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Abstract

Adaptive filters updated by the least mean square (LMS)
algorithm are succesfully implemented in digital control
systems. They are utilized for both plant identification and
control purposes. In control appications (e.g. in active
noise control) the output of the adaptive filter drives the
plant input, and the error signal is derived only at the out-
put of the plant. In such cases the filtered reference LMS
algorithm guarantees the stable adaptation. However, the
convergence of this algorithm can be very slow, depending
on the plant in the control loop. The paper introduces a
novel algorithm which filters both the reference and the er-
ror signal by the same filter which is designed to provide a
loop gain close to the unity along the whole frequency axis.
The paper illustrates the efficiency of the proposed method
by examples.

1. Introduction

The least mean square (LMS) algorithm is well-known
for engineers involved in digital signal processing. It is
proved to be a robust algorithm for adaptation of transver-
sal digital filters. In the last two decades many papers
and books were published dealing with this topic. A very
good introduction to LMS adaptive filters is available in [7]
written by the inventor of the algorithm. The structure
was applied for adaptive modeling and inverse adaptive
modeling, deconvolution, adaptive interference canceling,
etc. [7], [8], [4].

In control applications the output of the adaptive filter
drives the plant input, and the error signal is derived only at
the output of the plant. In such cases the simple LMS algo-
rithm is unstable due to the phase shift caused by the plant.
The problem is analyzed e.g. in [5] and the solution is the
so-called filtered reference or filtered-X LMS (XLMS) al-
gorithm [7]. This algorithm requires a model of the plant,
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which the reference signal is filtered by. The identification
of the plant can be done off-line, using the simple LMS al-
gorithm. The model shall be so accurate that its phase error
does not exceed���, otherwise the adaptive system is un-
stable. The XLMS algorithm was extended also for multi-
ple input – multiple output controllers [3], and it was suc-
cessfully applied e.g. for active noise control (ANC) [2].

Although the XLMS algorithm is stable, its conver-
gence can be very slow, depending on the plant in the con-
trol loop. In ANC experiments, the suppression of some
sinusoidals by the XLMS algorithm requires tens of sec-
onds. This means that the XLMS algorithm is practically
unusable in such situations. The origin of this phenomenon
is the high dynamics in the acoustic transfer function which
plays the role of the plant in ANC systems. Recognizing
this drawback of the XLMS algorithm, recently the filtered
error or filtered-� (ELMS) algorithm is introduced [8]. The
idea of the algorithm is straightforward: was the inverse of
the plant applied in the error path, the structure was iden-
tical with the original LMS algorithm and hence it could
be fast enough. Unfortunately, the exact inverse of the
plant generally can not be applied, due to its non minimum-
phase feature. Instead of the exact inverse, the ELMS al-
gorithm utilizes the so-called delayed inverse in the error
path. The overall transfer function of the delayed inverse
and the plant is approximately a delay, instead of the unity
as it is required for the common inverse. It can be proved
that this delayed inverse can be constructed for any trasfer
function. The reference signal for the ELMS algorithm is
delayed according to the delay of the delayed inverse. The
identification of the delayed inverse can be done similarly
to that of the plant model, using the LMS algorithm.

The ELMS algorithm has excellent convergence proper-
ties, but it is not wide-spread in practical applications yet.
This paper introduces an alternative structure which also
can improve the convergence speed of the XLMS algo-
rithm and offers some advantages compared to the ELMS
algorithm. The disadvantageous convergence properties of
the XLMS algorithm originate from the high dynamics in
the magnitude response of the plant. The convergence rate
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Figure 1. The LMS adaptive filter

of the adaptation depends on the loop gain in the adapta-
tion path, which is proportional to the square of the plant’s
magnitude response, due to the LMS adaptation rule. The
proposed algorithm is a modification of the original XLMS
algorithm: the reference signal is filtered not only by the
model of the plant, but with an auxiliary filter which is de-
signed to provide an overall magnitude response close to
the unity along the whole frequency axis. In order to keep
the stability, the error signal has to be also filtered by this
auxiliary filter. The paper introduces this algorithm and
investigates its behavior.

