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Abstract—In this paper, accurate argument calculation for sine-fitting algorithms is investigated, assuming 

floatingpoint (FP) arithmetic. An easy-to-implement incremental calculation technique is suggested. In order to 

decrease error propagation, the algorithm is complemented with an advanced summation technique. Theoretical 

and numerical analyses on computational demand are performed to highlight that incremental argument calculation 

outperforms the method proposed in former research. Furthermore, an algorithm is implemented to mitigate the 

effect of imprecise representation of frequency on FP arithmetic. Monte Carlo analyses are carried out to 

demonstrate the accuracy of the suggested algorithms. Results show that phase information can be evaluated 

precisely even with single-precision FP arithmetic, applying incremental argument calculation. By this means, the 

cost of equipment that is needed to perform sine fitting can be reduced significantly. Finally, possible application 

areas are shown to demonstrate the applicability of the suggested solutions in the state-of-art measurement 

procedures. 

Index Terms— Analog-to-digital converter (ADC) testing, floating-point (FP) arithmetic, least-squares (LS) 

methods, numerical accuracy, parameter estimation, roundoff errors, sine fitting, single precision 

I.  INTRODUCTION 

Sine fitting algorithms are widely used in the field of measurement technology. They can be applied to measure the 

complex value of an impedance [1], or to characterize the quality of the power system [2]. In particular, there are application 

fields where it is of great importance to have an accurate sine wave estimator. Among these fields we can find the testing of 

analog-to-digital converters (ADCs) [3] and of digitizing waveform recorders [4].  

In order to characterize a sine wave, the following description can be utilized: 

 𝑦𝑘 = 𝐴 ∙ cos(2𝜋𝑓𝑡𝑘) + 𝐵 ∙ sin(2𝜋𝑓𝑡𝑘) + C   ,   𝑘 = 1, … , 𝑁 (1) 

where 𝑦𝑘 is the kth sample in fitted sine wave, A, B and C are the cosinusoidal, sinusoidal and dc components, respectively. 

Furthermore, f is the frequency of the signal, 𝑡𝑘 is the kth sampling time and N denotes the number of samples. In case of 

uniform (equidistant) sampling, time instants can be calculated as: 

 𝑡𝑘 = 𝑘 𝑓𝑠⁄ ,          𝑘 = 1, … , 𝑁, (2) 

where fs denotes the sampling frequency. In this paper, uniform sampling will be assumed, but results can be generalized to 

non-uniform sampling, as well. Let us introduce notation 
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𝛾𝑘 =

𝑓

𝑓𝑠

𝑘 = 𝑓𝑟𝑒𝑙 ∙ 𝑘 ,          𝑘 = 1, … , 𝑁 , (3) 

where 𝑓𝑟𝑒𝑙  is the (to the sampling frequency) relative frequency. If the frequency of the signal is known, A, B and C are the 

parameters to be estimated, while if f is unknown, it also extends the parameter vector. The most widely used fitting criterion 

is the minimization of least squares (LS) errors [3]. The cost function (CF) of the LS fitting is: 

 

CFLS = ∑(𝑥𝑘 − 𝑦𝑘)2

𝑁

𝑘=1

  , (4) 

where 𝑥𝑘 is the kth value in the measured data set. Another possible fitting is based on the maximum likelihood criterion. 

This method maximizes the probability of observing the sampled data set [5]. 

The floating point (FP) implementation of sine fitting algorithms is wide-spread, due to the wide dynamic range an FP 

arithmetics can represent with (approximately) constant relative errors [8]. However, this advantageous property of the FP 

representation also implies that the larger the represented number, the larger the absolute value of the roundoff error of the 

representation. While in personal computers mostly double precision is applied, in digital signal processors (DSPs) and in 

field programmable gate arrays (FPGAs), where the power consumption and the cost of equipment are critical parameters, 

single precision is widely used, as well [9][10]. 

In [6], it was shown that using FP number representation, the evaluation of sine fitting algorithms are disturbed by 

roundoff errors with much larger amplitudes, than the resolution of the FP representation. In particular, it was pointed out 

that the error in the argument of sine and cosine functions, that is, the error in the calculated phase distorts the CF of the LS 

method considerably. As a result, the CF gets ragged, and optimization methods can be stuck in local minima [7]. 

Furthermore, as a result, the expected value of the CF increases, as well [6]. It is important to see that this phenomenon has 

an effect on every implementation of LS fitting, both in time and frequency domain. Namely, the CF of the fitting is disturbed 

as a result of the injection of roundoff errors by imprecise argument calculation. 

The instantaneous phase equals to: 

 𝜑𝑘 = 2𝜋𝑓𝑡𝑘 = 2𝜋𝑓𝑟𝑒𝑙𝑘 = 2𝜋𝛾𝑘  ,   𝑘 = 1, … , 𝑁  . (5) 

With increasing k, the absolute value of 𝜑𝑘 increases, as well, introducing a growing roundoff error (Δ𝜑)𝑘   due to FP number 

representation. The expected value of the increase in CFLS can be calculated as 

 
𝐸{ΔCFLS} =

𝜋2𝑅2𝐽2𝑒𝑝𝑠2𝑁

18
  , (6) 

where eps is the precision of the number representation, R is the amplitude of the signal 𝑅 = √𝐴2 + 𝐵2, and J is the number 

of sampled periods . For the proof, see Appendix. For single precision, 𝑒𝑝𝑠𝑠 = 1.19 ∙ 10−7, while for double precision, 

𝑒𝑝𝑠𝑑 = 2.22 ∙ 10−16.  

