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ABSTRACT

A resonator based �lter bank is proposed as controller in acoustic noise canceling

loops where the noise to be suppressed is periodic. The controller consists of resonators

at the frequencies of the periodic signal to be suppressed. The paper presents the design

procedure for both single and multiple channel case and investigates the behavior of the

noise canceling systems. The proposed method is compared to the conventional adaptive

feedforward controller updated by the �ltered-X LMS algorithm. The resonator based

controller shows faster convergence and needs less computations than the usual methods.

The advantages of the new controller are demonstrated by a theoretical and a practical

example.

Keywords: active noise control, feedback control, feedforward control, res-

onator, experiment

INTRODUCTION

Active suppression of periodic acoustic noise is one of the simpler noise control prob-

lems: both feedback and feedforward control can be used. If only the error signal is

available, feedback control is satisfactory, since a harmonic signal can be easily predicted.

If reference signal is also available, the implementation of feedforward control is straight-

forward. There are many feedforward control applications which use adaptive �lters, with

the parameters updated in each sample interval, mainly on LMS basis. These systems

are able to suppress both broadband and periodic noise. In the case of periodic noise

cancelation the reference signal consists of all the harmonic components to be suppressed.

However, in this case a more adequate controller design is possible. The theoretical back-

ground of such a controller design is the adaptive Fourier analysis. The adaptive Fourier

analyzer (AFA) is a structurally adaptive system for exact measurement of band-limited

periodic signals of arbitrary fundamental frequency [2]. It is an extension of the resonator
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Figure 1: Observer for periodic signals

based observers developed earlier to perform the recursive discrete Fourier transform

(RDFT) [3], [4]. In these observers the resonators work in a common feedback loop pro-

viding zero steady-state feedback error at the resonator frequencies. The AFA adapts the

resonator frequencies to coincide with those in the input signal.

The proposed noise controller can be considered as an extension of the AFA mentioned

above. In Section 2 the AFA is recalled and the derivation of the new structure for single

channel case is given. Section 3 deal with the extension of the new method for multiple

channel systems. In Section 4 the proposed method is compared to the feedforward

adaptive controller extending the idea described in [9]. The advantages of the resonator

based noise canceling system are illustrated in Section 5.

SINGLE CHANNEL NOISE CONTROLLER DESIGN

Adaptive Fourier Analyzer. The resonator based observer was designed to follow the

state variables of the so-called conceptual signal model [2]. The signal model is described

as follows:

yn = cT
n
xn (1)

cn = [cn;k] = ej2�f1kn; k = �L::L (2)

Lf1 < 0:5 < (L + 1)f1 (3)

where xn is the state vector of the signal model at step n, yn is its output (the input of

the observer), cn represents the basis of the Fourier expansion, and f1 is the fundamental

frequency relative to the sampling frequency. The corresponding observer is (Fig. 1):

x̂n+1 = x̂n + gn(yn � cT
n
x̂n); gn = [gn;k] = rk�cn;k (4)

where x̂n is the estimated state vector, frk; k = 1::N ; N = 2L+ 1g are free parameters

to set the poles of the system and the overbar denotes the complex conjugate operator.



Due to the complex exponentials, the channels of the observer can be considered as time-

invariant systems with a pole on the unit circle fzk; k = 1::Ng (Fig. 1). This is why they

are called resonators. If the resonator poles are arranged uniformly on the unit circle,

and frk = 1=N ; k = 1::Ng, the observer performs a recursive Fourier transformer of N

points. The result of the transformation is the state vector. In this case the system has

�nite impulse response [4]. In practical applications [2] where the fundamental frequency

changes, the resonators cannot be placed uniformly, and the above setting of parameters

rk does not provide �nite impulse response. But, if (2), and (3) hold, the system is fairly

fast. If the estimated frequency does not coincide with that of the input signal yn, the

complex state variables will rotate, and the speed of this rotation at each resonator is

proportional to the corresponding frequency di�erence. This is the basic idea for the

frequency adaptation in the AFA [2]. The exact formula is the following:

f1;n+1 = f1;n +
1

2�N
angle(x̂1;n+1; x̂1;n) (5)

where x̂i;1 is the estimated state variable belonging to the positive fundamental frequency,

and "angle" gives the angle between two complex numbers.

