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Abstract — A new acoustic localization scheme is proposed, which can be applied in 
sensor networks with low communication bandwidth. The first step of the two-stage 
algorithm is distributed and is evaluated at the sensors having possibly low 
communication capabilities. The sensors detect various events in the acoustic signal 
and transmit only the event descriptors to the base station where the sensor fusion is 
calculated in the second step using a novel generalized consistency function. Test 
results validate the performance of the proposed system in a noisy and reverberant 
environment. According to experiments, the proposed system decreases the necessary 
communication bandwidth with multiple orders of magnitude and still provides high 
accuracy comparable with that of the sophisticated beam-forming methods. 

 
 

1 Introduction 
The localization of various acoustic sources is a hot research topic with many possible 
application areas, e.g. voice enhancement, intruder detection, sniper localization, or 
automatic tracking of speakers in an e-conferencing environment, just to name a few. The 
idea behind source localization systems is the use of multiple sensors (microphone arrays) 
placed at different locations. Since sound travels with a constant speed from the source to 
the sensors, the recorded signals can be used to calculate the possible location of the 
source, if the sensor locations are known. The techniques utilizing the phase shifts 
between the different recordings are theoretically simple (assuming line-of-sight 
measurements), but the disturbing reverberations present in most environments make the 
practical solution difficult. Many successful source localization solutions can be found in 
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the literature, where cross-correlation techniques are used. Near-field beamforming has 
many variations, providing good localization accuracy even in noisy and reverberant 
environments [1],[2],[3]. These algorithms utilize the sound recordings of the sensors to 
calculate the most probable source location. However, the transfer of data from the 
sensors to the processing unit requires relatively high bandwidth, which can be a serious 
limitation. Another possible bottleneck in such systems is the huge amount of calculation 
to be performed, limiting the response time and thus the application field of the system. 

Sensor networks provide a new and dramatically evolving research area. Small 
intelligent sensor units are used to form a sensor network, where the sensors can 
autonomously create an ad-hoc communication network, perform distributed sensing (and 
possibly actuating) activities, and also distributed processing. Due to the possible large 
number of the utilized sensors these units must be inexpensive. The low prize combined 
with the required small size results in sensors with rather limited resources, in terms of 
available power, processing capabilities and communication bandwidth [4]. 

Inexpensive sensors can be used to form an acoustic source localization system. The 
greatest advantage of wireless sensors vs. wired microphone arrays is flexibility, i.e. the 
system can be deployed quickly and practically everywhere, without the need of manual 
installation. The sensor network can perform self-localization, build the ad-hoc 
communication network and perform the required sensing. However, straightforward 
application of current localization techniques is not possible. The bandwidth required to 
transmit data records with satisfactory quality and length prohibits the use of such 
devices.  

The proposed localization system utilizes a distributed two-stage approach. The first 
step of the operation is performed at the sensors where certain points of the acoustic 
signals are marked and their time of arrival is recorded. In the second step the central 
processing unit uses only this dramatically reduced amount of information to calculate the 
position of the signal source using consistency functions.  

Consistency functions were first proposed for sensor fusion in [8] as part of a counter-
sniper system. In this paper we generalize the original consistency function in two 
directions so that it can handle (1) multiple occurrences of (2) different types of events. 
The generalized consistency function enables the robust and accurate localization of 
practically all types of acoustic signals (e.g. speech), also in demanding reverberant 
environments. 

The rest of the paper is organized as follows. Section 2 describes the proposed 
approach. In Section 3 the generalized consistency function is introduced. The test results 
of the proposed localization system are presented in Section 4. Finally, we present our 
future plans and conclusions. 

2 Sensor Network-Based Acoustic Source Localization  
In acoustic source localization systems multiple sensors (microphones or microphone 
arrays) placed at known positions are used to detect signals emitted from the source. The 
sound travels with constant speed to the sensors and thus the phase differences between 
the sensed signals depend on the distances between the sensor nodes and the source 
(provided line-of-sight measurements exist, as opposed to echoes or no detections at all). 

One of the most successful acoustic source localization techniques is near-field beam- 
forming that can be used to detect multiple sources in noisy reverberant areas [1],[2],[3]. 
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However, most of these methods require the transmission of the sampled data records 
between sensor nodes and/or the base station, a prohibitive feature in typical wireless 
sensor networks.  

