additional
considerations about the derivation of the governing equations and its general steps.

The unit vectors of the coordinate systems will be denoted by e1, e2 and e3, and the
coordinates by x1, x2 and x3, respectively. The advantage of this representation is the
easiness of summation along the indices.

F.1.1 Momentum

The linear motion of physical bodies of finite size can be described by means of the mo-
mentum, or quantity of motion2. The momentum of a particle is a vector quantity, the
product of it’s mass and the velocity

p = m
dr
dt

= mṙ = mv, (F.1.1)

2Newton’s original denomination.
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where m is the mass, r the position and ṙ = v the velocity. Dot denotes derivative with
respect to time.

In the case of a body consisting of more particles, we can introduce the center of mass
by means of the equation

R =

∑n
i=1miri∑n
i=1mi

, (F.1.2)

where ri is the position, mi the mass of the i-th particle. With this, it can be proven that

P =
n∑

i=1

pi =
n∑

i=1

miṘ = mV, (F.1.3)

where m =
∑n

i=1mi is the total mass of the body, and V = Ṙ the velocity of the center
of mass, respectively. That is, the sum of the moments of the particles equals the product
of the total mass and the velocity of the center of mass. Thus, from the point of view of
momentum, the body behaves as if the total mass was concentrated in the center of mass.
For a body with continuously distributed mass the center of mass can be computed of
course by integration over the entire volume V of the body

R =

∫
ρ(r)rdV∫
ρ(r)dV

, (F.1.4)

where ρ(r) is the mass density of the body.
The statements about the momentum are summarized by Newton’s laws

1. Law of inertia: There exist such reference frames – which are called inertial reference
frames –, relative to which the moment of every body is invariant as long as there is
no interaction with a field or other body.

2. Newton’s second law: Observed from an inertial reference frame, the net force
acting on a particle is equal to the time derivative of its momentum, that is

F =
dp
dt

= ṗ. (F.1.5)

In a closed system, where the m mass is invariant, we get the well-known relation

F = m
dv
dt

= ma (F.1.6)

results.

3. Law of reciprocal actions: By the interaction of two bodies, on both of them acts
a force of the same magnitude, but opposite direction.

4. Superposition principle: The influences of two or more forces acting on a body
simultaneously, are summed independently, without altering each other.

One of the starting points of derivation of the governing equations in chapters 5 and 6
will be always Newton’s second law about a differential element of the mechanical structure
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ω

L‖

vt

r⊥

r‖ r

Figure F.1.1: Interpretation of angular momentum in the case of rotation
about an axis of symmetry.

in question.

F.1.2 Angular momentum

The description of circular motion is possible by means of the angular momentum, however
every type of motion has angular momentum. In a closed system angular momentum is
also constant, like the momentum. The angular momentum L of a particle is

L = r× p, (F.1.7)

where r and p are the position and momentum vectors. For the examination of variation
of angular momentum over time, let us take the first derivative, which is

L̇ = ṙ× p + r× ṗ. (F.1.8)

The fist term is zero, since ṙ = v is the velocity, which is parallel to the p momentum. In
the second term, according to Newton’s second law ṗ = F, thus the equation becomes

L̇ = r× F = M, (F.1.9)

where the quantity denoted by M is the torque, or moment acting on the particle, created
by the F force. We will refer to this equation as the balance of moments. We need torque
to alter the angular momentum, as we need force to alter the momentum. In the case of
a solid body rotating about an axis of symmetry, it is practical to place the origin on the
axis. According to the distributivity of the cross product in the definition of the angular
momentum, and some geometrical considerations it can be seen that it is enough to take
the angular momentum’s projection on the axis of rotation. Let us resolve the position
vector according to figure F.1.1 into an r‖ component parallel to the axis of rotation, and
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an r⊥ component to it, respectively. With this the projection of the angular momentum
on the axis of rotation is

L‖ = r⊥ × p. (F.1.10)

Since the orientation of L‖ is known, it is enough to calculate the amplitude, thus

L = r⊥ p, (F.1.11)

where r⊥ = ‖r⊥‖ and p = ‖p‖ are the amplitudes of the vectors. The sign of the cross
product is important, however. It is positive in the case of a counterclockwise rotation, and
negative for a clockwise rotation, respectively. Note, that by a rotation about an axis, the
p momentum is always tangential, thus there is no need for decomposition.

