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Abstract – In Maximum Likelihood (ML) estimation of
ADC parameters, the estimation of static transfer char-
acteristic has key importance. However, the descrip-
tion of static transfer characteristic demands to handle
numerous values. Without parameterization, the non-
linearity of an N-bit converter can be described using
2N − 1 integral nonlinearity (INL) values. Neverthe-
less for real ADCs the INL values are not independent,
the information regarding the nonlinearity can be com-
pressed. This paper enumerates multiple methods to
measure and approximate the static transfer charac-
teristic of the ADCs, and evaluates their efficiency. The
results are expressed paying attention to the number
of parameters and using standard measures for the ap-
proximation error (e.g. the l∞ norm of the error vec-
tor).

Keywords— ADC testing, parameterization, INL, estima-
tion, maximum likelihood

I. INTRODUCTION
In ADC testing with sinusoidal excitation, the most im-

portant task is to estimate the parameters of the analog sig-
nal (which is assumed to be a sine wave and additional
noise). Using the parameter estimators of the excitation,
the static and dynamic quality parameters (such as INL,
DNL, SINAD, ENOB, etc.) of the ADC under test can
be calculated via simple, closed-form calculations. The
most robust and straightforward way to estimate the signal
parameters is to perform a sine wave fit in least squares
(LS) sense (standards IEEE-1241 [1] and IEEE-1057 [2]
recommend to do so). However, these LS estimators can
be biased, do not provide minimal variance, and even LS
fitting algorithm can fail to converge properly (strongly de-
pending on the initial frequency estimation). The main
disadvantage of LS estimation is bias: if the nonlinearity
of the converter is significant compared to the amount of
noise on the analog signal, the LS estimators do not reach
the real value of the parameter, but vary near an other one.
The idea of using maximum likelihood estimation for ADC
testing provides a solution for this problem: as ML estima-
tors are consistent, the signal parameters can be estimated
with arbitrary low bias increasing the number of observa-

tions (in this case the number of samples in the measure-
ment record) [3]. Nevertheless the practical realization of
ML estimations propounds several problems, and the hard-
est challenge is the exponential growth of the parameter
space depending on the number of bits. The general like-
lihood function of the observations [4] uses 2b + 4 param-
eters, where b denotes the number of bits. Four param-
eters describe the analog sine wave (A, B, C and f for
cosine coefficient, sine coefficient, DC component and fre-
quency respectively), one parameter denotes the standard
deviation of the additive noise on the analog signal (σ) and
2b − 1 parameters (T [1], T [2], ...,T [2b − 1]) describe the
code transition levels of the device under test. This way
the ML estimators for the signal and ADC parameters can
maximize the likelihood function with respect to 2b + 4
parameters:

L(A,B,C, f, σ, T [1], T [2], ..., T [2b−1]) =
M∏
k=1

P [yk = Yk]

(1)
where yk denotes the kth sample of the measurement
record and Yk is the discrete random variable that repre-
sents the probability distribution of the kth sample, assum-
ing the given signal, noise and ADC parameters. Thus

p̂ML = argmax
p

L(p) (2)

where p denotes the full parameter vector:

pT =
[
A B C f σ T [1] T [2] . . . T [2b − 1]

]
(3)

maximizing an objective function with respect to e.g.
65539 parameters (in case of very common, 16-bit con-
verter) propounds practically unsolvable numerical prob-
lems and requires computation efforts that cannot be real-
ized in PC environment (or the time of estimation increases
to unacceptable values). Reducing the parameter space is
essential to provide - approximate - maximum likelihood
signal and ADC parameter estimators with passable ef-
forts.



II. CURRENT SOLUTIONS
The most straightforward way to decrease the number of

parameters in the objective function is to estimate the tran-
sition levels from the sinusoidal record via histogram test
[5]. These transition level estimators will be handled as fix
values and shall not be modified during the optimization.
This way the likelihood function is optimized with respect
to five parameters.

