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Abstract 

Active cancellation of acoustic noise seems to be a real alternative to passive isolation in the low frequency region. There are 
already many methods  to solve this control problem, typically based on adaptive filter techniques. If the noise is periodic, a simple 
signal model can be integrated into the adaptive controller, the parameters of  which are set using the error signal. This control loop 
behaves like an observer of  the signal to be suppressed. The authors  have developed this method which is already proved to work 
efficiently in practice, as well. The paper describes the design of this observer and gives the relations to the conventional structures 
and adaptat ion mechanisms. © 1997 Elsevier Science Ltd. 
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1. Nomenclature 

A ~(z) transfer function of  primary acoustic 
path 

A2(z) transfer function of secondary acous- 
tic path 

C(z) corrector transfer function 
e, vector of  basis functions at time 

sample 17 
c,, k the kth basis function at time sample 

n 

cot cotangent function 
d desired signal 
e Euler's number, e = 2.71828 ... 
f relative frequency 
f~ relative fundamental frequency 
g, corrector vector at time sample n 
g,,~. the kth corrector element at time 

sample n 
Hk(z) transfer function of kth channel 
j imaginary unit, j = ~ 1 
k integer number 
L integer number 
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open loop transfer function 
integer number 
integer number (for time step) 
resonator transfer function 
input vector of the controller 
kth element of the input vector 
filter transfer function 
complex parameter 
reference signal 
state vector at time sample n 
first element of the state vector at 
time sample n 
output signal 
output signal at time sample n 
variable of the Z-transform 
resonator pole 
convergence parameter 
error signal 
Ludolf 's  number, Ir = 3.14159 ... 
denotes the estimator of the desig- 
nated variable 
absolute value operator 
complex conjugate operator 
transpose operator 
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2. Introduction 

Nowadays the idea of active compensation of 
low-frequency acoustic noise or vibration is very 
popular [1 ]. Active noise cancellation is based on 
the phenomenon of destructive interference. A 
"secondary" noise has to be generated, which 
suppresses the "primary" (i.e. the original) noise 
at the properly situated microphones. These con- 
trol systems are usually multiple input-multiple 
output systems, but their functionality and perfor- 
mance can be investigated on the corresponding 
single input-single output systems, as well. 

The conventional control systems have the form 
of Figs 1 and 2 [1]. In these figures d represents 
the primary signal (desired signal for the algo- 
rithm); x is a reference signal which is well-corre- 
lated with the primary source; Al(z) and Az(z) are 
the discrete-time equivalents of the primary and 
the secondary acoustic paths, respectively; y is the 
output of the controller; e is the error signal 
derived by the microphone; and W(z) denotes the 
adaptive filter. The adaptation mechanism is usu- 

Fig. 1. Adaptive feedback control. 
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ally a kind of LMS algorithm, in order to minimize 
the power at the microphones. 

Figure 1 shows the feedback controller. It has 
no separated reference input. ~]2(z) is the model 
on Az(z) which provides the successful control 
even in the case of complicated secondary transfer 
function. However, the algorithm needs the 
identification of A2(2 ) in advance. 

Figure 2 shows the feedforward controller. The 
controller also receives a reference signal. In this 
case W(z) performs the estimated version of 
Al(2)/A2(2 ). 42(2 ) is used for the adaptation (e.g. 
filtered-X LMS algorithm). The implementations 
of such controllers were more successful than that 
of the feedback ones [1]. The main disadvantage 
of the feedback controller is that it must have a 
large gain because of the small error signal (in the 
case of successful control ), but this gain cannot 
be increased enough because of the delay due to 
the acoustic path. To reduce this drawback feed- 
back controllers are implemented with secondary 
sources near to the error microphones. 

The systems described above are used to com- 
pensate broadband noise. If the noise is periodic, 
a different approach can be used. We should focus 
on the feedforward structure, because of its advan- 
tages against the feedback one mentioned above 
and the easily available reference signal. The 
arrangement for the feedforward control of peri- 
odic noise can be seen in Fig. 3. 