Let us resolve equation F.1.11

L = r⊥ p = r⊥ mv = mr2
⊥ ω, (F.1.12)

where v is the tangential, ω the angular velocity. In the case of a system of particles the
net angular momentum is the sum of the particle’s angular momentums, for a continuous
distribution with mass density ρ(r) the sum becomes an integral, however. Thus the net
angular momentum is

L = ω

∫
ρ(r) r2

⊥ dV , (F.1.13)

where the domain of integration is the entire volume of the body in question. This inte-
gration is called moment of inertia, and denoted by I

I =

∫
ρ(r) r2

⊥ dV . (F.1.14)

The magnitude of the angular momentum is

L = I ω. (F.1.15)

Note, that the angular momentum vector can be written generally in the same form

L = Iω, (F.1.16)

where ω is the angular velocity vector and I the moment of inertia tensor, respectively.
In chapters 5 and 6 we will develop also a balance of moments equation for the differential

element of the mechanical structure in question.

F.1.3 Stress

Stress is the force exerted per unit area of a surface within a body on which external forces
act. The acting external forces are transmitted from point to point within the body, in a
way, that Newton’s second law and the balance of moments equation are satisfied in every
point of the body. In behalf of the interpretation of the concept stress, let’s look at figure
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Figure F.1.2: Interpretation of stress.
Body (fi) and surface forces (Fi) acting on the body in the
reference frame determined by the unit vectors e1, e2, e3. dF
is the internal force acting on the surface element with a normal
vector n passing through the point P , generated by the external
forces.

F.1.2. Let us consider an imaginary plane dividing the body into two segments. P is a
point on the plane, dA a differential small area with normal vector n, passing through the
point P . The stress in this point corresponding to direction n is

Tn =
dF
dA

= lim
∆A→0

∆F
∆A

. (F.1.17)

∆F is the force exerted on the small area ∆A, which generated by the interaction of the
two segments of the body. According to the law of reciprocal actions the same force with
the opposite direction is acting on the small area dA on the other segment, thus

T−n = −Tn. (F.1.18)

It is worthwhile to resolve the vector Tn into two components, a parallel to n one, and
a perpendicular one. These are called normal and shearing stresses and are represented
by σ and τ , respectively. Normal stress arises for example in a prismatic bar subjected
to axial force. In this case internal force arises only in axial direction, thus the average
normal stress on the cross section is the fraction of the axial force and the cross sectional
area. Shearing stress arises in a bar clamped at one end, and exerted by a force next to
the clamp in a direction perpendicular to the axis.

The shearing and normal stresses have different characters, the shearing stress acts to
slip the planes of the body, in turn by normal stress the planes push or pull each other. In
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Figure F.1.3: Interpretation of the stress components.
The force Tei acting on the planes of normal vector ei can be
decomposed into a normal and two shear components. The nor-
mal component σiiei is the normal stress, the planar component∑
i6=j σijej is the shear stress.

the case of the prismatic bar exerted to axial force there is not any shearing force3. We can
consider a small area perpendicular to the cross section, but the axial force alternating along
it will not cause a net dF force. Thus the shearing force in the plane perpendicular to the
axis does not equal the normal stress on the cross section. The stress vectors corresponding
to differently oriented planes have different components in the same direction, i.e. stress is
not a vector variable, we need more than three scalars to describe it.

The stress depends on two vector variables, the normal vector of the plane on which
the stress is acting on, and the location vector. The state of stress at a point is defined
by all the stress vectors Tn associated with all planes that pass through that point, these
can always be determined from the stress vectors of three mutually perpendicular planes,
however. Thus, it is enough to determine the stress on the coordinate planes of the frame of
reference. Let us consider according to figure F.1.3 a differential cube around the point P .
The Tei stress vectors can be decomposed into three components according to the normal
vectors e1, e2 and e3, this gives

Te1 = T e1
1 e1 + T e1

2 e2 + T e1
3 e3,

Te2 = T e2
1 e1 + T e2

2 e2 + T e2
3 e3,

Te3 = T e3
1 e1 + T e3

2 e2 + T e3
3 e3. (F.1.19)

It is worthwhile to simplify the notation as follows

3In isotropic case (see F.1.5).
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T ei
j = σij . (F.1.20)

With this, equation F.1.19 written in shorter form becomes



Te1

Te2

Te3


 =



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33






e1

e2

e3


 . (F.1.21)

It is clear, that the stress can be determined by means of nine numbers in every point.
This nine parameters are called Cauchy stress tensor.