It is obvious that the more periods are sampled, the larger the effect of imprecise phase calculation. However, in practical 

situations, the error of double precision evaluation is insignificant. Nevertheless, as it was pointed out earlier in this section, 

in many applications, only single precision evaluation is available. In addition, if an algorithm yields precise results on limited 

precision platforms, then the power consumption and the cost of the needed equipment can be reduced significantly. Thus, it 

is reasonable to investigate, how the effect of imprecise argument calculation can be effectively mitigated using single 

precision arithmetic. 
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In [6], a splitting method was suggested for this purpose. The method divides floating point numbers into more parts and 

maps the resulting argument in [−𝜋; 𝜋), see Section II-A. As the absolute value of the phase cannot grow arbitrarily, the 

maximum absolute representation error is limited, and the effect of imprecise argument calculation can be mitigated 

significantly.  

Since the effect of imprecise argument calculation has been revealed in [6], no alternative method to the splitting 

technique was published to decrease this phenomenon, neither in time, nor in frequency domain. However, from a point of 

computational demand, this method is ineffective. Namely, the operation of splitting requires a large number of operations, 

as it will be shown in Section II-E. The aim of this paper is to find an alternative solution that is sufficiently precise and can 

be evaluated much faster than the splitting method.  

In Section II, an overview on the splitting technique will be given. Besides, an incremental calculation technique will be 

introduced. In order to decrease the effect of accumulating roundoff errors, this method will be complemented with an 

advanced summation technique. Accuracy will be demonstrated through simulation results. Furthermore, the computational 

burden compared to the splitting technique will be analyzed through theoretical and numerical analyses. In Section III, the 

case will be investigated when the frequency of the sinusoidal signal cannot be represented precisely in one floating point 

number. It will be pointed out that representing the frequency as two floating point numbers can keep the errors of argument 

calculation small. Results will be verified through simulations. Finally, in Section IV, two application areas will be shown to 

demonstrate the applicability of the suggested methods in the state-of-art measurement procedures. 

II. METHODS TO ENSURE ACCURATE ARGUMENT CALCULATION 

In this section, different methods will be investigated to ensure that the arguments of sine and cosine functions can be 

evaluated precisely. First, an overview will be given on the algorithm proposed in [6], and the bottleneck of this method 

will be highlighted. Then, an alternative calculation method will be presented, based on incremental calculation. It will be 

shown that the pure incremental calculation is significantly disturbed by roundoff errors. Thus, the method will be 

complemented with an advanced summation technique. The effectiveness of the presented method will be demonstrated 

through simulations. Finally, the computational burden of both the splitting technique and the incremental argument 

calculation will be investigated by theoretical and numerical means. 

A. The splitting technique 

Based on software package “QDSP toolbox for MATLAB“ [11], in [6], a splitting technique is proposed in order to 

calculate (5) accurately. The method divides 𝑓𝑟𝑒𝑙  into three parts, and k into two parts so that the sum of the parts yields the 

original values. After splitting, only a limited number of bits in the mantissa of each part contains information about the 

represented number. With single precision number representation, at most the first 11 bits in the mantissa differ from 0. By 

this means, the product of two parts can be represented without roundoff errors, since a single precision number has a 23-bit 

long mantissa. Formally: 

 𝑓𝑟𝑒𝑙 = [𝑓1  , 𝑓2 , 𝑓3]  and  𝑘 = [𝑘1 , 𝑘2 ]  , (7) 

where 𝑓1  is the first slice of 𝑓𝑟𝑒𝑙  and 𝑘2 is the second slice of k. For instance, if 𝑓𝑟𝑒𝑙 = 0.45 on single precision, then we have: 

 𝑓1 = 0.44995   𝑓2 = 4.8757 ∙ 10−5  𝑓3 = 5.9605 ∙ 10−8 , (8) 

and their binary representations are: 
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 𝑓1 = 1.1100110011 ∙ 2−2  𝑓2 = 1.1001100 100 ∙ 2−15  𝑓3 = 1.0000000000 ∙ 2−24 , (9) 

 

Figure 1. Flowchart of the splitting technique. 

In order to evaluate (5), 𝑓𝑟𝑒𝑙 ∙ 𝑘 can be calculated with convolution [6]: 

 𝑓𝑟𝑒𝑙 ∙ 𝑘 = [𝑓1  , 𝑓2 , 𝑓3] ∗ [𝑘1 , 𝑘2 ] = [𝑓1𝑘1 , 𝑓1 𝑘2 + 𝑓2𝑘1 , 𝑓2𝑘2 + 𝑓3𝑘1 , 𝑓3𝑘2]  . (10) 

After this calculation, the fractional part of the four slices is to be calculated: 
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 ⟨𝑓𝑟𝑒𝑙 ∙ 𝑘⟩ = [〈𝑓1𝑘1〉 , 〈𝑓1 𝑘2 + 𝑓2𝑘1〉 , 〈𝑓2𝑘2 + 𝑓3𝑘1〉 , 〈𝑓3𝑘2〉] ,  (11) 

where 〈∙〉 denotes the fractional part after rounding to the nearest integer value. For instance, 〈3.4〉  = 0.4 and 〈2.7〉  = −0.3. 

The method is advantageous, since each slice is limited in (−0.5; 0.5]. Thus, their sum is also limited, and consequently it is 

much less influenced by roundoff errors – recall that with floating point representation, the larger the absolute value, the 

larger the possible representation error.  

