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Abstract: ADC test methods require the best possiblalisadvantages like its computation complexity andsible

reconstruction of the input signal to the ADC undest
from the acquired, therefore erroneous ADC outpatiad

local minima.
Although both fitting procedures are known, untiwn

The commonly used LS fit and the recently introdlice no deeper comparative study on limitations of thasthods
maximum likelihood estimation are competing methodshas been performed. The main novelty of this papgust

This paper presents an experimental comparativey sbf
these estimation methods with the goal to investighe
behaviour of both methods and to determine thiiitdi. An
alternative algorithm for the calculation of the ximum
likelihood fit is also examined. Some

this comparative research. Moreover, we also exagnthe
differential evolution based optimization method KL fit
[9]. In contrary of the previous works ([6]-[9]) we
performed calculations and signal processing inVILBRV

practical instead of Matlab — this does not change geneatérsients

recommendations for the choice of optimal method foabout the problem, but paves the way to alternative

various conditions of ADC testing are also given as
conclusion of the comparative study.

Keywords: ADC test, maximum likelihood estimation,
least squares method, LS method, four-parametesidibal
recovery, estimation of signal parameters, diffeedn
evolution.

1. INTRODUCTION

Standardized dynamic test methods for analog-tiaadiig
converters (ADCs) ([1] — [3]) are based on compmarisf
acquired ADC output codes with the ADC input stiosul
The stimulus is not exactly known and cannot besuesd
with the necessary accuracy, therefore it must
reconstructed from the erroneous ADC output cod
acquired during testing. Any inaccuracy in theraation of
ADC stimulus parameters leads to inaccuracy
determination of ADC parameters measured by theuayn
test.

implementations.

2. FITTING METHODS

The general setup for dynamic ADC testing is shawn
Fig. 1. To perform simulation experiments we depelb a
few software modules including non-ideal ADC moudith
optional test specific INL. The modules enable dating
real ADC test according to Fig. 1.
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The most common way how to recover input signal and

estimate its parameters is least squares (LS)nditti
According to the theory the LS fitting gives thesbe
estimation under
(quantization) noise is additive to the input, isépendent,
white, and normally distributed with zero mean ([]).
This all is clearly not true for ADC testing ancetbfore the
LS fit is usually worse than ML estimation would. be

The general, systematic "best" way of estimation
fitting based on the maximum likelihood (ML) methddhis
idea was introduced in [6] for sine wave and latewas
generalized also for exponential stimulus ([7]).eTML
estimation is optimal in a certain sense,

but has

Fig. 1. General setup for dynamic ADC testing

the condition that the observation

2.1. Least Squares (L S) fit

LS fitting is well known and very often used proaes
for recovering distorted and noisy signals in tegtiand
i{neasurements. Estimation of parameters of ADC input
signal is obtained from minimization of the coshdtion
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where f@t) is the time model of the testing signaljs a
vector of its unknown parameters, apgh) are digitized
samples of testing signal applied to the input BfCAunder
test, taken at sampling instance®; (Ts is the sampling
period). Solution of (1) leads to a system of et which

is nonlinear in the cases of the four-parameteoffia sine
wave or for dual slope exponential stimulus. Solutiof
such a nonlinear system requires application of a
appropriate numerical method, and this increases tt
complexity of the LS method.

2.2. Maximum likelihood fit

Maximum likelihood method comes from estimation
theory and looks for the most probable ADC inpumnai.
The ML fitting is based on maximization of a likediod
functionL(a):

maLa)) = max( ] ()=, .o ()

whereq is the vector of ADC transition code levetsis the
standard deviation of the Gaussian noise of theutinp
electronics, assuming here that the noise sampies
independentP(y(n) = Y(n)) is the probability that the-th
ADC output sampley(n) is equal to the expected output
value Y(n), which represents a possible output cotle
simplify the maximizatiori(a), minimization of the sum of
negative logarithms of probabilities P(.) is predek.

argmaxL(a)) = argmin(- In(L(a)))
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Searching the extreme value can be a complex tatk a
can be performed only by an appropriate numeriagthod.
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2.3. Implementation of fitting and comparison

Experiments below were primarily performed in
software developed in LabVIEW. Properties, advassag
and disadvantages of LabVIEW are generally wellvkmo
We choose LabVIEW not only because of our previou
experience but also because we wanted to compare
results with previous experiments performed in lat{[6]

- [7D).