For the investigation of the stress tensor, let us develop Newton’s second law for the dif-
ferential cube element of volume V = dx1 dx2 dx3 in the point P . In linear approximation,
assuming external force per unit of volume4 fi too,

∂σ1i

∂x1
dx1dx2dx3 +

∂σ2i

∂x2
dx2dx1dx3 +

∂σ3i

∂x3
dx3dx1dx2+

+ fi dx1dx2dx3 = ρ dx1dx2dx3
∂2ui
∂t2

, (i = 1, 2, 3) (F.1.22)

where ρ is the mass density and ui = ui(r) the deflection in direction xi of the particle
originally been in point r. Dividing with the volume dx1dx2dx3 gives

3∑

j=1

∂σji
∂xj

+ fi = ρ
∂2ui
∂t2

(i = 1, 2, 3) . (F.1.23)

If there is not any force per unit of volume present and the point p is in equilibrium, i.e.
fi = 0 and ui = 0 the equation simplifies to

3∑

j=1

∂σji
∂xj

= 0 (i = 1, 2, 3) . (F.1.24)

From the balance of moment equation of the differential cube element follows the symmetry
of the stress tensor, i.e.

σij = σji. (F.1.25)

With this, the number of scalars required to describe the state of stress in a point reduces
to six.

In the case of the duplicated index of the normal stress it is common to use only one
index

σii = σi. (F.1.26)

For the sake of better distinguishing between normal and shearing stress, the shearing
stress is often denoted by

σij = τij , (F.1.27)

4e.g. force of gravity
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e1

e2
dx1

dx2

u1(x1, x2)

u2(x1, x2)

u1(x1 + dx1, x2)

u2(x1, x2 + dx2)

∂u1

∂x1
dx1

∂u1

∂x2
dx2

∂u2

∂x1
dx1

∂u2

∂x2
dx2

A B

C D

a

b

c
d

α

β

Figure F.1.4: Interpretation of stress in two dimensions.
Points A, B, C and D moves to a, b, c and d, respectively.
The displacements are expressed by means of the components
of displacement vector ui and its derivatives, respectively.

where i 6= j. With these new notations the Cauchy stress tensor becomes

σ =



σ1 τ12 τ13

τ21 σ2 τ23

τ31 τ32 σ3


 . (F.1.28)

F.1.4 Strain

An elastic body subjected to external forces and therefore to stress too, undergoes a dis-
placement. The material point r shifts with an amount of u(r), thus gets into the location
r+u(r). If the displacement vector u(r) is not constant over the entire body, i.e. ∇ui 6= 0

we speak about deformation. ∇ is the nabla operator, that is ∇ui denotes the gradient
of ui. The degree of deformation ∇ui depends upon the material, in the case of metals
it is much smaller than unit, i.e. ‖∇ui‖ � 1m. Strain is the measure of deformation,
representing the relative displacements between particles in the material body. Since the
deformation is caused by the stress, there are normal and shearing deformations according
to the two types of stress. For the interpretation of the strain let us consider a square on
the plane according to figure F.1.4. Generalization to three dimension can be carried out
without any difficulty. The corners a, b, c and d of the deformed square correspond to the
corners A, B, C and D in the undeformed case.