There exist similar two-step techniques where in the first step the time differences 
between the signals are measured, and in the second step the location is calculated [5],[7]. 
The communication burden of the transmission of time data is acceptable. Note that the 
time delay measurement/calculation requires either special signals (e.g. where the start of 
the signal is clearly detectable, see [8]) or the usage of various correlation techniques 
requires high communication burden again. 

Once the time delay data is available, a central fusion algorithm can calculate the source 
location. In theory four non-coplanar measurements are enough to determine a 3D 
location, provided the speed of sound is known. In practice, however, more measurements 
and thus an over-determined equation system is used to compensate errors due to 
inaccuracies in sensor localization and time delay measurement [3][5][7]. 

From correct time delay data the conventional analytical solutions using least-squares 
or maximum likelihood criteria can calculate the source location [7]. These methods 
tolerate noise and even a small amount of reverberant data, but the accuracy decreases 
dramatically if a large amount of reverberant data is present, as shown in the analysis 
presented in [6]. The main problem with the analytical solutions is that they use all of the 
available data, regardless of their quality. Iterative solutions containing classification of 
the data would solve this problem, but no computationally feasible solution is known. 

In the localization system presented in [8] a two-stage approach was used. In the first 
step the time of arrival (TOA) of the signals were measured at the sensors (the special 
signal type allowed this solution). At the second step a new robust fusion algorithm was 
proposed that was able to find the maximum set of consistent time measurements, using a 
so-called consistency function, and thus find the source location with high accuracy even 
in the presence of high amount (up to 50%) of erroneous data.  

The solution proposed in [8] works fine if the TOA of the signals can be measured with 
high accuracy. In [8] the special signal type allowed the detection and high precision 
TOA measurement of the starting point of the signal. However, for conventional acoustic 
signals (e.g. speech) the definition of such points is very hard (e.g. where is the exact 
starting point of a word?), especially in the presence of noise and the different acoustic 
transfer functions between the source and the microphones. The proposed approach 
overcomes this limitation.  

Our proposed solution is also a two-stage approach: In the first step, not having one 
easily detectable point to measure, each sensor QiSi ,...,2,1  , =  marks several ( iM ) 
events ( )ij MjE ,...,2,1  =  that match one of the characteristic properties from the 
predefined global set { } Kkk ,...,2,1  , =Π . Such simple event can be, for example, the 
sudden increase of energy in a certain frequency band. Note that sensor i detects iM  
different events, each of which can correspond to any one of the K characteristic 
properties.  Each event is thus characterized by the property kΠ  it matches, and the nt  
time of arrival of the event ( )iMn ,...,2,1= . The event descriptor tuple ntki ,,  is then 
routed to the central processing node using the wireless ad-hoc network.  Note that the 
size of the data is very small, containing only a few bytes, allowing in-network 
aggregation to further reduce the communication cost.  
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In the second step the central processing node calculates the source location from the 
TOA data obtained from the ∑

i
iM received event descriptors and the known sensor 

positions. Since the first preprocessing step completely removes the fine detail from the 
recorded data, the data fusion must use sophisticated methods to provide high accuracy. 
The fusion is based on the generalized consistency function, defined in the next section. 

3 The Generalized Consistency Function 
The consistency function first proposed in [8] used one event (namely the start of the 
detected muzzle blast), i.e. 1  ,1 == jMK . For the sake of clarity, we shortly review the 
original consistency function here. 

If the ith sensor detects the TOA it  of an acoustic event at sensor position ),,( iii zyx  
then the estimated time of emission of that event can be calculated as 

  ( ) ( ) ( ) ( )
v

zzyyxx
tzyxt iii
i

i
222

,,
−+−+−

−= ,   (1) 

where v is the speed of sound and ( )zyxt i ,,  is the emission time estimated by sensor i, 
provided the unknown source is located at ( )zyx ,, . If ( )zyx ,,  corresponds to the true 
source location and the measurements are accurate then every sensor estimates the very 
same ( )zyxt i ,,  value. If the source location is not ( )zyx ,,  then the estimated emission 
times are not the same. If the measurements are not accurate but ( )zyx ,,  is the true 
location then the sensor estimates ( )zyxt i ,,  are not exactly the same, but are in a close 
proximity of the true source time, the ‘closeness’ depending on the accuracy of the 
sensors. Evidently measurements with large errors become outliers.  