Since sine and cosine are periodic functions, the fractional part of 𝑓𝑟𝑒𝑙𝑘 contains all information that is needed to evaluate 

the phase information: 

 𝜑𝑘
′ = 2𝜋 ∙ (〈𝑓1𝑘1〉 + 〈𝑓1  𝑘2 + 𝑓2𝑘1〉 + 〈𝑓2𝑘2 + 𝑓3𝑘1〉 + 〈𝑓3𝑘2〉) (12) 

where 𝜑𝑘
′  is the calculated phase information in (−𝜋; 𝜋]. Due to periodicity: 

 sin 𝜑𝑘
′ = sin 𝜑𝑘   and cos 𝜑𝑘

′ = cos 𝜑𝑘 . (13) 

The algorithm has a bottleneck from a computational point of view. Namely, the slices of 𝑓𝑟𝑒𝑙  and k are to be generated. 

According to MATLAB R2017a profiler, more than 80% of the computational time is spent with splittings. Thus, in the 

following, the algorithm of splitting will be investigated in detail. 

The method is visualized in Fig. 1. To perform the splitting, first, the sign (S) and the exponent (E) of the FP number is 

calculated, and the number is normalized with these values between 1 and 2. After this normalization, the values of the bits 

are determined cyclically. In the first cycle, 1 is subtracted from the normalized number, and 1 is added to the first slice – 

each slice contains zeros at the beginning. The resulting FP number is shifted left by multiplying it by 2. If the result is greater 

than or equals to 1, then the second bit in the mantissa of the original number was 1. In this case, 0.5 has to be added to the 

first slice. If the result is smaller than one, then the second bit was 0. Thus, no operation is needed. By repeating this cycle, 

the original FP number is scanned bit by bit. In general, M slices are generated, each containing at most B bits. The first B 

bits are written in the first slice, the following B bits are written to the second one, and so on. At the end of the method, the 

signs and the exponents of the slices are restored by multiplying them by 𝑆 ∙ 2𝐸. 

The cycle has to be run 𝑀 ∙ 𝐵 times. Although the slices of 𝑓𝑟𝑒𝑙  have to be calculated only once, the splitting technique is 

time consuming since every k has to be splitted individually. Thus, in the following, an alternative easy-to-implement method 

will be investigated that can calculate the phase information incrementally with less computational demand. Besides, a 

detailed analysis on the computational burden of both methods will be carried out in Section II-E. 

B. Incremental argument calculation 

The problem with the original argument calculation was that with increasing k, the absolute value of the phase also 

increased, implying an increasing roundoff error. This was compensated with the splitting technique: calculating the 

fractional parts mapped the absolute value of 𝜑𝑘
′  in a limited range.  

The idea behind incremental argument calculation is that instead of calculating the large value of 𝑓𝑟𝑒𝑙 ∙ 𝑘 with the 

splitting technique, then reducing it into a limited range, it is rational to avoid the increase in the arguments. Namely, it is 

possible that the phase information is calculated incrementally: 

 𝛾1
′ = ⟨𝑓𝑟𝑒𝑙⟩,   𝛾𝑘+1

′ = ⟨𝛾𝑘
′ + 𝛾1

′ ⟩  and  𝜑𝑘+1
′ = 2𝜋𝛾𝑘+1

′   . (14) 

For example: 
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 𝛾𝑘
′ = 0.45  and  𝑓𝑟𝑒𝑙 = 0.15 →   𝛾𝑘+1

′ = ⟨0.45 + 0.15⟩ = −0.4  . (15) 

First, the fractional part of 𝑓𝑟𝑒𝑙 ∙ 𝑘, that is, 𝛾𝑘
′  is calculated incrementally, and then the result is multiplied by 2𝜋. By this 

means, the absolute value of 𝜑𝑘+1
′  is prevented from growing above 𝜋. Consequently, the roundoff error at the storage in a 

limited precision floating point number is limited, as well.  

Applying fixed point number representation, this method is advantageous, since summations can be performed without 

roundoff errors. Furthermore, the calculation of the fractional part in unnecessary. Namely, it is performed inherently when 

overflow occurs. Contrarily, using FP arithmetic, summations are distorted by roundoff errors, and the calculation of the 

fractional part has to be evaluated. 

To represent the numerical problem, phases are evaluated with the incremental argument calculation using single 

precision arithmetic. In order to have a benchmark for the error of the calculation, phase information is also evaluated using 

double precision that is assumed to be precise compared to single precision arithmetic. During the calculations, the 

following parameters are used: 

 𝑓𝑟𝑒𝑙 = 2−8 + 2−26  and  𝑁 = 105  . (16) 

The frequency is set so that it can be represented without roundoff errors on single precision. Thus, the representation error 

of the relative frequency does not influence the results. The problem of imprecise relative frequency representation will be 

investigated in detail in Section III.  

 

Figure 2. Phase error along the sample set with incremental phase calculation. 

The error of single precision evaluation using incremental calculation can be seen in Fig. 2. The result is a drift: with 

increasing k, the phase error increases, as well. Phase error over time can be characterized by a straight line. The error grows 

to −4.68 ∙ 10−3 at the end of the sample set.  