The normal deformation is measured by the normal strain. In the x1 direction it is the
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F.1. Concepts of Dynamics and Elasticity Theory

relative extension of the differential section AB, that is

ε1 =
ab−AB

AB
. (F.1.29)

The length of the deformed section ab can be written with the components of the displace-
ment vector u

ab =

√(
dx1 +

∂u1

∂x1
dx1

)2

+

(
∂u2

∂x1
dx1

)2

=

=

√
1 + 2

∂u1

∂x1
+

(
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

dx1. (F.1.30)

For small deformations
(
∂u1

∂x1

)2

� ∂u1

∂x1
,

(
∂u2

∂x1

)2

� ∂u2

∂x1
, (F.1.31)

and with this, employing, that for x� 1 the linear approximation

√
1 + x ≈ 1 +

1

2
x (F.1.32)

holds, we get

ab ≈
√

1 + 2
∂u1

∂x1
dx1 ≈ dx1 +

∂u1

∂x1
dx1. (F.1.33)

Thus, the normal strain in direction x1 is

ε1 =
ab−AB

AB
=

dx1 + ∂u1
∂x1

dx1 − dx1

dx1
=
∂u1

∂x1
. (F.1.34)

We can express the normal strain in direction x2 and x3 in the same way, which gives

ε2 =
∂u2

∂x2
,

ε3 =
∂u3

∂x3
. (F.1.35)

The measure of the shearing deformation is the shearing strain. It is by definition in a
given point the change of angle between two lines initially perpendicular to each other and
passing through that point. On the figure in the case of the x1 – x2 plane the shearing
strain is the sum α+ β, which is assuming small angles

γ12 = γ21 = α+ β ≈ tanα+ tanβ =
∂u2
∂x1

dx1

dx1 + ∂u1
∂x1

dx1

+
∂u1
∂x2

dx2

dx2 + ∂u2
∂x2

dx2

. (F.1.36)
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This can be further simplified for small deformations

γ12 = γ21 = α+ β =
∂u2

∂x1
+
∂u1

∂x2
. (F.1.37)

We get completely similar results for the other two coordinate planes

γ13 = γ31 =
∂u3

∂x1
+
∂u1

∂x3
,

γ23 = γ32 =
∂u3

∂x2
+
∂u2

∂x3
. (F.1.38)

We can set up a strain tensor from the quantities εi and γij

ε =




ε1 γ12/2 γ13/2

γ21/2 ε2 γ23/2

γ31/2 γ32/2 ε3


 . (F.1.39)

It is clear according to equations F.1.37 and F.1.38 that the strain tensor is also symmet-
rical, thus the strain is described by means of six independent scalars.

F.1.5 Hooke’s law

Hooke’s Law determines the relation between stress and strain in linear-elastic materials.
The linear-elastic attribute alludes to, that in these materials under a certain limit of load,
the stress and strain are in a linear relation, i.e. Hooke’s law can be expressed by a system
of linear equations. In the case of metal this assumption holds.

We need at least 36 independent elastic material properties to relate the six stress
components to the six strain components. Towards to be able to write the relation in
matrix form, we have to introduce the notation, which represents the six-six independent
stress and strain data by two six dimensional vectors as following

σ =




σ1

σ2

σ3

τ23

τ31

τ12




=




σ1

σ2

σ3

σ4

σ5

σ6




ε =




ε1

ε2

ε3

γ23

γ31

γ12




=




ε1

ε2

ε3

ε4

ε5

ε6




. (F.1.40)

With this notation the relation can be written as



σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66







ε1

ε2

ε3

ε4

ε5

ε6




, (F.1.41)
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or in shorter form

σi =
6∑

j=1

Cij εj i = 1, 2, .., 6, (F.1.42)

where C is called stiffness matrix, or stiffness tensor. It represents the amount of stress is
needed to achieve the specified strain. The bigger the stiffness tensor is, the more stiff the
material and harder to create strain is.

Often is necessary to determine the strain caused by the stress, which is described by
the compliance tensor S, that is

εi =

6∑

j=1

Sijσj . (F.1.43)

It is clear, that S is the inverse of C

S = C−1. (F.1.44)

It can be shown, that both the stiffness and compliance tensor are symmetrical

Cij = Cji,

Sij = Sji, (F.1.45)

thus the number of the independent elastic material properties reduces to 21. In many
cases, however, this number can be lowered further according to symmetric properties of
the material. The most general materials, where no simplifications are possible are called
anisotropic materials.

It will be demanded in three steps even stronger symmetric properties in the following
sections, which will yield even less independent elastic material properties. The correspond-
ing denominations are orthotropy, transverse isotropy and isotropy. Orthotropic materials
are the wood and rolled metals, transversely isotropic are the so-called unidirectional fiber
composite materials, and isotropic are the most metals on macroscopic scale.