If the inequity  
 τ≤− |),,(| tzyxt i  (2) 
holds for a time value t and for measurements ),,,,(21 ,...,, τtzyxKiiii = , where ( )τ,,,, tzyxK  
is the number of consistent measurements for source position ( )zyx ,,  and emission time t 
with uncertainty τ ,  then the consistency function is defined as  
 ( ) ( ).,,,,max,, ττ tzyxKzyxC

t
=  (3) 

The optimal source location estimate ( )sss zyx ,,  is at the maximum of the consistency 
function: 
 ( ) ( )zyxCzyx

zyx
sss ,,maxarg,,

),,(
τ= . (4) 

The concept is illustrated in Figure 1, where the sensors and the source are placed on a 
grid of a plane. For simplicity, assume that the grid size is 1 and the speed of sound is 1. 
Sensors S1, S2, …, S6  measure TOA values t1,  t2,  …, t6, as shown in the figure. Note that 
measurement noise is present for all sensors, and S6 reported an erroneous value (e.g. 
echo because of no line-of-sight). For positions P1 and P2 the estimated emission times for 
each sensor are indicated on the timelines. For P1, which is the true source location, five 
sensors estimate emission times around 10, thus ( ) 56.0,10,1 =PK  (in the example 6.0=τ , 
the light boxes on the timelines indicate intervals of length τ2 ). The timeline clearly 
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shows that the faulty sensor S6 estimated a completely different value, far from the dense 
group around 10. ( )6.0,10,1PK  is also the maximum defined by (3) for P1, thus the 
consistency function value for position P1 is 5. For P2 the estimated emission times are 
scattered through the timeline, no definite cluster can be seen and the value of the 
consistency function is only 2. In this example the largest consistency function value 
points to the estimated source position P1. Note that the true source position was indeed 
P1 and the true emission time was 10.  

The consistency function can be generalized to handle more event types and multiple 
occurrences of each event type. For each measurement ntki ,,  the estimated time of 
emission can be calculated for a hypothetical source location ( )zyx ,,  as 

 ( ) ( ) ( ) ( )
v

zzyyxx
tzyxt iii

n
n

222

,,
−+−+−

−= . (5) 

If the inequity  
 τ≤− |),,(| tzyxt n , (6) 
holds for a time value t and for measurements >< 11 ,, tki , >< 22 ,, tki , …, 

>< ),,,,,(),,,,,( ,, ktzyxKktzyxK tki ττ , where ( )ktzyxK ,,,,, τ  is the number of consistent 
measurements for events type kΠ  for position ( )zyx ,,  and time t with uncertainty τ ,  
then  

 ( ) ( ) ( )


 Λ≥

=
otherwise0

,,,,, if,,,,,
,,,,,* ktzyxKktzyxK
ktzyxK

ττ
τ , (7) 
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Figure 1. Illustration of the consistency function concept in 2D for a single event.  
The values of the consistency function are calculated at positions P1 and P2 from  

sensor data t1, t2, …, t6. The true position is P1 and the emission time is10.  
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where Λ  is a constant defining the minimum amount of consistent measurements to be 
considered valid (in practice 3≥Λ ). The consistency function for event type Πk is 
defined as 
 ( ) ( )∑

∈
=

TtT
k ktzyxKzyxC ,,,,,,max,, *

, ττ  (8) 

where T is a set of time values such that for every two values Ttt ∈21,  the inequity 
τ>− 21 tt  holds. Loosely speaking, ( )zyxCk ,,,τ  is the total number of consistent 

measurements for position ( )zyx ,,  supporting event emission times Tt ∈  of events type 
Πk, with uncertainty τ . Because of uncertainty τ  in the measurements the minimum 
distance between emission times must be at least τ . Now the consistency function is 
defined as  
 ( ) ( )∑=

k
k zyxCzyxC ,,,, ,ττ . (9) 

The concept is illustrated in Figure 2, where the original and the generalized 
consistency functions are shown. The left-hand side shows the single-event case with the 
original consistency function, while on the right-hand side the generalized case is 
illustrated with three events: E1 and E3 match property Π1, while E2 match property Π2. 
Sensors S1, S2, S3 sense all of the events, as shown in Figure 2(a). Figure 2(b) and (c) 
show the timelines at the correct (P1) and at an incorrect (P2) source position, 
respectively. The corresponding consistency function values are also shown. In the 
generalized example ( ) 61,1 =PC τ  and ( ) 31,2 =PC τ , thus ( ) 91 =PCτ , while ( ) 42,1 =PC τ , 

( ) 22,2 =PC τ  and ( ) 62 =PCτ . In the example for the sake of simplicity Λ=2 was used. 
Note that the consistency function must be evaluated at every point of the space where 

the source may be present. A fast search method presented in [6] makes the search 
possible for the original consistency function in large areas, even in real time. The 
application of the fast search for the general case needs further investigations. 