[ÂML, B̂ML, ĈML, f̂ML, σ̂ML] = argmax
A,B,C,F,σ

L(A,B,C, f, σ|T̂h)

(4)
where T̂h denotes the vector of transition level estimators
achieved via histogram test:

T̂h =
[
T̂h[1] T̂h[2] . . . T̂h[2

b − 1]
]T

(5)

Using this solution, the following challenges are to be
faced: the accuracy of transition level estimators strongly
influences the accuracy of the signal parameters estima-
tors, thus the reliability of the quality measures of the ADC
under test. If the transition level estimators show high vari-
ance (due to the low number of samples) or are biased (due
to incoherent sampling in the measurement record) the in-
appropriate transition level estimators mislead the approx-
imate ML signal parameter estimators which can be biased
this way and do not show better properties than LS estima-
tors. On the other hand performing histogram test with ac-
ceptable precision requires long measurement records (e.g.
for a 16-bit converter it is not superfluous to use 1 million
samples), and fulfilling coherence condition demands very
accurate frequency estimation [6].

An other way to decrease the parameter space is to com-
press the information is provided by the transition levels. If
the integral nonlinearity of the converter can be described
using a few (e.g. up to 10) parameters without losing es-
sential information, the likelihood function can be opti-
mized with respect to 10..15 parameters which can be nu-
merically treatable. The following sections examine differ-
ent ways of parameterization to investigate the possibility
of solving the maximum likelihood problem via reducing
the parameter space.

III. APPROXIMATION OF THE STATIC TRANSFER
CHARACTERISTIC USING CHEBYSHEV

POLYNOMIALS
Using first-kind Chebyshev polynomials to estimate the

integral nonlinearity of the converter is very feasible due to
the attractive properties of these functions with sinusoidal
arguments [7]:

Tk(cos(θ)) = cos(kθ) (6)

where Tn denotes the nth Chebyshev polynomial of the

first kind. The nonlinearity of the quantizer can be decom-
posed to two components: a continuous nonlinearity de-
scribed by Chebyshev polynomials and an ideal quantizer
that provides the step-like quantizer characteristic (see fig-
ure 1).

Fig. 1. Decomposing nonlinearity of a nonideal quantizer

Using sinusoidal excitation u(t) = A cos(2πft) + C the
response of the continuous nonlinearity (denoted by f(x))
is

z(t) = f(u(t)) = f(A cos(2πft) + C) (7)

Since the response of the continuous nonlinearity is a mul-
tiharmonic signal, one can use the following equation:

z(t) = f(A cos(2πft) + C) =
c0
2

+

∞∑
k=1

ck cos(k2πft)

(8)
This way using equations 6, 7 and 8 the nonlinearity f(x)
can be expressed using Chebyshev polinomials of the first
kind:

f(x) =
c0
2

+

∞∑
k=1

ckTk

(
x− C
A

)
(9)

Using equation 9 the parameters describing the nonlinear-
ity of the converter (the coefficients of the Chebyshev poly-
nomials) can be directly calculated using the Fourier series
of the recorded signal. The Fourier series can be calculated
using multisine wave fit in least squares sense minimizing
the following cost function:

M∑
n=1

(
yn −

(
N∑
k=1

ak cos(k2πftn) +

N∑
k=1

bk cos(k2πftn) +
a0
2

))2

(10)
where M denotes the number of samples, N denotes the
number of harmonic components estimated and the ampli-



tudes corresponding to the kth harmonic component can
be calculated this way:

ck =
√
a2k + b2k (11)

Using an initial frequency estimator this model is linear
in parameters thus the LS fit can be performed in one step
without iterations. Choosing the number of harmonic com-
ponents to be estimated has key importance in this method:
the nonlinearity of the converter is described using N + 1
parameters via Chebyshev polynomials. Using too large
N propounds the risk of fitting the higher harmonics to the
samples of noise (if higher harmonics are not large enough
compared to the power of noise at that frequency). On
the other hand the aim is to reduce the parameter space,
thus high number of parameters describing the nonlinearity
does not have any advance compared to the unparameter-
ized description of nonlinearity. Naturally using too small
N reduces the information about the static transfer charac-
teristic, thus the error of the Chebyshev approximation can
be unacceptably large. In the experimental comparison op-
tions N = 5, N = 10 and N = 15 are examined. The
proposed algorithm is the following:

• Estimate the frequency of the fundamental harmonic
using a fast and accurate method (e.g. the one de-
scribed in [8]).

• Perform a multisine wave fit in least squares sense
using the achieved frequency estimator. Choose the
number of harmonic components (N ) depending on
the power of harmonic components and noise (usu-
ally between 5 and 15).

• Calculate the coefficients of the Chebyshev polyno-
mials using the amplitudes achieved via multisine
wave fit.