F.1.6 Orthotropy

At first, let’s assume, that the material has three mutually orthogonal two-fold axis of
rotational symmetry. That is, rotating it by π radian along either of these axis of symmetry,
its elastic properties remain the same. In this case it is worthwhile to develop Hooke’s law
in a frame of reference with axes parallel to the axes of symmetry.

In such a frame of reference the result of these restrictions is, that some of the stresses
become independent from some of the strains. The normal stresses do not cause shearing
strain, and the shearing stresses do not cause normal strain any more. The shearing strains
and shearing stresses in different planes of the coordinate system become also independent
from each other. These involve the vanishing of many entries of the stiffness and compliance
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tensor, respectively. The compliance tensor, for example has a structure of



ε1

ε2

ε3

ε4

ε5

ε6




=




S11 S12 S13 0 0 0

S21 S22 S23 0 0 0

S31 S32 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66







σ1

σ2

σ3

σ4

σ5

σ6




. (F.1.46)

Note, that this holds only if the axes of the frame of reference coincide with the axes
of symmetry. In a different frame of reference the stiffness and compliance tensor must
be transformed according the tensor transformation rules, and their structure is not such
simple any more.

The connection between the normal and shearing elastic behavior ceased, thus we can
derive the twelve elastic properties independently, according to basic elastic rules. Appar-
ently, the connection between the normal stresses and strains of different directions still
hold, this agrees to the Poisson effect, the contraction in the perpendicular directions in
a stretched material. The twelve elastic properties are, thus the three Young’s moduli ac-
cording the coordinate axes, the six Poisson’s ratios according the six coordinate pairs and
the three shear moduli according the coordinate planes.

The relation between the normal strain and normal stress is given by Young’s modulus,
or modulus of elasticity

εi =
1

E
σi i = 1, 2, 3. (F.1.47)

According to the Poisson effect strains arise in the perpendicular directions too, the Pois-
son’s ratio is the ratio of the strain in the perpendicular direction and the strain in the
direction of the load

νij =
εj
εi
. (F.1.48)

On the grounds of equations F.1.47 and F.1.48 can be showed, that if ν � ν2 and ν2 � 1

holds, the relation between the normal strains and normal stresses are given, more accurate
by the equations

εi =
1

Ei
σi −

∑

j 6=i

(
νij
Ei
σj

)
i = 1, 2, 3. (F.1.49)

The relation between the stress τij and the caused strain γij in the plane xi – xj

γij =
1

Gij
τij , (F.1.50)

where Gij is the shear modulus according to the plane xi – xj . The compliance matrix is,
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thus 


ε1

ε2

ε3

γ23

γ31

γ12




=




1
E1

−ν12
E1

−ν13
E1

0 0 0

−ν21
E2

1
E2

−ν23
E2

0 0 0

−ν31
E3

−ν32
E3

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12







σ1

σ2

σ3

τ23

τ31

τ12




. (F.1.51)

Since the compliance matrix has to be symmetric, the Young’s moduli and Poisson’s ratios
have to satisfy the following system of equations

ν12

E1
=
ν21

E2
, (F.1.52a)

ν13

E1
=
ν31

E3
, (F.1.52b)

ν23

E2
=
ν32

E3
. (F.1.52c)

These restrictions reduce the number of independent elastic properties to nine.

F.1.7 Transverse isotropy

As a second step let’s assume, that the material has two mutually perpendicular two-fold
axes of rotational symmetry and an axis of cylindrical symmetry perpendicular to the
former two axes. In the planes perpendicular to the axis of cylindrical symmetry are, thus
every direction equal on the grounds of elastic properties. In this plane the material is
isotropic.