The AFA is already implemented in vector voltmeters and it is a fast and robust

system. The fundamental frequency of the measured signal can be estimated precisely

even when it has high harmonic distortion [2].

Derivation of the Noise Controller. In steady-state the input of the resonators

(i.e. the feedback error) equals zero. This means that the feedback signal (the sum of

the resonator outputs) cancels the input signal. If acoustic noise should be canceled,

the output of the resonators should be connected to a loudspeaker and fed back using a

microphone. (A multiplication by �1 is necessary in the controller.) The arrangement

can be seen in Fig. 2.a. The frequency is estimated by an independent AFA and it passes

the actual cn to the controller. Reference signal can be any periodic signal with the same

fundamental frequency as the primary noise.

Fig. 2.b shows the block diagram of the control loop, where R(z) and A(z) denote the

resonator based controller and the acoustic transfer function between the loudspeaker and

the microphone, respectively. Due to the presence of A(z), the stability of the system is

not obvious. The controller design will be accomplished by the appropriate choice of the

parameters rk. They can be chosen as follows:

rk = �wk; wk =
1

A(zk)
(6)

where � is a convergence parameter. The actual set wk depends on the fundamental

frequency of the primary noise. A(z) is in general not analytically known and (6) cannot

be calculated on-line, therefore the transfer function should be measured at a �nite number

of points and the inverses should be calculated o�-line. Thus the actual set wk should be

a result of a mapping ffkg ! fwkg (e.g. the nearest available one). The required number
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Figure 2: Periodic noise control: (a) Physical arrangement (b) Block diagram of the

control loop

of the measurement points is determined by the following inequality:

��=2 < angle(w(f)) + angle(A(f)) < �=2 (7)

where f is the relative frequency and w(f) denotes the above mentioned mapping. If (7)

holds, the system can be stabilized with an appropriate � at any fundamental frequency.

Equation (7) is the condition of the stability. The stability can be proven by the

Nyquist stability criterion [6]. From the stability point of view the phases of the pa-

rameters rk are essential. Their amplitudes inuence the available maximal speed of the

convergence. If (2), and (3) are satis�ed and A(z) � 1, the system is very fast, the poles

lie close to the origin. This feature would hold if 1=A(z) could be applied in the loop.

In general this inverse �lter cannot be implemented. By the choice of the parameters

wk = 1=A(zk) the N � 1 degree numerator polynomial of R(z) is set which is a Lagrange

type interpolation of the transfer function of the inverse �lter. This procedure is in com-

plete correspondence with the frequency sampling method. The approximation is poor at

places but it is exact at the resonator frequencies. Because of the error of the interpolation

between the resonator poles the loop gain must be decreased by a positive convergence

parameter as (6) shows otherwise the system is unstable.

The convergence of the control system can be characterized by the greatest eigenvalue

of the system matrix: the smaller this eigenvalue the faster the system. The greatest

eigenvalue depends on the choice of the set wk and the convergence parameter �. Some

simulations show that the greatest eigenvalue can be minimized by tuning � if the set wk

is chosen as (6) shows.
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Figure 3: Multiple channel resonator based noise canceling system. (a) Physical ar-

rangement; (b) Block diagram

MULTIPLE CHANNEL NOISE CONTROLLER DESIGN

The resonator based noise canceling system can be seen in Fig. 3. The �gure shows

an example with 3 microphones and 2 loudspeakers. In the multiple channel system

to each loudspeaker belongs a resonator set, the input of which is the weighted sum of

the microphone signals. The fat lines in the block diagram denote the vector signals,

R(z) and A(z) are matrices. The weighting of the microphone signals corresponds to the

parameters wk. Indeed, instead of a simple parameter set, here a matrix set should be

applied. Extending the idea described above they can be chosen as follows:

Wk = A#(zk) (8)

whereWk is the weighting matrix and # denotes the pseudo- (or Moore-Penrose) inverse.

This set of parametersWk o�ers similar convergence properties as (6) in the single channel

system. The condition of the stability is:

��=2 < anglef�i[W(f)A(f)]g < �=2; i = 1::I (9)

where �i(:) denotes the i-th eigenvalue of the corresponding matrix. This condition can

be derived from the multiple channel Nyquist stability criterion`[7].

