
XX IMEKO World Congress 
Metrology for Green Growth 

September 9-14, 2012, Busan, Republic of Korea 

 
EXPERIMENTAL COMPARISON OF MAXIMUM LIKELIHOOD 

AND LS FITTING FOR ADC TESTING 
 

Ján Šaliga, Linus Michaeli, Ján Buša, Jozef Lipták, *István Kollár, *Tamás Virosztek 
 

Technical University of Košice, Letná 9, 04120 Košice, Slovakia 
Email: {jan.saliga, linus.michaeli, jan.busa, jozef.liptak}@tuke.sk 

*Budapest University of Technology and Economics, Budapest, Hungary, Email: kollar@mit.bme.hu, virro.vik@gmail.com 
 
Abstract: ADC test methods require the best possible 

reconstruction of the input signal to the ADC under test 
from the acquired, therefore erroneous ADC output data. 
The commonly used LS fit and the recently introduced 
maximum likelihood estimation are competing methods. 
This paper presents an experimental comparative study of 
these estimation methods with the goal to investigate the 
behaviour of both methods and to determine their limits. An 
alternative algorithm for the calculation of the maximum 
likelihood fit is also examined. Some practical 
recommendations for the choice of optimal method for 
various conditions of ADC testing are also given as a 
conclusion of the comparative study. 
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least squares method, LS method, four-parameter fit, signal 
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1.  INTRODUCTION 

Standardized dynamic test methods for analog-to-digital 
converters (ADCs) ([1] – [3]) are based on comparison of 
acquired ADC output codes with the ADC input stimulus. 
The stimulus is not exactly known and cannot be measured 
with the necessary accuracy, therefore it must be 
reconstructed from the erroneous ADC output codes 
acquired during testing. Any inaccuracy in the estimation of 
ADC stimulus parameters leads to inaccuracy in 
determination of ADC parameters measured by the dynamic 
test. 

The most common way how to recover input signal and 
estimate its parameters is least squares (LS) fitting. 
According to the theory the LS fitting gives the best 
estimation under the condition that the observation 
(quantization) noise is additive to the input, is independent, 
white, and normally distributed with zero mean ([4], [5]). 
This all is clearly not true for ADC testing and therefore the 
LS fit is usually worse than ML estimation would be. 

The general, systematic "best" way of estimation is 
fitting based on the maximum likelihood (ML) method. This 
idea was introduced in [6] for sine wave and later it was 
generalized also for exponential stimulus ([7]). The ML 
estimation is optimal in a certain sense, but has 

disadvantages like its computation complexity and possible 
local minima. 

Although both fitting procedures are known, until now 
no deeper comparative study on limitations of these methods 
has been performed. The main novelty of this paper is just 
this comparative research. Moreover, we also examined the 
differential evolution based optimization method for ML fit 
[9]. In contrary of the previous works ([6]-[9]) we 
performed calculations and signal processing in LabVIEW 
instead of Matlab – this does not change general statements 
about the problem, but paves the way to alternative 
implementations.  

 

2.  FITTING METHODS 

The general setup for dynamic ADC testing is shown in 
Fig. 1. To perform simulation experiments we developed a 
few software modules including non-ideal ADC model with 
optional test specific INL. The modules enable simulating 
real ADC test according to Fig. 1.  

 

 
 

2.1.  Least Squares (LS) fit 
 

LS fitting is well known and very often used procedure 
for recovering distorted and noisy signals in testing and 
measurements. Estimation of parameters of ADC input 
signal is obtained from minimization of the cost function 
CFLS: 
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where f(a,t) is the time model of the testing signal, a is a 
vector of its unknown parameters, and y(n) are digitized 
samples of testing signal applied to the input of ADC under 
test, taken at sampling instances nTs (Ts is the sampling 
period). Solution of (1) leads to a system of equations which 
is nonlinear in the cases of the four-parameter fit of a sine 
wave or for dual slope exponential stimulus. Solution of 
such a nonlinear system requires application of an 
appropriate numerical method, and this increases the 
complexity of the LS method. 
 