The problem can be explained by fact that although the absolute value of 𝛾𝑘
′  is limited, it can grow to 0.5. In the example,  

 𝛾65
′ = ⟨𝛾64

′ + 𝛾1
′⟩ = ⟨𝛾64

′ + 𝑓𝑟𝑒𝑙⟩      .  (17) 

The least significant digit (LSD) in the single precision mantissa of 𝛾64
′  equals to: 

 LSD(𝛾64
′ ) = LSD(2−2 + 2−20) = 2−25  .  (18) 

Since 2−26 in 𝑓𝑟𝑒𝑙  cannot be represented beside LSD(𝛾64
′ ), the error of the FP summation is −2−26 = −1.49 ∙ 10−8. The 

problem with this method is that these small errors are accumulating during the summation [12], since 𝛾𝑘+1
′  depends on 𝛾𝑘

′ . 
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Consequently, the errors are not independent of each other, and they are propagating along the sample set. This problem 

can be solved by compensated summation [13].  

C. Incremental argument calculation with compensated summation 

The error of incremental phase calculation originates from 𝛾𝑘
′ , the absolute value of which can grow to 0.5, while the 

term to be added, 𝛾1
′  remains small compared to this value. Though the error of each summation step is small, the effect of 

these accumulating errors may be significant, as it was shown in Section II-B. In order to decrease this effect, compensated 

summation can be applied [13]. The flowchart of incremental argument calculation with compensated summation is shown 

in Fig. 3. Compensated summation adds the error of the previous addition to the next term. Let us denote the compensated 

term by z: 

 𝑧 =  𝛾1
′ + 𝑒𝑘 (19) 

where 𝑒𝑘 is the roundoff error in the calculation of 𝛾𝑘
′ . With the compensated term, 𝛾𝑘+1

′  can be calculated as: 

 𝛾𝑘+1
′ =  𝛾𝑘

′ + 𝑧 (20) 

The error of the addition is: 

 𝑒𝑘+1 = (𝛾𝑘
′ − 𝛾𝑘+1

′ ) + 𝑧. (21) 

While each summation step is disturbed by roundoff errors, these errors do not accumulate along the record. Since 𝛾1
′  has 

small absolute value, the error that could not be represented in the large FP value of 𝛾𝑘+1
′ , becomes representable in z. 

Though from (19) and (20), 𝑒𝑘 is analytically 0, due to floating point additions, it assumes the roundoff error of the 

operations.  

 

Figure 3. Flowchart of the compensated summation technique. 

After performing the addition, the value of 𝛾𝑘+1
′  has to be analyzed. If 𝛾𝑘+1

′  grows beyond 0.5, 1 has to be subtracted in 

order to obtain the fractional part. This subtraction can be performed without roundoff error. For example, if 𝛾𝑘+1
′ =

0.625 = 0.10102 ∙ 20, the result of subtraction from 1 can be stored without loss of accuracy (the order of the operands are 

changed for purpose of illustration): 
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(22) 

and 0.01102 ∙ 20 = 0.375. 

With the compensated summation, the error in the phases has been evaluated again for the example given in Section II-

B. Results can be seen in Fig. 4. The maximum error in 𝜑𝑘
′  is 3.00 ∙ 10−7. Since phase information 𝜑𝑘

′  is in range [−𝜋; 𝜋), 

and the LSD in the mantissa of π is 2.38 ∙ 10−7, the maximum error is smaller than twice this least significant digit. The 

upper bound on the error in the sine function due to Δ𝛼 is 

 |sin(𝛼 + Δ𝛼) − sin 𝛼| ≈ |cos 𝛼 ∙ Δ𝛼| ≤ |Δ𝛼| .  (23) 

 

Figure 4. (a) Phase error along the sample set with compensated summation. (b) Histogram of the errors. 

Similarly, the upper bound on the error in the cosine function is Δ𝛼, as well. Thus, the error of sine and cosine calculations 

are also upper bounded by 3.00 ∙ 10−7. Furthermore, the histogram in Fig. 4b also shows that although the maximum error 

is 3.00 ∙ 10−7, the probability of lower errors is much larger – the standard deviation of the errors is 8.32 ∙ 10−8.  

D. Simulation results 

In this section, a Monte Carlo simulation will be executed to demonstrate the accuracy of the solution suggested in 

Section II-C. 

To this aim, 105 different 𝑓𝑟𝑒𝑙  values were generated with uniform distribution in [0; 0.5]. The generated frequency was 

stored on single precision, and the stored frequency was assumed to be accurate in order to avoid the drift phenomenon that 

will be discussed in detail in Section III. Phase information was evaluated with 𝑁 = 105. First, the maximum absolute error 

was determined. Results can be seen in Fig. 5a. The error is mapped in [−𝜋; 𝜋) due to the periodic property. For example, 

if the phase information of single and double precisions are 𝜑𝑘,𝑠𝑖𝑛𝑔𝑙𝑒
′ = 0.9𝜋 and 𝜑𝑘,𝑑𝑜𝑢𝑏𝑙𝑒

′ = −0.9𝜋, respectively, the 

absolute error is 0.2𝜋, instead of 1.8𝜋. Fig. 5a shows that the maximum error is always smaller than twice the LSD of the 

mantissa of 𝜋. 

In order to further analyze the statistical properties of the evaluation errors, standard deviations values were also 

determined, see Fig. 5b. The standard deviation of the errors is in the order of magnitude of 𝑒𝑝𝑠𝑠 = 1.19 ∙ 10−7, it is usually 
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between 7 ∙ 10−8 and 1.2 ∙ 10−7. Summing up the results, single precision evaluation with incremental argument calculation 

can be regarded as precise. 