Section 2. recalls the LMS algorithm and its extensions,
and section 3. introduces the proposed structure. Section
4. investigates the main features of the novel algorithm
showing examples. The paper is closed with a short con-
clusion.

2. The LMS Algorithm and its Extensions

2.1. The LMS algorithm

The LMS adaptive filter can be seen in Fig. 1. In this
figure� ��� denotes the adaptive transversal filter,��, ��
and�� are the reference signal, the output of the filter and
the error signal at time step�, respectively.	� is the de-
sired signal, which�� has to be correlated with. The sys-
tem is described by the following equations:

�� � �
�

�
�� (1)

�� � 	� � �� (2)

where�� denotes the coefficients of the adaptive filter and
�� is the vector formed from the actual and delayed sam-
ples of the reference signal at time step�. The LMS adap-
tation rule is the following:

���� � �� � 
���� (3)

where the overbar denotes the complex conjugate opera-
tor and
 is a positive constant which controls the stability
and the convergence rate of the adaptation. The correlation
between�� and	� can be represented by a discrete trans-
fer function. After a successful adaptation,� ��� approxi-
mates this transfer function in a least mean square sense. If

� ���� ���

rule

��

����

�� ���

��

LMS

Figure 2. The filtered-X LMS algorithm
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Figure 3. Model identification for the XLMS
algorithm

�� and	� are input and output signals of a plant, the LMS
adaptive filter is able to identify the transfer function of the
plant.

2.2. The XLMS algorithm

In control applications the adaptive filter is the con-
troller. In this case� ��� is updated by the XLMS algo-
rithm. The structure can be seen in Fig. 2, where the plant
is denoted by� ���. �� ��� is a model of the plant which is
identified off-line. The system is described as follows:

�� � 	� � � ����� (4)

where�� is defined as in (1). (3) is modified in the follow-
ing way:

���� � �� � 
����� (5)

where�� is the vector formed from the actual and delayed
samples of the filtered reference signal
�:


� � �� ����� (6)

�� ��� can be either infinite or finite impulse response (IIR
or FIR) filter, but it is usually an FIR filter. The identifica-
tion of� ��� can be done by the system depicted in Fig. 3.
It is a utilization of the simple LMS adaptive filter. If the
excitation�� is white noise,� ��� provides a satisfactory
model of� ���. The system is stable if the phase error of
the model does not exceed��� [5], [8].

2.3. The ELMS algorithm

In order to improve the convergence rate of the XLMS
algorithm recently the ELMS algorithm is proposed [8].
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Figure 4. The filtered-� LMS algorithm
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Figure 5. Model identification for the ELMS
algorithm

The arrangement can be seen in Fig. 4. The expression
����
�

��� is the so-called delayed inverse of� ���. The sys-
tem is described by (1) and (4), while (5) is modified in the
following way:

���� � �� � 
 ����
�

�������� (7)

where

� � ����� (8)

The delayed inverse����
�

��� can be defined as follows:

� ��� ����
�

��� � ��� (9)

����
�

��� is an FIR filter and the overall transfer function
only approximates the delay. The ideal filter would be a
non-causal IIR filter [8]. On the other hand, the meaning
of the delayed inverse is obvious assuming Fig. 5. The
identification can be done using the simple LMS algorithm
as in the case of the XLMS algorithm, only the order of the
blocks is different. In this case�� has to be white noise and
the delay has to be set experimentally. The delay applied in
the ELMS algorithm is the same as that in the identification
structure.