2.2.  Maximum likelihood fit 

Maximum likelihood method comes from estimation 
theory and looks for the most probable ADC input signal. 
The ML fitting is based on maximization of a likelihood 
function L(a): 
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where q is the vector of ADC transition code levels, σ is the 
standard deviation of the Gaussian noise of the input 
electronics, assuming here that the noise samples are 
independent. P(y(n) = Y(n)) is the probability that the n-th 
ADC output sample y(n) is equal to the expected output 
value Y(n), which represents a possible output code. To 
simplify the maximization L(a), minimization of the sum of 
negative logarithms of probabilities P(.) is preferred.  
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Searching the extreme value can be a complex task and it 
can be performed only by an appropriate numerical method. 

 
2.3. Implementation of fitting and comparison 

 
Experiments below were primarily performed in 

software developed in LabVIEW. Properties, advantages 
and disadvantages of LabVIEW are generally well known. 
We choose LabVIEW not only because of our previous 
experience but also because we wanted to compare our 
results with previous experiments performed in Matlab ([6] 
– [7]). 

LS fit for a sine wave was implemented according to 
standards ([1] – [3]) in the form of 3- and 4-parameter fits. 
ML fit implementation was rather complex. In contrast to 
minimization methods based on gradients used in [6]-[7], 
the LabVIEW built-in function GlobalOptimization.vi 
([8]) has been utilized. This function is based on the 
Differential Evolution method (DE), which is a kind of 
genetic algorithm, being one of the general methods used to 
solve the global optimization problem. Although finding the 
global optimum is not guaranteed with this method either, 
obtaining it is more likely with proper settings.  

DE methods approach the (often global) optimum by 
mutating and improving the candidate parameters from the 
initial ones. Fig. 2 illustrates how the algorithm works. 
GlobalOptimalization.vi uses (if available) multi-core 
processing, which speeds up the calculation of the best 
parameters. 

For comparison of accuracy of signal recovering 
achieved by LS and LM methods we utilized two 
parameters: 

1. Estimation error defined as RMS value of the 
difference between estimated signal and the exact 
input signal.   

2. Difference between SINADs calculated from LS fit, 
or from ML fit and the exact value calculated from 
exactly known ADC stimulus. 

The RMS value was chosen because it is the basic descriptor 
of the error which has influence on nearly all final ADC 
dynamic parameters such as ENOB and SINAD. Moreover, 
a simple comparison of differences between, e.g., sine wave 
amplitudes is not well readable from the point view of its 
influence on the final error in calculation of ADC 
parameters. The estimation error Dmethod  (RMS value of the 
difference between the recovered signal by a given method 
and the known exact one) was calculated according to the 
formula: 
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where ymethod(n) are the samples calculated from signal 
recovered by the given method and yexact(n) are the 
equivalent samples of the exact ADC stimulus. 

Comparison of SINAD calculated from LS and ML fits 
to SINAD calculated from the exact value of stimulus was 
utilized only in tests, where the stimulating sine wave did 
not overload ADC full scale as it is required by standards. 
SINAD in dB was calculated according to the standard 
defined formula: 

method

method
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Fig. 2. Algorithm of DE method 



where Amethod is RMS value of sine wave recovered by a 
given method or from exactly known ADC stimulus. Note 
that the influence of D is not significant in SINAD if it is 
much smaller than standard deviation of the quantization 
noise, 0.3 LSB, but more significantly corresponds to ENOB. 

3. EXPERIMENTAL RESULTS 

The first experiments were performed on linear ideal 
ADC with user specifiable resolution (up to 16 bits), and 
standard deviation of noise equal to 0.2 LSB, which 
represented ADC code alternating behaviour. One would 
expect that ideal (linear) ADC characteristic causes similar 
LS and ML errors. Records with optional number of 
samples were utilized for fitting by a chosen method. Fig. 3 
shows a zoomed segment of record of digitized stimulus 
from the ideal 8-bits ADC together with exact stimulus, and 
recovered signals. Stimulus did not overload ADC full scale. 
The differences between recovered signals and exact 
stimulus are hardly visible. 
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Fig. 3. Comparison of LS and ML fit, digitized and exact 
stimulus (zoomed time segment) 
 