 

Figure 5. (a) Maximum absolute value and (b) standard deviation of the error in phase information, applying incremental 

argument calculation with compensated summation. 

E. Computational demand 

In this section, the computational demand of the splitting technique and the incremental argument calculation will be 

analyzed by means of theoretical analyses and numerical simulations.  

Figs. 1 and 3 show the flowcharts of both methods. Both algorithms consist of simple steps, for instance, multiplication 

by 2, subtraction of 1, and of conditional statements. The splitting technique executes three or five floating-point operations 

(FLOPs) in a cycle, depending on the result of conditional statement x > 1. Besides, two conditional statements are 

evaluated. After the splitting, the convolution has to be evaluated. Its computational demand is eight FLOPs, see  (10). To 

calculate the fractional parts, 4 conditional statements have to be evaluated (to decide whether the actual slice is greater 

than 0.5) and if needed, 4 FLOPs have to be executed to subtract 1. Finally, the slices can be added with 3 FLOPs. The 

computational demand is mostly determined by the splitting part, since the cycle has to be evaluated 𝑀 ∙ 𝐵 = 22 times. To 

sum up, the computational demand of the splitting technique is approximately 22 ∙ 5 = 110 FLOPs and 22 ∙ 3 = 66 

conditional statement evaluations. 

In the incremental phase calculation, 5 FLOPs and 1 conditional statement are needed to calculate the value of 𝛾𝑘
′ . At 

the end of both methods, results have to be multiplied by 2𝜋 to get 𝜑𝑘. This can be evaluated with 1 FLOP. 

The advantage of the splitting technique is that 𝛾𝑘
′  can be calculated independently of 𝛾𝑘−1

′ , while in case of incremental 

argument calculation, the value 𝛾𝑘
′  depends on the previous value 𝛾𝑘−1

′ . Thus, with appropriate programming, for example, 

with parallel computing, the splitting technique can be fastened. However, it is definitely slower than the incremental phase 

calculation technique. 

In order to show the numerical effectiveness of the incremental argument calculation over the splitting technique, the 

evaluation of phase information was performed with both algorithms for 1000 different 𝑓𝑟𝑒𝑙  values with 𝑁 = 105 using 

MATLAB R2017a. While the splitting technique evaluation ran for 73.2 seconds, incremental phase calculation finished 

in 2.55 seconds. Thus, the proposed method is about 30 times faster than the splitting technique. As it was described in 
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Section II-A, in the splitting technique, more than 80% of the time is spent with splitting the frequency and the time instants. 

The exact value during the simulation was 86.7%. This means that the effective calculation of the convolution and of the 

fractional parts was performed in only 1/6 of the time. This explains the large difference between the run time of the 

algorithms. 

III. EVALUATION WITH INCREASED FREQUENCY PRECISION 

A. Error due to imprecise frequency representation 

Up to this point, it has been assumed that the frequency of the signal is known precisely. However, in practical situations, 

this assumption is not certainly fulfilled. In [14], it was shown that the root mean square error (𝑒𝑟𝑚𝑠) of the sine wave fitted 

in LS sense, due to inaccurate knowledge on frequency equals to: 

 

𝑒𝑟𝑚𝑠 = √
2

3
∙ 𝑅𝐽𝜋

Δ𝑓

𝑓
  . (24) 

The error can be explained by the phenomenon of drift. For purpose of illustration, an LS fitting with known frequency was 

performed on a sine wave with the following parameters: 

 
𝐴 = 0.3, 𝐵 = 0.4, 𝐶 = 0.5, 𝑓 = 57 Hz,

Δ𝑓

𝑓
= 10−6  . (25) 

Parameter Δ𝑓 𝑓⁄  means that the fitting assumed signal frequency to be f, while the real frequency value was 𝑓 + Δ𝑓. 

Sampling parameters were: 

 𝑓𝑠 = 1 kHz  𝑁 = 1000 . (26) 

The error of fitting can be seen in Fig. 6. It shows that the LS error is minimized so that the fitting error is minimal in the 

middle of the data set. This way, the drift due to imprecise frequency knowledge is minimized, as well. However, the errors 

are growing from the middle to the edges of the data set. 

 

Figure 6. Fitting error due to imprecise knowledge on frequency. 

The error is caused by not fulfilling the assumption that the frequency is precise. Imprecise knowledge on frequency 

can originate from two main sources: imprecise frequency estimation and finite precision number representation. In many 

cases, the initial frequency estimator is regarded as precise. Interpolated FFT (Fast Fourier Transform) methods can yield 

such estimators, applying different windows, for instance, rectangular window [15], Hanning window [16] or Blackman-
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Harris window [17]. In [18], it was pointed out that using interpolated FFT, as initial frequency estimator, the four-

parameter LS method that refines the frequency estimate does not outperform the three-parameter LS method (that estimates 

A, B and C) significantly, if 𝑁 > 512. Nevertheless, if the initial frequency estimator is not precise enough for the purpose 

of fitting, it can be refined with iterative methods in time [3] or frequency domain [17]. Detailed investigation of imprecise 

frequency estimation exceeds the scope of this paper. In the following, the case will be investigated, when imprecise 

frequency information originates from finite mantissa length, focusing on single precision representation. Namely, double 

precision representation is so accurate that it does not introduce noticeable error in 𝑒𝑟𝑚𝑠, according to (24). Contrarily, the 

accuracy of single precision representation may result in unexpectedly large errors. In worst case situation, the relative 

frequency error is 𝑒𝑝𝑠𝑠 2⁄ = 5.96 ∙ 10−8. Depending on the number of sampled periods J, the user can decide whether this 

error is negligible or it has to be taken into consideration. In the following, a method will be presented to mitigate the error 

due to roundoff errors in the frequency, if this error source cannot be neglected. 

