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Abstract– A nonparametric identification method for linear systems is pro-
posed. The identificaton is done via synchronized multisine measurements
where the synchronization is ensured by a resonator based generator – ob-
server pair. The advantage of the proposed structure is that it works as a
filter bank and provides the measurement results on-line. Exponential av-
eraging is an option of the method and it requires no extra calculations. A
further advantage is that the identification can be done over any frequency
set without any loss of performance. Explicit formulas are given for noise
suppression and settling time. The method is illustrated by a practical exam-
ple.

Keywords– Non-parametric frequency domain identification, multisine, res-
onator based observer, on-line measurement

I. INTRODUCTION

Fourier analysis is a well-known method for non-parametric
frequency domain identification of linear systems [1]. Fre-
quency domain data are often inputs for parametric identifi-
cation [2]. The utilization of multisine excitation provides the
possibility of the elimination of the systematic errors like leak-
age and picket fence [3]. In most cases the output of the system
is analyzed by the discrete Fourier transform (DFT), while the
frequency domain parameters of the excitation are known in
advance. The DFT is calculated via the fast Fourier transform
(FFT). In order to suppress the measurement noise, averaging
on the analysis results is also necessary.

Resonator based observers were developed earlier to perform
the recursive discrete Fourier transform (RDFT) [4], [5]. In
these observers the resonators work in a common feedback
loop providing zero steady-state feedback error at the resonator
frequencies. The summed output of such resonators can gen-
erate any periodic signal up to the half of the sampling fre-
quency. It is straightforward to utilize such a generator – ob-
server pair for frequency domain non-parametric system iden-
tification: the system to be identified has to be in between the
generator and the observer and the ratio of the state variables of
the observer and the generator supplies the estimated transfer
function. This arangement can be an alternative of the FFT-
based analysis since it works as a filter bank and provides the
measurement results on-line.

A(f)
P (f) Q(f)

Fig. 1. The system to be identified

Section II. recalls the identification problem and the resonator
based observer. Section III. introduces the resonator based
identification and a detailed analysis is given. Real measure-
ment data are provided in section IV., while section V. is the
conlusion.

II. PRELIMINARIES

A. Non-parametric frequency domain identification of linear
systems

Let A(f) be a linear, time-invariant discrete time system as it
is depicted in Fig. 1, whereP (f) andQ(f) denote the Fourier
transform of the input and the output signal, respectively. The
non-parametric frequency domain identification ofA(f) is the
estimation of its samples over a finite set offk [1]:

Â(fk) =
P (fk)

Q(fk)
(1)

whereÂ(fk) is the estimation ofA(fk). There are many pos-
sibilities to excite the system, a possible choice is the utiliza-
tion of multisine excitation [3]. In this caseQ(fk) is usually
known in advance, andP (fk) is calculated by the DFT. If the
length of the input sequence equals to the number of the DFT
points, the estimation is not distorted due to the leakage and
the picket fence effect. There are different averaging technics
to reduce the random noise corrupting the measurement. If the
identification should follow the changes inA(f), exponential
averaging can be used.

B. The resonator based observer

The resonator based observer was designed to follow the state
variables of the so-called conceptual signal model [5]. The
signal model is described as follows:

yn = cTnxn (2)

cn = [cn;k] = ej2�fkn; k = �L : : : L (3)
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Fig. 2. The resonator based observer

f�k = �fk; f0 = 0; k = �L : : :L (4)

where xn is the state vector of the signal model at time step n,
yn is its output (the input of the observer), cn represents the
basis functions. Eq. (4) ensures that the model generates a real
signal. This restriction is not necessary, but advantegeous in
most cases. The conceptual signal model can be considered as
a summed output of resonators which can generate any multi-
sine with components up to the half of the sampling frequency.
The corresponding observer is (Fig. 2):

x̂n+1 = x̂n+gn(yn� cTn x̂n); gn = [gn;k] = rk�cn;k (5)

where x̂n is the estimated state vector, frk; k = 1::N ; N =
2L+1g are free parameters to set the poles of the system, and
the overbar denotes the complex conjugate operator. Due to
the complex exponentials, the channels of the observer can be
considered as time-invariant systems with a pole on the unit
circle. This is why they are called resonators. Each channel of
the observer is a filter output, the transfer functions of which
is:

Hk(z) =

rkzk
z�zk

1 +
PN

i=1
rizi
z�zi

; k = 1 : : :N (6)

where fzk; k = 1::Ng are the resonator poles. If the res-
onator poles are arranged uniformly on the unit circle, and
frk = 1=N; k = 1::Ng, the observer has finite impulse re-
sponse, and the observer corresponds to the RDFT [5]. In that
case the transfer function (6) is very simple:

Hk(z) =
1

N

zN � 1

z � zk
z�N ; k = 1 : : :N (7)

the magnitude response of which is:

jUk(f)j = j

sin�N(f � fk)

N sin�(f � fk)
j; k = 1 : : :N (8)

(8) has zeros at each resonator frequency, except when f = f k,
where Uk(f) = 1.

In practical applications where the fundamental frequency
changes, the resonators cannot be placed uniformly, and the
above setting of parameters rk does not provide finite im-
pulse response. The adaptive Fourier Analyzer described in [6]
adapts the resonator frequencies to coincide with those of
the input signal, avoiding the picket-fence effect and leak-
age. It was successfully utilized e.g. in high-precision vector-
voltmeters [6] or in active noise control systems [7].

III. RESONATOR BASED IDENTIFICATION

A. The identification system

The above described resonator based generator – observer pair
can be used for frequency domain non-parametric system iden-
tification as it is depicted in Fig. 3. The excitation is given by
the state vector of the generator (x0) which does not change
while the identification is in progress. The system to be identi-
fied (A(z)) has to be in between the generator and the observer
and the ratio of the corresponding state variables of the ob-
server and the generator supply the results:

Â(fk) =
x̂k
xk

; k = 1 : : :N (9)

Exponential averaging is an option of the structure, and it is
controlled by the parameter �. Its role is discussed in detail in
the following subsections.

Since the same basis functions cn are applied both in the gen-
erator and the observer, no picket fence effect and leakage oc-
curs, even if finite wordlength effects are taken into consider-
ation. The operation of the method can be characterized by
noise suppression and measurement time. These are discussed
below.

B. Identification over a uniform resonator set

The resonators are arranged uniformly on the unit circle, if
f1 = 1=N. If frk = 1=N; k = 1::Ng, the observer performs
the RDFT [5]. It is the case when�= 1 in Fig. 3. Each channel
has an equivalent noise bandwidth of 1=N. If the measurement
noise is white, the ratio of the variances are:

�21
�20

=
1

N
(10)

where �20 is the variance of the original measurement noise,
and �21 is the variance of the output. The system has finite
impulse response, and the measurement time is N steps.

If 0 < � < 1, the measurement results are exponentially aver-
aged. The equivalent time constant is:

� = 1� (1� �)1=N (11)
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Fig. 3. Resonator based identification

This averaging improves the noise suppression of (10) (see
e.g. [8]):

�22
�20

�

�

2
(12)

where �20 is the variance of the original measurement noise,
and �22 is the variance of the averaged output. Since the system
has infinite impulse response, the measurement time depends
on the accuracy of the measurement:

K �

log "

log(1� �)
(13)

where " denotes the final error to be achieved. Note that in
practical cases first � is determined upon the specification of
the identification task, and � is calculated by the inverse of
(11):

� = 1� (1� �)N (14)

C. Identification over an arbitrary resonator set

In many practical cases the identification shall be done over
a non-uniform frequency set: e.g. acoustical measurements
require logarithmic frequency points. In these cases (7) and
(8) are no more valid, and the system has infinite impulse re-
sponse, even if �= 1. However, it remains that the k-th trans-
fer function has zeros at each resonator frequency, except when
f = fk, where it is exactly 1. It means that the structure is able
to perform undistorted measurements, according to (9). Note
that the identification in this case does not require extra calcu-
lations compared to the uniform resonator set case.