LS fit for a sine wave was implemented according t
standards ([1] — [3]) in the form of 3- and 4-paeden fits.
ML fit implementation was rather complex. In comstrdo
minimization methods based on gradients used iH7g]
the LabVIEW built-in functiond obal Opt i i zati on. vi
([8]) has been utilized. This function is based te
Differential Evolution method (DE), which is a kinaf
genetic algorithm, being one of the general methessl to
solve the global optimization problem. Althoughding the
global optimum is not guaranteed with this methdtes,
obtaining it is more likely with proper settings.

(0]

Initialize sets of
candidate paramsters in the
specified bounds.

k.

Combine candidate parameters
randomly to get mutant parameters.

'

Cross candidate
parameters with mutant parameters
to get trial parameters.

'

Map trial parameters
into specified bounds.

'

Ewaluate objective functions
as well as constraint functions
tar trial parametars.

'

Select better parameters trom trial
-and candidate parameters to get candidate
parameters for next loop iteration.

Return the
False ;
best candidate
parameters.

Fig. 2. Algorithm of DE method
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For comparison of accuracy of signal recovering

achieved by LS and LM methods we utilized two
parameters:

1. Estimation error defined as RMS value of the
difference between estimated signal and the exact
input signal.

2. Difference between SINADs calculated from LS fit,
or from ML fit and the exact value calculated from
exactly known ADC stimulus.

The RMS value was chosen because it is the baswigeor
of the error which has influence on nearly all fideDC
dynamic parameters such as ENOB and SINAD. Morgover
a simple comparison of differences between, eig, wave

Tue
4‘(_‘

(%mplitudes is not well readable from the point viefvits
Hfluence on the final error in calculation of ADC

parameters. The estimation erfemn.g (RMS value of the
difference between the recovered signal by a giwethod
and the known exact one) was calculated accordintpe

formula:
1 N-1
N

; (ymethod(n) - yexact(n))z )

where Vnemodn) are the samples calculated from signal
recovered by the given method andi.(n) are the
equivalent samples of the exact ADC stimulus.
Comparison of SINAD calculated from LS and ML fits
to SINAD calculated from the exact value of stimasilas
utilized only in tests, where the stimulating siwave did

method

D (4)

DE methods approach the (often global) optimum byot overload ADC full scale as it is required bgrstards.

mutating and improving the candidate parametens ftioe
initial ones. Fig. 2 illustrates how the algorithworks.
GlobalOptimalization.vi uses (if available) multre
processing, which speeds up the calculation of hibst
parameters.

SINAD in dB was calculated according to the staddar
defined formula:

SINAD, .., = ZOlogM, (5)

method

method



where Anenod IS RMS value of sine wave recovered by a 54
given method or from exactly known ADC stimulus.t8lo ' / \
that the influence ob is not significant in SINAD if it is 5,0 7 _
much smaller than standard deviation of the quatitia 246 y —Lsfit &N
noise, 0.3 LSB, but more significantly correspotwlENOB. § ' jﬁ! ML fit \
242
3. EXPERIMENTAL RESULTS £3g /I — stimulus \n
© —— ADC output \
The first experiments were performed on linear lidea 3.4 LS it (pre-processed) \
ADC with user specifiable resolution (up to 16 hitand 3,0 - , : pre-p : ,
standard deviation of noise equal to 0.2 LSB, which 500 550 600 650 700
represented ADC code alternating behaviour. Oneldvou time [sample]

expect that ideal (linear) ADC characteristic causinilar ~ Fig. 4. Comparison of LS and ML fit, digitized andginal
LS and ML errors. Records with optional number ofstimulus (zoomed time segment) if stimulus overb&dll
samples were utilized for fitting by a chosen methigig. 3  range of the ADC. ML fit utilized all samples incad, LS
shows a zoomed segment of record of digitized dtimmu fit utilized once all samples and next the recordhw
from the ideal 8-bits ADC together with exact stlosj and  excluded overloading samples.

recovered signals. Stimulus did not overload ADICScale.