 

Figure 7. (a) Maximum absolute value and (b) standard deviation of the error in phase information with increased 

frequency precision, applying incremental argument calculation with compensated summation. 

If the relative error of single precision number representation is not sufficiently small, frequency can be represented as 

the sum of two terms, as described in [6]: 

 𝑓𝑟𝑒𝑙,𝑝𝑟𝑒𝑐 = [single(𝑓𝑟𝑒𝑙), 𝑓𝑟𝑒𝑙,𝑐𝑜𝑟𝑟]   , (27) 

where single(𝑓𝑟𝑒𝑙) is the nearest representable single precision number and 𝑓𝑟𝑒𝑙,𝑐𝑜𝑟𝑟 is the correction term due to roundoff. 

Such correction term can be obtained from the four-parameter LS fitting [3]. 

Certainly, the addition should not be performed on single precision. Namely, it would yield single(𝑓𝑟𝑒𝑙). Instead, 

similarly to the splitting technique in Section II-A, the frequency is stored in two single precision numbers. The value of 

𝑓𝑟𝑒𝑙,𝑐𝑜𝑟𝑟 is by about seven orders of magnitude smaller than that of single(𝑓𝑟𝑒𝑙). Since the length of single precision mantissa 

is 23, the mantissa that can be stored in two single precision numbers is 46-bit long, approaching the accuracy of double 

precision (53 bits). With these notations, phase information can be calculated by: 

 𝜑𝑘 = 2𝜋(single(𝑓𝑟𝑒𝑙) ∙ 𝑘 + ⟨𝑓𝑟𝑒𝑙,𝑐𝑜𝑟𝑟 ∙ 𝑘⟩) (28) 
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Assuming that single(𝑓𝑟𝑒𝑙) < 0.5 holds, |𝑓𝑟𝑒𝑙,𝑐𝑜𝑟𝑟| < 0.5𝑒𝑝𝑠𝑠 = 5.96 ∙ 10−8. It follows that 𝑓𝑟𝑒𝑙,𝑐𝑜𝑟𝑟 ∙ 𝑘 < 0.5 holds for 

each k, provided that 𝑁 < 8 ∙ 106, which is a reasonable assumption. Thus, 𝑓𝑟𝑒𝑙,𝑐𝑜𝑟𝑟𝑘 can be evaluated without either the 

splitting technique or the incremental calculation. For the calculation of the fractional part of single(𝑓𝑟𝑒𝑙 ) ∙ 𝑘, both the 

splitting technique and the incremental calculation can be applied. The result can be obtained by adding the two parts and 

multiplying it by 2𝜋, as (28) shows. 

B. Simulation results 

In this section, the effectiveness of the evaluation with increased precision frequency will be demonstrated. To this aim, 

a Monte Carlo simulation with 105 different double precision 𝑓𝑟𝑒𝑙  values was run with uniform distribution in [0; 0.5]. 

Phase information was evaluated with 𝑁 = 105  with double precision and with single precision, applying the method 

suggested in Section III-A. The fractional part of single(𝑓𝑟𝑒𝑙) ∙ 𝑘 was evaluated using incremental argument calculation. 

The maximum absolute values and standard deviations of the evaluation errors can be seen in Fig.7. In comparison to Fig. 

5, both values are slightly larger. Nevertheless, the maximum absolute errors are still smaller than 3 ∙ LSD(𝜋) and the 

standard deviations are still in the order of magnitude 𝑒𝑝𝑠𝑠. 

In conclusion, single precision phase evaluation is demonstrated to be precise if the exact frequency of the signal can 

only be represented on double precision, and this frequency is stored in two single precision numbers. 

IV. POTENTIAL APPLICATIONS 

In this section, two application areas will be shown where accurate argument calculation can be utilized: ADC testing 

and system identification.  

In ADC testing, one of the most important results is the effective number of bits (ENOB). It can be defined by [3]: 

 

ENOB =  𝑏 − log2

√1
𝑁

∑ (𝑥𝑘 − 𝑦𝑘)2𝑁
𝑘=1

𝑄

√12

=   𝑏 − log2

√1
𝑁 ∙ CFLS

𝑄

√12

  , (29) 

where b is the nominal bit number, and Q is the ideal code bin width of the converter. From a practical point of view, the 

ENOB value represents the number of bits that contains information on the signal at the input of the quantizer. For instance, 

if the mean square error of the conversion is twice as large as the mean square error of an ideal quantizer, the ENOB value 

drops by one.  

Imprecise argument calculation influences the result of sine fitting. Its effect is especially significant for long records 

with single precision evaluation, see (6). To illustrate this effect, 100 noisy sine waves were generated with 𝑁 = 216 

samples, and the mean ENOB values were calculated in three different ways. In Evaluation 1, double precision arithmetic 

was applied. In Evaluation 2, single precision arithmetic without incremental argument calculation was used. Finally, in 

Evaluation 3, single precision evaluation was complemented with incremental argument calculation. In order to avoid the 

drift phenomenon, 𝑓𝑟𝑒𝑙 = 2−5 was set so that it can be stored in one single precision number precisely. The nominal bit 

number of the converter was 𝑏 = 12. Signal parameters were: 

 A = 0.4   B = 0.3    C = 0.5  . (30) 

The distribution of the additive noise was uniform between −𝑄/2 and 𝑄/2. This models an ideal quantization. Thus, 

the real ENOB value was approximately 12. The result of the evaluation can be seen in Table 1. Though there is no 
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noticeable difference between double and single precision evaluations for 𝑁 = 1,000, with increasing record length, single 

precision evaluation (without incremental argument calculation) yields inaccurate results. For 𝑁 = 50,000, the difference 

between double and single precision evaluations is more than 0.5 bits. However, with incremental argument calculation, 

results can be evaluated accurately even using single precision arithmetic.  