Fig. 4 shows the same signals with the condition that 
input signal slightly overloads ADC full scale. For both fits 
all samples in record were used including samples taken in 
time instances when signal overloaded ADC input range 
(overloading samples). In addition the same pre-processed 
record with the overloading samples excluded was fitted by 
LS method. In accordance with expectations, ML fit gives 
much better estimation of ADC stimulus than LS fit of the 
whole record because of its nature to approach also the 
extreme ADC overloading samples. If LS fit is applied on a 
pre-processed record where overloading samples are 
excluded from calculation the results obtained by LS and 
ML are nearly the same (Fig. 4).  

Fig. 5 shows the dependence acquired for an 8-bit ADC 
and 500 coherently taken samples with standard deviation of 
noise σ  = 0.2 LSB for varying ADC overloading. If the 
input signal covers ADC range up to 100 percent, both 
methods give nearly the same results. RMS value of the 
difference of LS fit from exact stimulus quickly increases if 
input stimulus even only slightly overloads ADC input 
range and if LS fit is applied on whole record. Very similar 
results were achieved for other ADC resolutions, σ, and 
numbers of samples in record. 
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Fig. 4. Comparison of LS and ML fit, digitized and original 
stimulus (zoomed time segment) if stimulus overloads full 
range of the ADC. ML fit utilized all samples in record, LS 
fit utilized once all samples and next the record with 
excluded overloading samples.  
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Fig. 5. LS and ML fits for overloaded ADC (100% is the 
ADC full range). Both fits utilize all samples in record 

 
Fig. 6 shows the same circumstances but LS fit was 

applied on pre-processed records with excluded overloading 
samples. At these circumstances, the estimation errors for 
both fits are small and comparable. The only difference 
between fits is that the ML fit gave more “stable” error what 
indicates its smaller sensitivity to quantization effects. 
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Fig. 6. LS vs. ML fit for overloaded ADC (100% is equal to 
ADC full scale). LS fit uses pre-processed record. 

 
The resulting practical conclusions coming from the 

above performed experiments is that  
o the dominating error factor in "blind" LS fitting is ADC 

overloading. ML fit is much better for any, even very 
small, ADC overloading and it does not require to pre-



process the record and eliminate overloading samples. 
LS fit can give nearly the same results but requires 
excluding the overloaded samples from the record, 

o even with pre-processed data used for LS fit, the error of 
the ML fit is somewhat smaller than that of the LS fit 
(Fig. 6). 
 
The next study was focused on the accuracy of recovered 

stimulus for different resolutions of ADC. The test 
conditions were that ADC under test was not overloaded, 
σ = 1 LSB and the length of record N = 2b+1, where b is the 
ADC resolution in bits. The achieved results – estimation 
errors (Eq. 4) are shown in Figs. 7 and 8.  
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The achieved results show that both methods give very 
similar and very good estimations. ML fit gives a little 
smaller estimation error (D) but the differences are in order 
of the uncertainties of results in repeated experiments (see 
the variances in the figures). 

 
The next experiment was focused on dependence of 

estimation error D on number of samples in the record with 
coherent sampling. Fig. 9 and Fig. 10 show this dependence 
for 8-bits ADC and σ = 0.5 LSB.  

Both errors are very small and decrease with increasing 
number of samples. Again as in the previous experiments, 
the variance of the results is in the same order as 
uncertainties for repeated experiments. Fig. 11 presents the 
difference of errors’ mean value between LS fit and ML fit.  
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on number of samples in record. 
 

The following experiments were focused on influence of 
the ADC noise that causes alternating of ADC output codes 
on estimation error. The results achieved for 8 bits ADC and 
400 samples in record are shown in Fig. 12 and Fig. 13.  