The differences between recovered signals and exact 70,0
stimulus are hardly visible. /
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25 . . . . . ADC input range covering[%)]
180 200 220 240 260 280 Flg 5. LS and ML fits for overloaded ADC (100%“53
time [samples] ADC full range). Both fits utilize all samples iagord
Fig. 3. Comparison of LS and ML fit, digitized amedact
stimulus (zoomed time segment) Fig. 6 shows the same circumstances but LS fit was

applied on pre-processed records with excludedl@aging
Fig. 4 shows the same signals with the conditicatt th samples. At these circumstances, the estimaticorsefor
input signal slightly overloads ADC full scale. Footh fits  both fits are small and comparable. The only déffee
all samples in record were used including samgkert in  between fits is that the ML fit gave more “stabéetor what
time instances when signal overloaded ADC inputgean indicates its smaller sensitivity to quantizatidfeets.
(overloading samples). In addition the same pregssed 6
record with the overloading samples excluded wisdfiby
LS method. In accordance with expectations, MLgfites
much better estimation of ADC stimulus than LSdfitthe
whole record because of its nature to approach #iso
extreme ADC overloading samples. If LS fit is apdlion a
pre-processed record where overloading samples are
excluded from calculation the results obtained I8 éand /\ /\ A ! ’
ML are nearly the same (Fig. 4). / f\
Fig. 5 shows the dependence acquired for an 8DIC A . . : . .
and 500 coherently taken samples with standarchtiemiof 90 110 130 150 170 190
noise o = 0.2 LSB for varying ADC overloading. If the ADC input range covering [%]
input signal covers ADC range up to 100 percenthbo Fig. 6. LS vs. ML fit for overloaded ADC (100% igual to
methods give nearly the same results. RMS valu¢hef ADC full scale). LS fit uses pre-processed record.
difference of LS fit from exact stimulus quicklycireases if
input stimulus even only slightly overloads ADC inp The resulting practical conclusions coming from the
range and if LS fit is applied on whole record. ¥smilar  above performed experiments is that
results were achieved for other ADC resolutioms,and 0 the dominating error factor in "blind" LS fitting IADC
numbers of samples in record. overloading. ML fit is much better for any, evenrye
small, ADC overloading and it does not require te-p
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process the record and eliminate overloading sanple 1,00

LS fit can give nearly the same results but reguire
excluding the overloaded samples from the record,
o even with pre-processed data used for LS fit, ther ef =0,10 - J_|=
the ML fit is somewhat smaller than that of the filS @ -|- + +
(Fig. 6). Iz -
40,01 + -
The next study was focused on the accuracy of ereov 'I- '|'
stimulus for different resolutions of ADC. The test
conditions were that ADC under test was not oveitok 0,00 —
o=1LSB and the length of recomd = 2°*, whereb is the RO IR NSNS RN
ADC resolution in bits. The achieved results —mation number of Samplesi;recgrd B
errors (Eq. 4) are shown in Figs. 7 and 8. Fig. 9. Dependence of estimation error on number of
1,00 ¢ samples for 8 bit ADC for LS fit.
= 0.10 ;+ _i_ , 1,00
4 : T T + 0,10 +
% ool T+ g T
A3 0,01 + | . B + -
T ' + =.0,01 -
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Fig. 7. Dependence of estimation error on numbeADE NI IR SRS \QQQ ’LQQQ ‘;QQQ
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Fig. 10. Dependence of estimation error on numbler o
1,00 ¢ samples for 8 bit ADC for ML fit.
— I 'l- | 0,08
oY T + 0,07
= . + m 0,06
= I .I- T + & 0,05 \
0,01 + == \
- d 50,04 \
. 4 0,03 \
0,00+, 3 0,02 \
3 4 5 6 7 8 9 10 12 g 001 AN
ADC resolution [bit] 8'82 N~——
Fig. 8. Dependence of estimation error on numbeADEC e 1 10 100 1000 10000
bits for ML fit number of samplesin record

Fig. 11. Difference of error of ML and LS fits irpgendence

The achieved results show that both methods give ve on number of samples in record.