Single channel noise control systems provide zero steady-state error. Unfortunately,

in general, multiple channel systems cannot achieve zero error, because there are usually

more microphones than loudspeakers. A multiple channel system should minimize the

power of the remaining noise. The problem is the following: there are N harmonics to be



controlled on M output channels and N harmonics to be suppressed on L input channels.

The N output harmonics should be set to minimize the power of the error vector. Since

the harmonics can be suppressed independently of each other, there are N independent

tasks. The problem of the suppression of one harmonic component is identical with solving

a linear equation system with M variables and L constraints:

dk = Akyk (10)

where dk and yk denote the noise to be suppressed and the output of the noise control

system belonging to the k-th harmonic component, respectively. The solution of the

equation system (10) can be expressed by the pseudo-inverse as follows:

yk = A
#
k
dk (11)

This solution can be derived using the projection theorem [8]. Depending on the relation

between L and M , there are three possibilities:

� if L =M , the ordinary inverse can be used, and only one solution exists. The error

in steady-state is zero;

� if L < M , the error in steady-state is zero, and the norm of the output is minimal;

� if L > M , the error in steady-state is not zero, but its norm (i.e. its power) is

minimal.

Most of the multiple channel noise control systems have more microphones than loud-

speakers, which corresponds to the third case. It can be proven that the resonator based

controller �nds this optimal solution, if (8) holds.

THE INTER-RELATION OF DIFFERENT TECHNICS

As it is mentioned in the Introduction, for periodic noise control the implementation

of the adaptive feedforward control is straightforward. The adaptive transversal �lter

in this controller is updated by the �ltered-X LMS (XLMS) algorithm [1], [5]. The

required number of the coe�cients is the number of the harmonics to be suppressed.

The arrangement can be seen in Fig. 4. The resonator based observer can be seen as

an adaptive �lter bank, the reference signals of which are the complex exponentials, and

the �lter coe�cients are adapted by the error signal using the LMS algorithm [9]. This

duality can be applied for our case, the only di�erence is that the XLMS algorithm is

used. Thus the adaptive �lter for periodic noise control is a resonator based controller,

where:

wk = �A(zk) (12)

where the overbar denotes the complex conjugate operator. The phase shifts caused by

the �lter in the XLMS algorithm and the parameters wk in the resonator based observer
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Figure 4: Adaptive feedforward controller using the XLMS algorithm.

are obviously the same, thus from stability point of view the systems are identical. How-

ever, the adaptive �lter does not aspire to approximate the inverse �lter, therefore its

convergence could be very slow. A heuristic explanation can be given: while in the res-

onator based observer the gain between the system output and the resonator input is

unity, that of the adaptive �lter is jAj2. If the secondary path suppresses the signal, in

the loop the square of this suppression occurs, so the system will be considerable slow.

In multiple channel noise control systems the multiple-error LMS (MLMS) algorithm

can be used [1], [10]. It can be represented also by the corresponding multiple channel

resonator based noise controller as follows:

Wk = AH(zk) (13)

where (:)H denotes the conjugate transpose operator. It can be proven that by this choice

of the matrices Wk the steady-state error of the adaptive system can be minimized. It is

not a surprise, because the LMS algorithm is designed to minimize the expected value of

the square of the error signal.

It has shown that the resonator based noise controller provides faster convergence,

while the other features of the control system are identical with those of the cited adaptive

system. The proposed controller provides further advantages, regarding the modelling of

A(z). The adaptive �lter updated by the XLMS algorithm needs a copy of A(z) which

is Â(z) in Fig. 4. Â(z) is usually a transversal �lter and its coe�cients are results of

the identi�cation of A(z). The number of the coe�cients depends on A(z), and it is

usually in the range of the number of measurement points required by the resonator

based controller. This number could be some hundreds in the practice, and this �lter

should work on-line. However, the resonator based controller uses only N (the number

of harmonic components) parameters on-line. Since the implementation of the resonators

and the LMS-updated adaptive �lter takes nearly the same computational burden, the

computational advantages of the resonator based controller are obvious.