The calculation of the noise suppression and the measurement
time is generally very complicated, since each channel has dif-
ferent equivalent noise bandwidth. Fortunately, if � � 1, the
relevant transfer functions can be well approximated as fol-
lows:

Hk(z) =

rkzk
z�zk

1+ rkzk
z�zk

+
PN

i=1;i 6=k
rizi
z�zi

�
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Fig. 4. Magnitude response of one resonator channel with logarithmic
frequency set (� = 0:01). Solid line: magnitude response of the

approximating structure; dashed line: magnitude response of the original
structure

�

rkzk
z�zk

1+ rkzk
z�zk

=
rkzk

z� zk(1� rk)
; k = 1 : : :N (15)

In this case the k-th channel can be approximated with another
resonator based observer output, which contains one resonator
only, at the frequency of fk, with rk = �. The approxima-
tion is good along the frequency axis, with the exception of
the neighborhood of the original resonator positions, since the
approximating transfer function has no zeros at those places.
This is demonstrated in Fig. 4. The figure shows that the mag-
nitude response of the original and the associated structure are
close to each other. It also implies that the equivalent noise
bandwidth is nearly the same for the two structures, so (12) is
a good estimation for the case of an arbitrary resonator set.

Due to the Parseval’s theorem, the measurement time can be es-
timated by the corresponding transfer functions. The squared
error of the approximating transfer function (15) tends to zero
as � tends also to zero. Numerical simulations show that the er-
ror of the approximation can be omitted for � values frequently
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Fig. 5. Result of the identification of a band-stop FIR filter.

used in the practice (� � 0:01). Thus (13) is a good estimation
also for the measurement time in the case of an arbitrary res-
onator set.

IV. MEASUREMENTS

In order to test the algorithm, a simple DSP program was writ-
ten. The proposed identification method was implemented on
an ADSP 2181 based EZ-KIT Lite development board [9].
(ADSP 2181 is a 16-bit fixed-point signal processor [10].) It
has two analog channels with 16-bit delta–sigma A/D and D/A
converters. The sampling frequency can be set from 5.5125
kHz to 48 kHz, in several steps. The system to be identified has
to be connected in between the D/A and the A/D converters.
The input variables of the program are: the multisine excita-
tion sequence (thus the number of the resonators), and the time
constant � for exponential averaging (see Section III.). The
proposed identification is an on-line method, so the resolution
is limited by the computational complexity of the method. Up
to the sampling frequency of 8 kHz, the transfer function can
be measured in 512 points. At the maximal sampling frequency
of 48 kHz, the measurement can be done in 64 points.

Now the proposed method is illustrated by the identification of
a band-stop filter. It is a finite impulse response (FIR) filter im-
plemented on another DSP board, with a sampling frequency
of 16 kHz. The measurement result can be seen in Fig. 5. The
transfer function is measured in 256 point, i.e. with a resolu-
tion of 62.5 Hz. Damping near to DC and 8 kHz are due to
the AC coupling and the delta–sigma A/D and D/A convert-
ers. The suppression in the stop band is about 50 dB, while the
specification is 60 dB. This difference is because of the 16-bit
wordlength.

The settling of the system can be seen in Fig. 6. The figure
shows the feedback error of the structure (see Fig. 2) in the case
of the above measurement, with a time constant of � = 0:005.
The settling can be considered complete if this error signal is
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Fig. 6. The settling of the resonator based structure in the case of time
constant � = 0:005.

zero. Although the settling of the system is exponential, the de-
cay is not continuous: the magnitude of the transient changes
only in every 16 ms (in every N = 256 steps), when it is mul-
tiplied by �. In the example �� 0:28, according to (14). This
settling is characteristic only when the resonators are arranged
uniformly.

V. CONCLUSION

A nonparametric identification method for linear systems was
introduced. The paper described the theoretical background of
the method and it was illustrated by a practical example. The
advantage of the proposed structure is that it works as a fil-
ter bank and provides the measurement results on-line, while
the feedback-based observer ensures high-precision measure-
ments. The identification can be performed over any frequency
set, e.g. over a logarithmic set. The computational demand
of the method depends only on the number of the frequency
points. The method is an alternative of the FFT-based analysis
where changes in a plant should be followed.
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[7] L. Sujbert, G. Péceli, “Periodic noise cancelation using resonator based
controller” , in 1997 Int Symp. on Active Control of Sound and Vibration,
ACTIVE ’97, pp. 905-916, Budapest, Hungary, Aug. 1997.

[8] L. Schnell (ed.), “Technology of Electrical Measurements” , Wiley, 1993.
[9] ADSP-2100 EZ-KIT Lite Reference Manual, Analog Devices, Inc., 1995.
[10] ADSP-2100 Family User’s Manual, Analog Devices, Inc., 1995.

169


	Back to Main Menu
	**********************
	Search CD-ROM
	Search in this File
	Previous Search Result(s)
	**********************
	Back to previous document