Record length Eval. 1 Eval. 2 Eval. 3 

1,000 12.00 12.00 12.00 

10,000 12.00 11.97 12.00 

20,000 12.00 11.89 12.00 

50,000 12.00 11.43 12.00 

Table 1 – Mean ENOB values for different record lengths with uniformly distributed noise (ideal quantization) 

The simulation was repeated using additive white Gaussian noise (AWGN) with zero-mean and standard deviation 𝜎 = 𝑄. 

Results are delineated in Table 2. This simulation shows that imprecise argument calculation affects the result of the 

evaluation much less, if the amplitude of the additive noise is increased.  

The increase in the expected value of the CF due to imprecise argument calculation can be estimated by (6). If it is 

negligible compared to CFLS, then it does not influence the result of the fitting, and the value of the ENOB considerably. 

Contrarily, if the noise level is low, and therefore CFLS is small, then the effect of imprecise argument calculation has to be 

mitigated. By this means, both the increase in the mean value and the raggedness of the CF can be decreased significantly 

[6][7]. 

Record length Eval. 1 Eval. 2 Eval. 3 

1,000 10.21 10.21 10.21 

10,000 10.21 10.21 10.21 

20,000 10.21 10.19 10.21 

50,000 10.21 10.14 10.21 

Table 2 – Mean ENOB values for different record lengths with AWGN 

Another area where the effect of imprecise argument calculation should be considered is system identification. In frequency 

domain system identification, multi-sinusoidal excitation is widely used [20]: 

 

𝑢(𝑡𝑘) = ∑ 𝑅 ∙ sin(2𝜋𝑓𝑛𝑡𝑘 + 𝜙𝑛)

𝑀

𝑛=1

  , (31) 

where 𝑢(𝑡𝑘) denotes the excitation signal at time instant 𝑡𝑘, 𝜙𝑛 is the initial phase of the nth harmonic component. The 

excitation signal consists of M sinusoidal components. If the excitation signal is generated digitally, and it is converted by 

a digital-to-analog converter (DAC), then the result is affected by imprecise argument calculation. In this case, the longer 

the record, the larger the error due to imprecise argument calculation. Furthermore, it is obvious that due to multiplication 

factor n, the magnitude of the error increases in the higher-order harmonics.  

Although the effect of imprecise argument calculation is important to consider in case of single precision evaluation of 

long (𝑁 > 10,000) records, if J or N is decreased, or double precision evaluation is applied, this error source can be 

neglected, see (6). Thus, while in case of single precision evaluation, the user has to decide whether the effect of imprecise 



15 

 

argument calculation can be neglected or it should be mitigated, in case of double precision evaluation, this error source 

results in negligible disturbances. 

CONCLUSIONS 

In this paper, accurate argument calculation for sine fitting algorithms was investigated, assuming floating point 

arithmetic. The splitting technique was shown to have a bottleneck at the calculation of the slices. An easy-to-implement 

incremental argument calculation technique was suggested that maps the result in [−𝜋;   𝜋). It was shown that this method 

can result in a growing phase error due to the accumulation of roundoff errors. In order to obtain precise results, 

compensated summation was applied. This technique stores the roundoff error at each summation step, and compensates 

for it at the next step. Simulations showed that with this supplement, even single precision evaluation can be regarded as 

precise. Furthermore, theoretical and numerical analyses were carried out to highlight performance increase compared to 

the splitting technique. The analysis showed that incremental phase calculation can be evaluated about 30 times faster than 

with the splitting technique. Besides, a method was suggested to be able to calculate phase information precisely, even if 

the frequency of the sinusoidal waveform cannot be represented precisely in one floating point number. Results were 

verified through simulations. Finally, two possible application areas were shown to demonstrate the applicability of the 

suggested solutions in the state-of-art measurement procedures. 

It was pointed out that double precision number representation is precise enough to neglect the effect of imprecise 

argument calculation and imprecise frequency representation. Contrarily, single precision evaluation can introduce 

noticeable errors. The magnitude of this error was estimated in former research, and the derivation was generalized in this 

paper. Consequently, during measurements, the user of sine fitting can decide whether the error sources has to be 

compensated in the actual measurements or they inject negligible errors compared to the measurement noise. Nevertheless, 

with the proposed methods, these errors can be mitigated significantly. By this means, the cost of equipment that is needed 

to evaluate sine fitting can be reduced, as well. 

APPENDIX 

The expected value of the increase in the least squares cost function (CFLS) is investigated. In [6], this value was 

determined for a purely sinusoidal waveform, where 𝐵 = 0. In this section, a derivation is provided for a general sine wave, 

extending the ideas in [6].  