Another problem is the required number of the coeffi-
cients of the FIR filter realizing the impulse response of the
delayed inverse. Assuming� ��� is rational, the ideal in-
verse can be constructed by the exchange of the poles and
zeros of� ���. If � ��� is minimum phase, the exact in-
verse can be constructed and no delay is required (� � �).
The impulse response is an exponential settling towards the
zero and its length can be estimated by the zero of� ���

closest to the unit circle. If� ��� has only non minimum

phase zeros, only the delayed inverse exists (� �� �). The
ideal impulse response is non-causal and similar to the pre-
vious one for� � �������� � � �. To construct the delayed
inverse, this impulse response has to be truncated at time
step� � �� and it has to be shifted by�. The length of
the inverse filter is�, and it is determined by the zero of
� ��� closest to the unit circle as in the previous case. Gen-
erally, if � ��� has zeros both inside and outside the unit
circle, the impulse response of the delayed inverse consists
of exponentially increasing and decreasing parts. Assum-
ing the same goodness for the minimum phase and the non
minimum phase zeros, the required length of the delayed
inverse is approximately��.

3. The Proposed Filtered Reference – Filtered
Error LMS Algorithm

The disadvantageous convergence properties of the
XLMS algorithm originate from the high dynamics in the
magnitude response of� ���. The convergence rate of the
adaptation depends on the loop gain in the adaptation path,
which is proportional to�� �����, due to the XLMS adap-
tation rule (5). The convergence speed of the LMS algo-
rithm is controlled by the parameter
, which is limited
due to the maximum of�� ����. If �� ���� has high dynam-
ics, there are some frequency bands, where the loop gain
is very small. For any signal appearing in this frequency
range the convergence rate will be small.

The magnitude response of the delay in (9) is unity,
therefore the ELMS algorithm mentioned above is a solu-
tion of the problem. The crutial element in the structure
is the delayed inverse. Both the XLMS and the ELMS
algorithms need some experiments to set the appropriate
length of the model (or the inverse model) filter. However,
the ELMS algorithm needs further experiments to set the
optimal value of the delay�, which makes the modeling
uncomfortable in some cases. The length of the filter in
the XLMS algorithm can be estimated by the pole of� ���

closest to the unit circle. Assuming nearly the same good-
ness of the poles and the zeros of� ���, the delayed inverse
in the ELMS algorithm is approximately twice longer than
the filter in the XLMS algorithm. In some applications,
where hundreds of coefficients are required, this is a mean-
ingful difference.

The proposed filtered reference – filtered error LMS
(EXLMS) algorithm tries to solve the problem caused by
the dynamics of�� ���� keeping the simpler filter�� ���. An
FIR filter is applied, which filters both the error and the
reference signal. This filter is designed so that the resulted
magnitude response oscillates around the unity. The pro-
posed structure can be seen in Fig. 6. The system is a mod-
ification of the XLMS structure. The new element in the
figure is����, which is the filter mentioned above. The
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Figure 6. The proposed filtered-X filtered-�
LMS algorithm

system is described by (1) and (4), while (5) is modified in
the following way:

���� � �� � 
��������� (10)

where

� � ���� �� ����� (11)

Since���� is applied in both pathes, the system is stable.
In the following the main assumptions for filter design are
introduced.

While the delayed inverse ensures the stability of the
adaptation and compensates the dynamics of the plant si-
multaneously, the proposed method separates these func-
tions. �� ��� cares of the stability, while���� is the com-
pensator, therefore its magnitude response is specified so,
that:

������ �
�

� �� ����
(12)

The error of the approximation could be higher than it is
usual in filter design. It involves that the required number
of the coefficients of���� can be much lower than that of
�� ���.

The magnitude response of���� can be prescribed by
the loop gain of the adaptation:

���� � 
������ ����� (13)

where it is assumed that�� ��� � � ���. In pratical ap-
plications the convergence parameter
 is set experimen-
tally to achieve the best convergence rate. In such cases
smaller steps than 6dB to change
 have no meaningful
influence to the convergence rate. Since
 and the square
of the resultant transfer function of the filters control di-
rectly the loop gain,���� has to be designed so that the
resultant magnitude response����� �� ���� varies in a 3dB
range. The filter design itself can be done using the simple
frequency sampling method, where��� �� ���� is sampled. If
���� is designed so that the resultant magnitude response
is “too smooth”, i.e. it ripples very close to the unity, the
convergence is slower, because of the large delay of����.
Mathematical proof of the above condition is not available
yet, but simulation results prove the statement.
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Figure 7. Magnitude response of � ��� in (14)

The role of���� can be interpreted by the frequency
domain adaptive filtering [1]. Frequency domain adap-
tation provides the possibility to set the convergence pa-
rameters at each channel independently, according to the
power of the signal appearing in the channel. The idea
was successfully applied also for periodic noise control
[6]. The proposed method ensures similar possibility, but
in the time domain. The following section illustrates the
efficiency of the method.