EXAMPLES

Comparison of Noise Controllers. In this section the adaptive feedforward controller

and the resonator based controller is compared to each other. This example is result of
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Figure 5: Magnitude response of A(z) in (14)

mathematical analysis, where the plant is a simple second-order IIR �lter:

A(z) =
z2 � 0:3373z + 0:8100

z2 + 0:6627z + 0:6414
(14)

Its magnitude response can be seen in Fig. 5. Both algorithms suppose 4 harmonics

and a DC component. It means that 9 weights are necessary in the adaptive �lter,

i.e. 9 resonators are required. The relative fundamental frequency is f1 = 0:05. The

adaptive feedforward controller receives a reference signal consisting of all the possible

signal components of equal amplitudes. Both systems can cancel the noise, i.e. the

microphone signal converges to zero. The algorithms di�er from each other in the control

speed. For simplicity it is supposed that the generation of the reference signal takes the

same time as it is required by AFA to estimate the fundamental frequency. This settling

time is much shorter than that of the noise canceling loop. If the fundamental frequency

does not change, both controllers are time-invariant systems.The speed of the systems can

be characterized by the greatest eigenvalue of the corresponding system matrices as it is

written above. Fig. 6 shows the greatest eigenvalues as the function of the convergence

parameter �. The upper curve belongs to the XLMS algorithm, while the lower one

belongs to the resonator based controller. The minima of the greatest eigenvalues and

the corresponding convergence parameters are: �1 = 0:9995 with �1 = 0:16; �2 = 0:99

with �2 = 0:30, respectively. If the initial value of the error signal is one, in worst case

it decreases after 1000 steps to about 0.6, 5 � 10�5, respectively. The greatest eigenvalue

of the XLMS based system does not change increasing the adaptive �lter length. The

resonator based controller is not only faster but have a much wider range in � where

the system is stable which is advantageous in practical cases when � can be set only by

experiments.

Practical Example. The examined set-up is a simple model of a ventilation duct

(Fig. 7). It is a circular pipe with an attached loudspeaker for the simulation of the
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noise and another one for the secondary source. There is microphone inside for the error

signal. The used microphone is quite common, its characteristic is not sensitive to the

input sound direction. The noise is generated by the generator and its trigger output

was used as reference signal. For measurement and control purposes we have used a

MOTOROLA DSP96001 based PC card. It has two analog channels with 16 bit A/D and

D/A converters. The sampling frequency was 2 kHz, the acoustic transfer function was

measured in 200 points uniformly. For the evaluation of the control results we have used

a spectrum analyzer and a digital storage oscilloscope.

In the following example the excitation of the loudspeaker was a triangular signal with

a fundamental frequency of 105 Hz. Since the system has linear and harmonic distortion,

the periodic noise to be suppressed had di�erent harmonic contents as Fig. 8 shows.

According to the fundamental frequency, 8 harmonics were controlled. Fig. 9 shows the

spectrum of the error signal, when the control was on. Fig. 10 shows the transient of the

noise canceling system.

The system described in [11] is already a multiple channel controller. The tests were

made in a small room designed like an airplane-cabin. The program is implemented on

TMS320C30 oating-point DSP and it deals with up to 4 loudspeakers and 4 microphones

and 2 independent fundamental frequencies, while the sampling rate is 1300 Hz. Station-

ary periodic noise was suppressed the level of the system noise which means in certain

cases more than 50 dB reduction. At an arti�cial sweep rate of 5 Hz/sec of the disturbing

frequency about 20 dB reduction could be measured.

CONCLUSION

In this paper a resonator based noise controller was introduced for cancelation of pe-

riodic noise. Design method was described for both single and multiple channel systems.

Although the resonator based structure seems to be a feedback controller, it is in fact a

special feedforward controller. Due to the built-in signal model, this controller provides

better control results, than the conventional methods: it is faster and needs less com-

putations, but keeps all the advantages of the usual methods. Based on theoretical and

practical investigations the method can be suggested for periodic noise cancelation.
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Figure 8: Spectrum of the error signal without control

Figure 9: Spectrum of the error signal with control

Figure 10: Transient of the error signal