• Calculate the approximate values of code transition
levels using the Chebyshev approximation and the
ideal quantizer:

Tr[k] = f̂(Ti[k]) (12)

where Tr[k] denotes the kth code transition level and
Ti[k] denotes the kth transition level of the corre-
sponding ideal quantizer. f(x) is the continuous non-
linearity approximated by the Chebyshev polynomi-
als.

f̂(x) =
c0
2

+

N∑
k=1

ckTk

(
x− C
A

)
(13)

Note that f̂(x) is an approximation of f(x) using a
finite number of polynomials and

lim
N→∞

f̂(x) = f(x) (14)

• Evaluate the likelihood function using the Chebyshev
coefficients instead of the individual transition levels:
replace L(A,B,C, f, σ, T [1], T [2], ..., T [2b − 1]) by
L(A,B,C, f, σ, c0, c1, ..., cN ) as each T [k] depends
only on the ck values.

• Optimize the likelihood function with respect to
10..20 parameters using the robust downhill simplex
method (a.k.a. Nelder-Mead mehod) [9]. The ex-
tremum provides approximate maximum likelihood
estimators for A, B, C, f , σ, c0, c1, ..., cN . Then
T̂ [1], T̂ [2], ..., T̂ [2b − 1] can be calculated using ĉ0,
ĉ1, ..., ĉN .

IV. APPROXIMATION OF THE STATIC TRANSFER
CHARACTERISTIC USING FOURIER

COEFFICIENTS
The information regarding the integral nonlinearity can

also be compressed using the Discrete Fourier Transform
of the INL vector. The idea is that high-frequency com-
ponents of the INL only describe the local behavior of
the nonlinearity and these local attributions of the transfer
characteristic do not influence largely the properties of the
quantized signal. The shape of nonlinearity that mainly de-
termines the harmonic components can be described with
the first few elements of the Fourier series. The proposed
algorithm in this case is the following:

• Perform a histogram test to achieve initial transition
level estimators. If conditions of the histogram test
are fulfilled poorly use the ideal transition levels.

• Calculate the DFT of the integral nonlinearity (INL)
estimators, and discard all values except for the DC
component and the firstN values (in the experimental
comparison N will be set to 2, 5 and 7). The INL
will be described using 2N + 1 parameters: d0 the
DC component, dk and ek are the real and imaginary
parts of the kth element of the DFT respectively.

• Evaluate the likelihood function using the Fourier
coefficients instead of the individual transition lev-
els: replace L(A,B,C, f, σ, T [1], T [2], ..., T [2b−1])
by L(A,B,C, f, σ, d0, d1, ..., dN , e1, e2, ..., eN ) due
to each T [k] depends only on the dk and ek values.

• Optimize the likelihood function with respect to the
10, 16 or 20 parameters using the Nelder-Mead
method. The extremum provides approximate max-
imum likelihood estimators for A, B, C, f , σ, d0, d1,
..., dN , e1, e2, ..., eN . Then T̂ [1], T̂ [2], ..., T̂ [2b − 1]

can be calculated using d̂0, d̂1, ..., d̂N , ê1, ê2, ..., êN .



V. APPROXIMATION OF THE STATIC TRANSFER
CHARACTERISTIC USING POLYNOMIAL

REGRESSION
The most straightforward way to parameterize the inte-

gral nonlinearity is to fit polynomials to the transfer char-
acteristic in least squares sense. The polynomial regression
withN coefficients can be performed in the following way:

h = (DTD)−1DTy (15)

where h contains the polynomial coefficients

hT =
[
h0 h1 . . . hN

]
(16)

D denotes the polynomials of the ideal transition levels:

D =


Ti[1] Ti[1]

2 . . . Ti[1]
N−1

Ti[2] Ti[2]
2 . . . Ti[2]

N−1

...
...

...
...

Ti[2
b − 1] Ti[2

b − 1]2 . . . Ti[2
b − 1]N−1


(17)

and y contains the estimated transition levels:

yT =
[
T̂ [1] T̂ [2] . . . T̂ [2b − 1]

]
(18)

The proposed algorithm in this case is the following:

• Perform a histogram test to achieve initial transition
level estimators.

• Perform polynomial regression of the static transfer
characteristic as described previously with a suitable
number of coefficients (N = 5, N = 10 and N = 15
will be examined).

• Evaluate the likelihood function using the polynomial
coefficients instead of the individual transition levels:
replace L(A,B,C, f, σ, T [1], T [2], ..., T [2b − 1]) by
L(A,B,C, f, σ, h0, h1, ..., hN−1) as each T [k] de-
pends only on the hk values.