S1 

S2 
S3 

E 

S1 

S2 
S3 

E2|Π2 E1|Π1 E3|Π1 

(a) 

(b) 

(c) 

3

1

9 

6 

P1 

P2 

P1 

P2

Figure 2. Comparison of the original (left) and the generalized  (right) consistency 
functions: (a) events shown at each sensor’s timeline, (b) consistency calculated at the 
correct source position (for sake of visibility the events are not exactly aligned) and (c) 

consistency calculated at a wrong position. In the generalized case Λ=2 was used. 
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4 Experimental Results 
The original consistency function was tested in a large-scale counter-sniper application 
with approximately 60 sensors. As was reported in [8] the accuracy of the localization 
system was around 1m in the test area with the size of a small village. The proposed 
generalized consistency function was tested in a small-scale indoor experiment in a 
medium-size auditorium at the Budapest University of Technology and Economics. The 
auditorium provides relatively large reflections. The setup contained only 5 sensors 
placed in a plane. The speaker was also close to the plane, as shown in Figure 3.  The 
microphone signals were recorded and later processed in Matlab.  

The test signal was a Hungarian children’s rhyme, approximately 7 seconds long. The 
signal recorded by one of the microphones is shown in Figure 4. As the plot shows, the 
signal-to-noise ratio was quite low (see the high background noise from 0 to 2s). 

The first step of the processing contained the event detection. In real applications sensor 
devices with limited computing capabilities are used, thus the event detection must be 
computationally simple. In the experiment 6 rather simplistic event classes were defined. 
The raw signal was filtered by a bank of bandpass filters containing 6 banks 
(implemented by a block FFT). For band i at each (downsampled) time instant k we 
calculated the signal’s maximum amplitude before ( before

iA ) and after ( after
iA ) the given 

time k within a time window of 1ms. If and when the ratio ( ) ( )kAkA before
i

after
i /  at sensor j  

increased above a limit, an event descriptor kij ,,  was generated.  
The search space was set to x = [-5…5], y = [-10…10]. Figure 5 shows the results: the 

surface of the consistency function and the contour of the consistency function zoomed 
into the central region. It’s clearly visible that the maximum is around the true location, 
which can be detected with 0.2m accuracy.  The power of the consistency function 
approach is shown by the fact that less than five percent of the detected events were 
correct.  

(3,0) (-3,0) 

(0,0) 

(-2,3) 

(2,10) 

(0,1) 

Figure 3. Experimental layout for testing the acoustic localization  
system containing 5 microphones (circles) and a source (square). 
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Figure 4. The test signal (a Hungarian rhyme) recorded by  
the microphone placed at location (-2,3) 

 

 

Figure 5. Result of the localization process. The maximum value of the consistency 
function is 62. The true location was at x=0, y=1, which is detected with 0.2m accuracy. 

 
In the test the algorithm provided surprisingly high accuracy, even though rather 

simplistic event detection was used, the signal to noise ratio was low, and the auditorium 
provided lots of echoes. The size of the event descriptors, which had to be transmitted, 
was 1.1% of that of the raw signal. This means that compared to beam-forming, two 
orders of magnitude smaller communication bandwidth is enough to provide similar 
accuracy, even with such simple event detection algorithm. A more sophisticated event 
detection would probably further reduce the amount of detected false events and thus the 
necessary communication bandwidth as well.  
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5 Conclusions 
A new acoustic localization system was proposed that can be used in sensor networks 

with low communication bandwidth. The proposed localization system requires multiple 
orders of magnitude lower bandwidth than the conventional beam-forming techniques. 
The system uses a two-stage approach, where in the first stage various events are detected 
in the acoustic signals by the sensors, and in the second stage a generalized consistency 
function is used to calculate the source location by the central computing unit.  

The unique event detection concept and the associated event descriptors make it 
possible to use a very limited amount of data to reach high accuracy.  

The choice of the events is important: the signal must be sufficiently rich in events, but 
the speed of the system degrades if too many events are used. Also, the identification of 
the events must be easy using the sensors with limited computational capabilities. The 
automatic data classification built in the consistency function provides resistance against 
reverberant data and also bad measurements. 

The system showed promising results in the experimental tests, but further research is 
necessary to answer open questions: how to handle multiple and possibly moving sources.  
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