There is a new element in the figure, R(z), which 
is a virtual signal generator producing the reference 
signal. It is detailed in Fig. 5. The idea of this 
generator is based on the Fourier-decomposition 
of periodic signals. It consists of individual com- 
plex oscillators (resonators) at the frequencies to 
be controlled, and each oscillator has its own 
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Fig. 2. Adaptive feedforward control. Fig. 3. Feedforward control of periodic noise. 
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complex amplitude (magnitude and phase). This 
generator can be represented by a signal model, 
where the fundamental frequency and the complex 
amplitudes are its free parameters. Al(z)  performs 
only a transform on the complex amplitudes. 
Indeed, the secondary signal could be also pro- 
duced by the same generator with the proper 
transform on the complex amplitudes. Figure 4 
shows such a system. Against the previous version, 
there is a signal model built in the controller, 
/~(z), where '^' refers the estimated version of the 
model. The controller uses the reference signal to 
estimate the fundamental frequency of the primary 
signal. C(z) is a corrector to set the complex 
amplitudes in /~(z). The whole control system is 
an observer on the signal model R(z). 

The task is to design C(z), according to R(z) 
and Az(z). Since A2(z) can be considered to be 
linear [2], C(z) can be designed on the basis of the 
classical linear system theory [3,4]. Consequently, 
at a given fundamental frequency, the control 
system remains linear, i.e. time-invariant. Due to 
the resonators in the controller, this approach 
provides the total suppression of signal compo- 
nents, if the frequencies of/~(z) exactly coincide 
with those of R(z). There is usually exact frequency 
information from the primary source (e.g. tachom- 
eter), otherwise the adaptive Fourier analyzer 
(AFA) [5] can be applied to find the fundamental 
frequency from the reference signal. 

The aim of this paper is to describe the observer 
design emphasizing the role of the acoustic path, 
and to characterize the derived system. It will be 
also demonstrate how it relates to existing 
methods. 

3. Observer design 

In this section we will consider the Luenberger 
type linear state observers, and it is supposed that 
the system to be observed is observable. In our 
case the system to be observed is a discrete time 
signal generator introduced in the previous section 
[3]. The signal model can be described as follows: 

y .  = c.Tx. (1)  

c, =[C,,k]=-eJ2~flk", k =  - L . . . L ,  N = 2 L +  1 (2) 

Lf  1 <0.5 < ( L +  1 )fl  (3) 

where x, is the state vector of the signal model, 
y, is its output and the input of the observer, and 
c, represents the basis of the Fourier-expansion 
and f l  is the relative fundamental frequency. The 
state vector consists of outputs of unexcited integ- 
rators (Fig. 5). The last equation means that all 
of the harmonics up to the half of the sampling 
frequency are represented. 

Ignoring the details on the possible ways of 
observer design, here the observer for periodic 
signals will be introduced as follows. It is a control 
loop where the plant is the signal model itself. Its 
output is fed back and subtracted from the input 
signal (which is the output of the signal model to 
be observed). Thus the description of the observer 
is: 

~,+1 =~,  +g,(y,  --cT~,) (4) 

g, = [g,,k] = rki:,,k ( 5 ) 

where ~, is the estimated state vector, g, is a vector 

cN, j 

Fig. 4. Resonator based control. Fig. 5. The signal model. 
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called corrector in the previous section to set the 
poles of the observer by the rk parameters. ' - '  
denotes the complex conjugate operator. The 
observer can be seen in Fig. 6, Due to the complex 
exponentials, the channels of the observer can be 
considered as time-invariant systems with a pole 
on the unit circle (Zk; k=  1 . . .N).  This is why they 
are called resonators. Although by rk any pole 
placement (of the overall system) can be achieved, 
it has an important role if the poles are in the 
origin, i.e. the system has finite impulse response 
[3]. If  the resonator poles are arranged uniformly 
on the unit circle, and rk =l /N;  k=  1...N, the 
observer performs a recursive Fourier transformer 
of N points. The result of the transformation is 
the state vector. In practical applications [5] where 
the fundamental frequency changes, the resonators 
cannot be placed uniformly, and the calculation 
of the corresponding rk parameters would be time 
consuming. But, if r, = l/N; k=  1.. .N and Eqs (2) 
and (3) hold, the system proved to be fairly fast. 

If  the input signal is periodic, consisting of only 
components of resonator frequencies then the 
input of the resonators (i.e. the feedback error) 
equals zero. Furthermore, in this case the corre- 
sponding state variables (as a complex vector) do 
not change. However, if the frequency of the input 
signal changes, the state variables will rotate. The 
speed of this rotation at each resonator is pro~,~ "- 
tional to the corresponding frequency difference. 
This is the basic idea for the frequency adaptation 

Fig. 6. Observer for periodic signals. 

in the AFA [5]. The exact formula is the following: 

1 
f1,,+1 =f l . ,  + - -  angle (2L,+a,21,,) (6) 

27tN 

where 2~,~ is the state variable belonging to the 
positive fundamental frequency, and "angle" gives 
the angle between two complex numbers. 