• Optimize the likelihood function with respect to the
10..20 parameters using the Nelder-Mead method.
The extremum provides approximate maximum like-
lihood estimators for A, B, C, f , σ, d0, d1, ..., dN ,
Then T̂ [1], T̂ [2], ..., T̂ [2b− 1] can be calculated using
ĥ0, ĥ1, ..., ĥN−1.

VI. EXPERIMENTAL COMPARISON OF
DIFFERENT METHODS

To compare the parameterization methods we used a 12-
bit nonideal quantizer. The transfer characteristic of this
quantizer is the measured transfer characteristic of a 12-
bit ADC used in the NI-9201 data acquisition board man-
ufactured by National Instruments. The integral nonlin-
earity has been measured via histogram test using 500000

samples, paying attention to meet the coherence and the
Carbone-Chiorboli conditions. This way the the transfer
characteristic used in the simulations is modeling the real
ADC with very high accuracy. Note that while investigat-
ing the quality of different methods for INL approximation
the shape of the transfer characteristic to be approximated
is not critical, nevertheless it is worth to use a realistic one.
The quality of fitting is evaluated from three different as-
pects:

• the l2 norm of the INL fitting residuals (see Fig. 2)

• the l∞ norm of the INL fitting residuals (see Fig. 3)

• the l2 norm of the difference of two quantized sine
waves. One is a full scale sine wave quantized by the
original quantizer and the other is the same sine wave
quantized by the approximated quantizer (see Fig. 4)

It is also attractive to examine the l∞ norm of the dif-
ference of the two quantized sine waves as a fourth as-
pect. However, the difference of the quantized signals con-
tains near-zero integer numbers and the l∞ norm is largely
meaningless in this case. In this comparison, the l∞ norm
of the difference was 1 for all the approximation methods.
The following figures compare the quality of the approxi-
mation using different approaches.

Fig. 2. Comparison of l2 norms of approximation errors

The number of coefficients means the number of real coef-
ficients for each kind of approximation. In this comparison
integer numbers from 1 to 21 have been used as number of
coefficients. Regarding Taylor and Chebyshev approxima-
tion this quantity is straightforward. Since in Fourier pa-
rameterization the coefficients are complex (except for the
DC component) the number of real parameters is 2P −1 if
P denotes the number of used Fourier coefficients (includ-
ing the DC coefficient). This way the Fourier approxima-
tion has been examined for odd numbers between 1 and 21
as number of real coefficients.



Fig. 3. Comparison of l∞ norms of approximation errors

Fig. 4. l2 norm of the differences of quantized signals using
the original and the approximated quantizer

VII. CONCLUSIONS
Parameterization of the static transfer characteristic of

ADCs is essential to perform approximate maximum like-
lihood estimation of signal and ADC parameters without
excessively large efforts. The investigations detailed above
show that this parameterization can be performed different
ways. Taylor and Chebyshev approximation are appropri-
ate for low numbers of coefficients (P < 5). For larger
numbers numerical problems rise and mislead the approx-
imation. In case of Taylor approximation the condition
of the D matrix becomes very poor when increasing the
number of coefficients (see table 1). In case of Cheby-
shev approximation the numerical optimization of the co-
efficients lead to potential local extrema (in this compari-
son a nonlinear least squares fit has been used to optimize
the Chebyshev coefficients). For Taylor and Chebyshev
approximation the fitting error starts to increase instead of

Table 1. Condition number of matrix D for Taylor approx-
imation

Number of coefficients Condition number
3 2.2516e+07
4 1.0396e+11
5 4.6961e+14
6 2.0890e+18

decreasing when the number of coefficients exceeds ap-
proximately 5. However the quality of fitting at these low
numbers of coeeficients is useful and usually provide bet-
ter fit than Fourier approximation (see Fig. 4). Fourier
approximation provides robust fit without numerical chal-
lenges. The quality of fitting increases with the number
of coefficients in a monotonic way. In conclusion, both
of these approximation methods can be used to reduce the
parameter space and to make approximate maximum like-
lihood estimation of ADC and signal parameters possible.
In the future the best of these methods shall be built in the
ML estimation algorithms to provide reliable approximate
ML estimators for analog signal and ADC parameters with
acceptable computational demands and without unsolvable
numeric problems.
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