Let the plane of isotropy the x1 – x2 plane, in this case the indices 1 and 2 are indistin-
guishable, thus the equations

E2 = E1,

ν32 = ν31,

ν23 = ν13,

ν21 = ν12,

G23 = G31, (F.1.53)

must hold, and Hooke’s law turns into



ε1

ε2

ε3

γ23

γ31

γ12




=




1
E1

−ν12
E1

−ν13
E1

0 0 0

−ν12
E1

1
E1

−ν13
E1

0 0 0

−ν31
E3

−ν31
E3

1
E3

0 0 0

0 0 0 1
G31

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12







σ1

σ2

σ3

τ23

τ31

τ12




. (F.1.54)

Now, we can write only one further equation according the symmetry of the compliance
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tensor
ν13

E1
=
ν31

E3
, (F.1.55)

which reduces the seven independent elastic properties by one. In addition, there is a
connection between the shear modulus G12, the modulus of elasticity E1 and the Poisson’s
ratio ν12 in the plane x1 – x2 as follows

G12 =
E1

2 (1 + ν12)
, (F.1.56)

thus five independent elastic properties are enough to describe in isotropic material.

F.1.8 Isotropy

Finally, let’s assume that the material has identical elastic property in all direction of the
three dimensional space, that is, it posses a spherical symmetry. In this case all directions
are identical, it is impossible to distinguish the indices, thus

E1 = E2 = E3 = E,

ν12 = ν13 = ν21 = ν23 = ν31 = ν32 = ν, (F.1.57)

G23 = G31 = G12 = G.

Accordingly, the Hooke’s law is



ε1

ε2

ε3

γ23

γ31

γ12




=




1
E − ν

E − ν
E 0 0 0

− ν
E

1
E − ν

E 0 0 0

− ν
E − ν

E
1
E 0 0 0

0 0 0 1
G 0 0

0 0 0 0 1
G 0

0 0 0 0 0 1
G







σ1

σ2

σ3

τ23

τ31

τ12




. (F.1.58)

The elastic properties are, thus E, ν and G, respectively. However, the equation F.1.56
holds in this case too

G =
E

2 (1 + ν)
. (F.1.59)

The isotropic material is described, thus by means of two independent constants.
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F.2 MatLab Code of Filter Bank Model of the Bell

Here the MatLab code of the functional transformation method is presented. The trans-
formation kernels are considered given. The code which determines these kernels is rather
long, thus we can not present it here.

function voice=FTM_bell(K,J,beta ,d1 ,d2,R1,R2 ,time ,wtd);

% voice=FTM_bell(K,J,beta ,d1,d2 ,R1 ,R2,time ,wtd) computes the vibration of
% a bell -shaped shell by means of the functional transformation method.
%
% K and J are the transformation kernels of the Sturm --Liouville transform
% and inverse Sturm --Liouville transform respectively.
%
% beta is the vector cantaining the eigenvalues
%
% d1 and d2 are the disceritzation step -sizes in each direction
%
% R1 and R2 are the radii of curvature in each direction
%
% time determines how long period is computed
%
% wtd determines if the voice should be computed or the vibration pattern
% visualised ,
% it should be either "voi" (=voice) or "vis" (visualisation)

%---Some required variables
fs = 44100;
t = time;
T = 1/fs;
k_max = floor(t/T);
n_modes=size(J,3);
n = (1: n_modes)’;
D1 = 1;
D3 = -10e-1;
D3 = 0;
D1 = 0;
n1 = size(J,2);
n2 = size(J,1);
L1 = sum(d2(: ,1));

%---Normaliztion factors
N = zeros(1,n_modes );
for q=1: n_modes ,

N(q) = num_inner_product_bell (( squeeze(J(:,:,q))) ,...
(squeeze(K(:,:,q))),d1,d2,n1);

end

%---Spatial part of the excitation
fx = zeros(n2 ,n1);
% fx(n2 -12:n2 -9,n1 -12:n1 -9) = 1e-3* hanning (4)* hanning (4)’;
fx(n2 -14,round (2*n1/3) -10)=1e-3;

%---Sturm --Liouville tarnsform of the spatial part of the excitation
f_ = zeros(1,n_modes );
for q=1: n_modes

f_(q) = num_inner_product_bell(fx ,( squeeze(K(:,:,q))),d1,d2,n1);
end

%---Temporal part of the excitation
ft = zeros(1,k_max );
t_hit =2e-4;
k_hit=round(t_hit/T);
ft(1: k_hit) = hann(k_hit);
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%---Filter bank coefficients in vectors
sigma = 0.5*( D3*n.^2 - D1);
omega = sqrt(abs(beta)-sigma .^2);
c1 = 2 * exp(sigma*T) .* cos(omega*T);
c2 = -exp(2* sigma*T);