The fitted sine wave due to the roundoff error of 𝜑𝑘 equals to: 

 𝐴 cos{𝜑𝑘 + (Δ𝜑)𝑘} + 𝐵 sin{𝜑𝑘 + (Δ𝜑)𝑘} + 𝐶

≈ 𝐴 cos(𝜑𝑘) − 𝐴 sin(𝜑𝑘) ∙ (Δ𝜑)𝑘 + 𝐵 sin(𝜑𝑘) + 𝐵 cos(𝜑𝑘) ∙ (Δ𝜑)𝑘 + 𝐶

= 𝐴 cos(𝜑𝑘) + 𝐵 sin(𝜑𝑘) + 𝐶 + [𝐵 cos(𝜑𝑘) − 𝐴 sin(𝜑𝑘)](Δ𝜑)𝑘 

(32) 

where (Δ𝜑)𝑘  is the roundoff error in 𝜑𝑘. Comparing this result to (1), the roundoff error in the fitted sine wave due to (Δ𝜑)𝑘 

is: 

 𝑒𝑝ℎ𝑎𝑠𝑒,𝑘 ≈ [𝐵 cos(𝜑𝑘) − 𝐴 sin(𝜑𝑘)](Δ𝜑)𝑘   . (33) 

The increase in the expected value of CFLS equals to the expected value of the squared sum of 𝑒𝑝ℎ𝑎𝑠𝑒,𝑘 [6]: 
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𝐸{ΔCFLS} = 𝐸 {∑ 𝑒phase,𝑘
2

𝑁

𝑘=1

}  . (34) 

From (33), we obtain: 

 

𝐸 {∑ 𝑒phase,𝑘
2

𝑁

𝑘=1

} ≈ 𝐸 {∑([𝐵 cos(𝜑𝑘) − 𝐴 sin(𝜑𝑘)](Δ𝜑)𝑘)𝟐

𝑁

𝑘=1

}

= ∑[𝐵2 cos2(𝜑𝑘) + 𝐴2 sin2(𝜑𝑘) − 2𝐴𝐵 sin(𝜑𝑘) cos(𝜑𝑘)] ∙ 𝐸{(Δ𝜑𝑘)2}

𝑁

𝑘=1

  , 

(35) 

The distribution of (Δ𝜑)𝑘 can be regarded as independent uniform distribution in [−LSD{(Δ𝜑)𝑘}/2; LSD{(Δ𝜑)𝑘}/2] 

[11]. Thus, its squared expected value equals to [11]: 

 
𝐸{(Δ𝜑𝑘)2} =

LSD{(Δ𝜑)𝑘}2

12
≈ 𝜑𝑘

2
𝑒𝑝𝑠2

12
  , (36) 

where eps is the relative error of the floating point number representation. With this approximation: 

 

𝐸{ΔCFLS} ≈ ∑[𝐵2 cos2(𝜑𝑘) + 𝐴2 sin2(𝜑𝑘) − 2𝐴𝐵 sin(𝜑𝑘) cos(𝜑𝑘)]

𝑁

𝑘=1

∙ 𝜑𝑘
2

𝑒𝑝𝑠2

12

= ∑ [𝐵2
1 + cos 2𝜑𝑘

2
+ 𝐴2

1 − cos 2𝜑𝑘

2
− 𝐴𝐵 sin(2𝜑𝑘)] ∙ 𝜑𝑘

2
𝑒𝑝𝑠2

12

𝑁

𝑘=1

=  ∑ [
𝐵2 + 𝐴2

2
+ cos(2𝜑𝑘)

𝐵2 − 𝐴2

2
− sin(2𝜑𝑘) 𝐴𝐵] ∙ 𝜑𝑘

2
𝑒𝑝𝑠2

12

𝑁

𝑘=1

= ∑ [
𝑅2

2
+ cos(2𝜑𝑘)

𝐵2 − 𝐴2

2
− sin(2𝜑𝑘) 𝐴𝐵] ∙ 𝜑𝑘

2
𝑒𝑝𝑠2

12

𝑁

𝑘=1

  .  

(37) 

where R is the amplitude of the sine wave 𝑅 = √𝐴2 + 𝐵2. Formulas for squared cosine and sine values can be found in 

[19]. Assuming that N is large, and a high number of periods are sampled, the sum of cosinusoidal and sinusoidal terms can 

be neglected beside the sum of 𝑅2 2⁄ . Thus, we get: 

 

𝐸{ΔCFLS} ≈ ∑
𝑅2

2
∙ 𝜑𝑘

2
𝑒𝑝𝑠2

12

𝑁

𝑘=1

= ∑
𝑅2

2
∙ 𝑘2𝜑1

2
𝑒𝑝𝑠2

12

𝑁

𝑘=1

=
𝑅2

2
∙ 𝜑1

2
𝑒𝑝𝑠2

12
∑ 𝑘2

𝑁

𝑘=1

  .  (38) 

It is known that [19]: 

 

∑ 𝑘2

𝑁

𝑘=1

=
𝑁(𝑁 + 1)(2𝑁 + 1)

6
≈

𝑁3

3
   . (39) 

Thus, the increase in the expected value of CFLS is approximately: 

 
𝐸{ΔCFLS} ≈

𝑅2

2
∙ 𝜑1

2
𝑒𝑝𝑠2

12

𝑁3

3
   ,  (40) 

Considering that 

 
𝜑1 = 2𝜋𝑓𝑟𝑒𝑙 = 2𝜋

𝐽

𝑁
  , (41) 
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the expected value of the increase in CFLS is 

 
𝐸{ΔCFLS} =

𝜋2𝑅2𝐽2𝑒𝑝𝑠2𝑁

18
  . (42) 
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