similar and very good estimations. ML fit gives ittld

s]rcniller estimation err](c)lDo bIUt t_he dn‘feren(;:es areh;r: order  rhe following experiments were focused on influenée
Oh the yncertqlntlﬁs ff) results in repeated expents (Se€ e ADC noise that causes alternating of ADC outmates
the variances in the figures). on estimation error. The results achieved for 8 ADC and

h . ; q q q 4190 samples in record are shown in Fig. 12 and1Hg.
e next experiment was focused on dependence of w, i s better for low noise and with increasimgise

estimation errot_:) on r_1umber of §amples in the. record with both fits give nearly the same estimation errorisTdan be

fcohert()a_nt sampllng; E'g' 9 and Fig. 10 show thisedelpnce explained by noticing that the input noise acte ldither,

or g’ ﬁs ADC ands = 0.5 LS?I' dd ith irsi thus quantization noise is becoming more and more
St efrrors arle veAr\y small an h ecrease with Irtnea independent on the signal for larger nose amplitude

number of samples. Again as in the previous expsti) Uncertainties of results for repeated experimemes aso

the variance of the results IS 1N the_ same order a(ﬁ)mparable with mean values of the error as it was
uncertainties for repeated experiments. Fig. 15emts the previous cases

difference of errors’ mean value between LS fit &fidfit.
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Fig. 12. Dependence of LS fit error on noise level.
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Fig. 13. Dependence of ML fit error on noise level.

The main goal of this comparative study was to ifyual
the effects of different fitting methods on preaisi of
calculation of SINAD. To qualify the error, SINAB- was
calculated from precisely known stimulating sinevevand
guantisation noise achieved as a difference ofrceemd

precisely known stimulating sine wave by Eqg. 5.

Accordingly, SINAD s and SINAR, were calculated from
sine wave recovered by LS and ML fit, respectively.
Fig. 14 and Fig. 15 show difference of SINADand

SINAD,,. from SINADger, respectively, as well as variance

of repeated testing as a dependence on ADC miSéhe
results were achieved for linear 8 bit ADC and theord
length N=400 samples taken by coherent sampling.
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Fig. 14. Error of SINAD calculated from ML fit fadifferent
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The errors of SINAD calculated from both fits areryw
small and very similar. Increasing noise causeeasing of
variance in results but this effect is also veryikir for both
methods.
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Fig. 15. Error of SINAD calculated from LS fit falifferent
variance ADC noises.

Fig. 16 and Fig. 17 show again results achievedHer
same uniform ADC and for different numbers of saasph
a coherent record.

Errors for both fits are again very similar as iaswin
previous experiments. According to expectations ¢her
decreases with increasing number of samples.
decreasing seems to be a bit faster for ML but effisct is
very small.
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Fig. 16. Error of SINAD calculated from ML fit fdinear
ADC and different number of samples in coherentrec
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Fig. 17. Error of SINAD calculated from LS fit fdinear

ADC and different number of samples in coherenbrec

Tests in the second group of evaluations were ftos
effects on ADC nonlinearity at recovering the tegtsignals
by LS and ML fits. To approximate as much as pdesib
real ADC in simulations, the INL measured on thal ADC
in USB 6009 by National instruments was implemerited
the simulation software. The real INL was simplifiby
rounding the lowest bits, in order to be equivatentNL of
a 8 bits ADC as it is shown in Fig 18. Approximate
maximum likelihood estimates of the transition leveere



determined from the sample record via the histogramspects were investigated: (i) effectiveness aedigion of
method [1], applied to the available 1024 sampléf) the  sinewave fit from record if ADC input range is ol@&ded
standard correction for the sine wave. In our vithig is the and (i) influence of fitting method on SINAD tesgj. The
maximum information that can be extracted fromrédeord achieved results show that both methods give simgisults
for the T(k) values. During the fit, these estinsateere kept for both studied conditions and applications. For

constant, and the other 5 parameters were optimized overloading ADC ML fit may be directly applied farhole
record while using LS fit the record must be fipgte-
1,0 processed by excluding the overloading samples.isviot
dramatically better, but it is better.
05 - For SINAD testing where ADC input is not overloaded
— by the test signal, both fit methods give reasamabkults.
ﬁ 00 \ The differences are in the order of 1-2 dB for bSd 0.1 -
- 0.3 dB for ML.
z \‘\A‘ Using the numerical minimization method based an th
0,5 \ DE algorithm, the process of ML fit can be simply

implemented in LabVIEW using built-in  function
1,0 : , | , d obal Opti mi zation. vi . For 1024 samples, the run time
0 64 128 192 256 of the DE method was about 10 seconds on a stariiayd
bin and a few seconds for the gradient-based method.
Fig. 18. Simplified INL of real ADC implemented in
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