4. Examples

In this section some simulation results are discussed.
The plant in all examples is a simple second-order IIR fil-
ter:

� ��� �
�� � ����	��� ���
�	

�� � ��		���� ��	���
(14)

Its magnitude response can be seen in Fig. 7. The zeros
of � ��� lie outside the unit circle. Although it is a very
simple transfer function with only about 25dB dynamics,
it can illustrate the efficiency of the proposed method in a
convincing manner. In all examples the adaptive filter has
200 coefficients and the desired signal	� is defined as:

	� � ������ (15)

where�� is the reference signal which is a white noise
with the same distribution in all case. The convergence
parameter
 is set in all examples experimentally to achive
the highest convergence rate.

First the adative filter is updated by the XLMS algo-
rithm (Fig.2). In this case
 � ������, and it is the best
one. The error signal can be seen in Fig.8. The conver-
gence is very slow, after 10,000 steps the error signal is
about one third of the initial value.

From now on the proposed EXLMS algorithm (Fig.6) is
simulated. In the first experiment���� has 11 coefficients.
The magnitude response of� ��� is slightly compensated
as it can be seen in Fig.9. In this case
 � �����, and
the error signal can be seen in Fig.10. The amplitude of
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Figure 8. Error signal of the XLMS algorithm
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Figure 9. ������ ���� with 11 coefficients of
����
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Figure 10. Error signal of the EXLMS algo-
rithm with 11 coefficients of ����
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Figure 11. ������ ���� with 41 coefficients of
����
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Figure 12. Error signal of the EXLMS algo-
rithm with 41 coefficients of ����

the error signal is plotted in logarithmic scale. After 5,000
steps the error signal is more than 10 times smaller than the
initial value, it means that���� with only 11 coefficients
could improve the convergence rate.

In the second experiment with the EXLMS algorithm
���� has 41 coefficients. The magnitude response of� ���

is well compensated as it can be seen in Fig.11. In this
case������ ���� varies approximately in a 3dB range, and

 � �����, the error signal can be seen in Fig.12. The am-
plitude of the error signal is plotted in logarithmic scale.
After 4,000 steps the error signal is about 10,000 times
smaller than the initial value, it means that���� with 41
coefficients could significantly improve the convergence
rate. Since the adaptation can be treated as complete, the
coefficients of the adaptive filter� ��� are set. Since	�
is a delayed version of��, the adaptive filter is set to the
impulse response of the delayed inverse of� ���. It can be
seen in Fig.13.

In the third experiment with the EXLMS algorithm
���� has already 101 coefficients. The magnitude re-
sponse of� ��� is overcompensated as it can be seen in
Fig.14. In this case
 � �����, and the error signal can be
seen in Fig.15. Although the overall magnitude response is
very smooth, the convergence rate a bit smaller than it was
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Figure 13. The delayed inverse of � ���
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Figure 14. ������ ���� with 101 coefficients of
����
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Figure 15. Error signal of the EXLMS algo-
rithm with 101 coefficients of ����

in the previous case. This example illustrates that there
is no reason to approximate the unity magnitude response
with a very small error.

5. Conclusion

The paper presented a new filtered reference – filtered
error LMS algorithm. This algorithm is proposed to utilize
in control applications where the adaptive filter is the con-
troller and the plant magnitude response has high dynam-
ics. The proposed method in such cases provides much
higher convergence rate than the widely used filtered refer-
ence LMS algorithm and it can be a real alternative for the
recently introduced filtered error LMS algorithm.
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