The noise controller can be a resonator based 
observer, the feedback path of which is imple- 
mented by the secondary path. It can be seen in 
Fig. 7a. The input of resonator channels comes 
from the microphone (via an ADC),  the sum of 
the channels is connected to the loudspeaker (via 
DAC). The e, vector is taken from an AFA. The 
reference signal can be any signal, relatively free 
of noise, with the same frequency as the primary 
source. The simplified arrangement can be seen in 
Fig. 7b where C(z) and R(z) denote the corrector 
and the signal model, respectively, and A2(z) 
represents the acoustic path. 

Here, a both theoretically and practically impor- 
tant problem arises. The original task was to 
design a controller for the acoustic path as a plant. 
On the other hand, the decision was to design an 
observer for the periodic signal. The above 

r . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
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~ secondary noise 
I 

RESONATORS - 

primary noise 

reference signal :~I AFA ] 
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(b) 
Fig. 7. Periodic noise control: (a) physical arrangement, (b) 
block diagram of the control loop. 
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derivations considered the signal model also as a 
plant. Therefore, our control loop can be seen 
from two points of view: (1) the plant is the 
acoustics (A2(z)), and the controller is the signal 
model and the corrector (Fig. 4); (2) the plant is 
the signal model, and the acoustic path is an 
inevitable part of the controller. Although the 
signal model does not appear directly, the methods 
based on adaptive filters prefer the first approach. 
As was mentioned in the introduction, these sys- 
tems need the identification of A2(z) ,  which has 
lots of difficulties, regarding the high complexity 
of such transfer functions, and, in addition, the 
usage of the model needs time-consuming on-line 
calculations. The resonator based approach offers 
a simple solution by the appropriate choice of the 
r (r=[rl. . .ru]).  

The resonators in the loop provide the zero 
error at their frequencies. The only, but important, 
task of the r is to make the overall system stable 
and fast enough. It must be also emphasized that 
the feedback is no longer state feedback, because 
of the state variables in the acoustics which are 
not available. Consequently, there is no possibility 
to place the poles of the whole system to any 
position. It will be shown below that the best 
choice of r is the following: 

1 
rk =~Wk;Wk -- (7) 

A2(2k)  

where ~ is a convergence parameter. The stability 
of the system is investigated by the Nyquist sta- 
bility criterion (see e.g. Ref. [6]). The open loop 
transfer function of the system is: 

N 
L ( z )  = C ( z ) R ( z ) A z ( z )  = A2(z) ~ Hk(Z) (8) 

k = l  

where Hk(Z) is the transfer function of one channel 
of the controller: 

Z k Z k 
Hk(z )  = rk - -  = ~ZWk - -  

Z - -  Z k Z - -  Z k 

This can be written as follows: 

(9) 

5~ 
H k ( f )  = Wk 2 [ 1 + j  cot 7r(f--fk)]; Z = e j2~y (10) 

resonator frequency. By decreasing the con- 
vergence parameter e the encirclement of the point 
z = - 1 can be avoided everywhere (independently 
of the phase of rk or A2(f)) with the exception of 
the neighborhood of the resonator frequencies, 
because here IHk(fk)L~ oO for some k therefore 
[W(fk)[ ~, Go. A t f = f k  the phase of the loop gain is 
determined by the corresponding resonator chan- 
nel and A2( fk ) .  Hence, here it is enough to investi- 
gate the Nyquist curve of one channel given by 
Eq. (10). Supposing, Wk = 1, this Nyquist curve is 
shown in Fig. 8. It does not encircle the point z = 
- 1 if e < 2. Applying a complex wk 4:1 (which 
performs also a rotation on the curve), the encircle- 
ment of the point z = -  1 can be avoided by an 
appropriate ct if and only if: 

- re/2 < angle(Wk) < re/2 ( 1 1 ) 

and this inequality should be satisfied for each 
channel. If  A2(z) is also applied, Eq. (11) should 
be rewritten as follows: 

- 7t/2 < angle(Wk) + angle(A2(fk)) < rt/2; k = 1...N 

(12) 

which is trivially satisfied if Eq. (7) holds. 
Now it is proven that for stability only the 

phases of the r k values are important. The settling 
time of the system is minimal, if the greatest 
eigenvalue is minimal. It can be achieved by 

I 
Ct  

- 1  --ff 

I m ( H k )  " , ,  
\ 

k 

x 
\ 

r 

\ 

Re(Hk)', 
: : a -  i 

i I 

I 

t I 

/ 
/ 

/ 
/ 

/ 

/ 

where f is the running frequency and fk  is the Fig. 8. The Nyquist curve of a resonator channel. 
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Eq. (7). If  Eqs(2) and (3) are satisfied and 
A2(z) = 1, the system is very fast, the poles lie close 
to the origin. This feature would hold if 1/A2(z) 
could be applied in the loop. In general this inverse 
filter cannot be implemented. By the choice of the 
parameters Wk=I/A2(Zk) this inverse filter is 
approximated. Because of the error of the approxi- 
mation between the resonator poles the loop gain 
must be decreased by a positive convergence 
parameter as Eq. (7) shows otherwise the system 
is unstable. 