%---Weighting factor of the filters in vector
a = zeros(n2,n1,n_modes );
for q=1: n_modes

a(:,:,q) = 1/N(q)/omega(q)*sin(omega(q)*T)*f_(q).*(J(:,:,q));
end

if wtd==’voi ’ %--- Calculates the sound
%--- The points where the deflection is calculated
x1_out=round(n1/3-2);
x2_out=round(n2 -8);
%--- Matrices of the deflection in three time -step
z0 = zeros(9,9,n_modes );
z1 = zeros(9,9,n_modes );
z2 = zeros(9,9,n_modes );
out = zeros (9,9);
voice=zeros(1,k_max);

for q=1: k_max
%--- Calculating the filter outputs

for r=1:9
for s=1:9
z0(r,s,:)=c1.* squeeze(z1(r,s,:)) + c2.* squeeze(z2(r,s,:)) + ft(q);
out(r,s)=sum(squeeze(z0(r,s ,:)).* squeeze(a(r+x2_out -4,s+x1_out -4 ,:)));

end
end
z2 = z1;
z1 = z0;
voice(q)=sum(sum(out));

end

elseif wtd==’vis ’ %--- Calculates the vibration pattern
%--- Matrices of the deflection in three time -step
z0 = zeros(n2 ,n1,n_modes );
z1 = zeros(n2 ,n1,n_modes );
z2 = zeros(n2 ,n1,n_modes );
out = zeros(n2,n1);
%--- Help ariables for the visualisation
PHI=ones(n2 ,1)*(0:2* pi/n1:2*pi -2*pi/n1);
H=zeros(n2 ,n1);
for q=2:n2

H(q,:)= sum(d2(1:q-1 ,1))* ones(1,n1);
end

figure (2);
set(gcf ,’Color ’,[1,1,1]);
colormap(jet);
for q=1: k_max

%--- Calculating the filter outputs
for r=1:n2

for s=1:n1
z0(r,s,:)=c1.* squeeze(z1(r,s,:)) + c2.* squeeze(z2(r,s,:)) + ft(q);
out(r,s)=sum(squeeze(z0(r,s ,:)).* squeeze(a(r,s ,:)));

end
end
z2 = z1;
z1 = z0;
%--- Visualisation

X=(R1+6e7*out ).* cos(PHI);
Y=(R1+6e7*out ).* sin(PHI);

% subplot(3,5,q);
surf(X,Y,H,out);
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F.2. MatLab Code of Filter Bank Model of the Bell

set(get(gcf ,’CurrentAxes ’),’PlotBoxAspectRatio ’,...
[2.4* max(R1(: ,1)) ,2.4* max(R1(: ,1)) ,1.02*L1]);
set(get(gcf ,’CurrentAxes ’),’Xlim ’,[-1.2*max(R1(: ,1)) ,1.2* max(R1(: ,1))]);
set(get(gcf ,’CurrentAxes ’),’Ylim ’,[-1.2*max(R1(: ,1)) ,1.2* max(R1(: ,1))]);
set(get(gcf ,’CurrentAxes ’),’Zlim ’ ,[0 ,1.02*L1]);
set(get(gcf ,’CurrentAxes ’),’Xgrid ’,’off ’);
set(get(gcf ,’CurrentAxes ’),’Ygrid ’,’off ’);
set(get(gcf ,’CurrentAxes ’),’Zgrid ’,’off ’);
set(get(gcf ,’CurrentAxes ’),’Xticklabel ’,{’’});
set(get(gcf ,’CurrentAxes ’),’Yticklabel ’,{’’});
set(get(gcf ,’CurrentAxes ’),’Zticklabel ’,{’’});
set(get(gca ,’children ’),’facecolor ’,’interp ’);
title([’t = ’,num2str(q*T*1000),’ ms ’]);
view ([45 ,45]);
pause (0);

end
else error(’Please give either "visu" (= visualisaton) or...
"voi" (=voice) as method!’)

end
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