ML fit is better for low noise and with increasing noise 
both fits give nearly the same estimation error. This can be 
explained by noticing that the input noise acts like dither, 
thus quantization noise is becoming more and more 
independent on the signal for larger nose amplitude. 
Uncertainties of results for repeated experiments are also 
comparable with mean values of the error as it was in 
previous cases. 
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Fig. 13. Dependence of ML fit error on noise level. 

 
The main goal of this comparative study was to qualify 

the effects of different fitting methods on precision of 
calculation of SINAD. To qualify the error, SINADREF was 
calculated from precisely known stimulating sine wave and 
quantisation noise achieved as a difference of record and 
precisely known stimulating sine wave by Eq. 5. 
Accordingly, SINADLS and SINADML were calculated from 
sine wave recovered by LS and ML fit, respectively. 

Fig. 14 and Fig. 15 show difference of SINADLS and 
SINADML from SINADREF, respectively, as well as variance 
of repeated testing as a dependence on ADC noise σ. The 
results were achieved for linear 8 bit ADC and the record 
length N=400 samples taken by coherent sampling. 
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The errors of SINAD calculated from both fits are very 

small and very similar. Increasing noise causes increasing of 
variance in results but this effect is also very similar for both 
methods. 
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Fig. 15. Error of SINAD calculated from LS fit for different 
variance ADC noises. 

 
Fig. 16 and Fig. 17 show again results achieved for the 

same uniform ADC and for different numbers of samples in 
a coherent record. 

Errors for both fits are again very similar as it was in 
previous experiments. According to expectations the error 
decreases with increasing number of samples. This 
decreasing seems to be a bit faster for ML but this effect is 
very small. 
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Fig. 16. Error of SINAD calculated from ML fit for linear 
ADC and different number of samples in coherent record. 
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Fig. 17. Error of SINAD calculated from LS fit for linear 
ADC and different number of samples in coherent record. 

 
Tests in the second group of evaluations were focused on 

effects on ADC nonlinearity at recovering the testing signals 
by LS and ML fits. To approximate as much as possible a 
real ADC in simulations, the INL measured on the real ADC 
in USB 6009 by National instruments was implemented in 
the simulation software. The real INL was simplified by 
rounding the lowest bits, in order to be equivalent to INL of 
a 8 bits ADC as it is shown in Fig 18. Approximate 
maximum likelihood estimates of the transition levels were 



determined from the sample record via the histogram 
method [1], applied to the available 1024 samples, with the 
standard correction for the sine wave. In our view, this is the 
maximum information that can be extracted from the record 
for the T(k) values. During the fit, these estimates were kept 
constant, and the other 5 parameters were optimized. 
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Fig. 19 - 20 shows results of repetitive test achieved for 

different noise. ML fits is less sensitive on noise and the 
difference of calculated SINAD from reference one even 
decreases with increasing noise. On the other hand the 
variance of results from ML fit is higher than that from LS 
fit for high σ. Anyway the differences are small in order of 
1-2 dB. 

 
Fig. 19. Error of SINAD calculated from ML fit for different 
variance ADC noises. 
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Fig. 20. Error of SINAD calculated from LS fit for different 
variance ADC noises. 

4. CONCLUSIONS 

In this paper a comparative experimental study of LS 
and ML fits for ADC testing was carried out. Two main 

aspects were investigated: (i) effectiveness and precision of 
sinewave fit from record if ADC input range is overloaded 
and (ii) influence of fitting method on SINAD testing. The 
achieved results show that both methods give similar results 
for both studied conditions and applications. For 
overloading ADC ML fit may be directly applied for whole 
record while using LS fit the record must be first pre-
processed by excluding the overloading samples. ML is not 
dramatically better, but it is better. 

For SINAD testing where ADC input is not overloaded 
by the test signal, both fit methods give reasonable results. 
The differences are in the order of 1-2 dB for LS, and 0.1 -
0.3 dB for ML. 

Using the numerical minimization method based on the 
DE algorithm, the process of ML fit can be simply 
implemented in LabVIEW using built-in function 
GlobalOptimization.vi. For 1024 samples, the run time 
of the DE method was about 10 seconds on a standard PC, 
and a few seconds for the gradient-based method. 
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