In order to set the r, A2(z) is needed, but in 
practical cases it is not analytically known. This 
means that the r cannot be calculated for an 
arbitrary chosen frequency. Fortunately, however, 
the phase shift at a resonator frequency can change 
in the range of ( -~ /2 ,  re/2). If  the complex transfer 
values of A2(z) are known (e.g. they are measured) 
"densely enough" over the whole frequency range, 
this set can be used to calculate the actual r. It 
depends on A2(z), what "densely enough" means. 
If  the phase changes rapidly, lots of measurement 
points are needed. The calculation of the actual r 
could be very simple: for a certain frequency the 
nearest measurement result could be used. The 
measurement procedure described above gives only 
a finite number of the samples of the frequency 
response of Az(z). It means that the algorithm 
does not require one to solve the identification 
problem exactly. 

The suppression of signal components at resona- 
tor frequencies is complete, so the observation 
error is zero, but the state variables of the signal 
model within the observer are usually distorted, 
because of the measurement error of A2(z) and the 
usage of the "nearest" measurement results. 

4. Advantages of the resonator based approach 

The above sections have already described some 
advantages regarding A2(z): its identification prob- 
lem need not be solved exactly, and its usage is 
very simple. In this section the advantages against 
the conventional adaptive filters are demonstrated. 
The resonator based observer can be seen as an 
adaptive filter bank, the reference signals of which 
are the harmonic components, and the filter 
coefficients are adapted by the error signal using 

the LMS algorithm [7]. This duality can be applied 
for our case, the only difference is that there is a 
filter in the auxiliary path, therefore the filter 
coefficients are adapted by the filtered-X LMS 
(XLMS) algorithm [8]. As a result of the investiga- 
tions, the filter bank for noise control can be seen 
as a resonator based controller, with: 

wk = Az(zk) (13) 

where ' ' denotes the complex conjugate operator. 
The phase shifts caused by the filter in the XLMS 
algorithm and r in the resonator based observer 
are obviously the same, thus from a stability point 
of view the systems are identical. However, as was 
mentioned, the system is the fastest if the multipli- 
ers in each channel are set by [7]. A heuristic 
explanation can be given: while in the resonator 
based observer the gain between the system output 
and the resonator input is unity, that of the XLMS 
algorithm is ]AzJ 2. If the secondary path suppresses 
the signal, in the loop the square of this suppres- 
sion occurs, so the system will be considerable 
slow. It is a possibility, of course, to set the 
convergence parameter in the XLMS algorithm to 
get the fastest system. But, in this case, this con- 
vergence parameter must be a function of the 
frequency. It means that the elements of the r 
vector are implemented in two parts: first the 
complex conjugate part by the filter, second the 
absolute value by the adaptive convergence param- 
eters. There is a further difference between the 
algorithms: the above comparison was made sup- 
posing separated channels for each complex expo- 
nential (which is here identical with supposing 
sinusoids), but the usual adaptive systems have 
only one reference signal, consisting of all compo- 
nents to be suppressed. 

The differences mentioned above are practically 
relevant. In the case of usual secondary transfer 
functions this speed-difference could be high. The 
speed of the system has an important role if the 
noise signal is not stationary (which is a real case), 
so the control system must follow the changes. 

5. Conclusion 

The above derivations led from the "feed- 
forward" approach to a "feedback" controller, 
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because of the structure of C(z) and R(z). 
However, there is feedback of the error signal in 
all methods, only their usages are different. The 
classical feedforward control uses the error signal 
to adapt many coefficients of a filter, while the 
resonator based controller "adapts" the parame- 
ters of the signal model. However, this "adapta- 
tion" is performed by a linear circuit, the only 
input of which is the error signal. Due to the 
built-in signal model, the observer based design 
provides advantages against the conventional 
adaptive control systems, regarding the identifica- 
tion of the secondary path and the speed of the 
control, without other disadvantages. 
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