
1 

 

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE 

must be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 

 

Digital Object Identifier of the paper: 10.1109/TIM.2016.2600998 

 

The final version of the paper is available on the IEEE Xplore 

 

 

  

http://dx.doi.org/10.1109/TIM.2016.2600998
http://ieeexplore.ieee.org/document/7563359/


2 

 

Efficient Implementation of Least Squares Sine Fitting 

Algorithms 

 

B. Renczes, I. Kollár, T. Dabóczi 

Budapest University of Technology and Economics,  

Department of Measurement and Information Systems, Budapest, Hungary 

Abstract—In this paper, three- and four-parameter least squares (LS) sine fitting algorithms are investigated. It 

is pointed out that the three-parameter fitting is well conditioned in its standard form, both for short and long 

records. Then, the conditioning of the four-parameter fitting (4PF) is investigated. A scaling factor is derived in 

order to ensure good conditioning of the equations. A Monte Carlo analysis is carried out to demonstrate that in 

practical cases, using this scaling factor ensures good conditioning for the four-parameter system. It is also shown 

that parameters can be determined precisely using direct pseudoinverse calculation for both methods. Hence, in this 

case, there is no need to use the computationally more demanding decomposition methods, although these are 

generally recommended for the solution of LS problems. In addition, data centering for time instants is introduced 

in order to further improve the numerical properties of the 4PF. It is shown that with this method, the fourparameter 

problem can be approximated with a diagonal matrix. Finally, an evaluation method is presented to significantly 

decrease roundoff errors of the widely used LS methods. 

Keywords—Least squares methods, sine fitting, four-parameter fitting, numerical stability, condition number, 

analog-digital conversion. 

I.  INTRODUCTION 

Digital computers offer a fast and efficient way to process analog signals. However, they cannot deal with the analog 

input directly. Hence, an analog-to-digital conversion is needed prior to running digital signal processing algorithms. For the 

characterization of analog-to-digital converters (ADCs) it is crucial that we can determine the quality of the conversion in a 

standardized way. In IEEE Standard 1241-2010 methods are prescribed to test ADCs [1]. Due to the fact that a sinusoidal 

waveform can be generated with high purity, ADCs are mostly tested with sine wave excitation. Such excitation is also 

needed to evaluate the histogram test of ADCs [2].  

Since the parameters of the generated analog input signal are not known precisely, a sine wave has to be fitted to the 

measured noisy data. The difference between the measured and the fitted sine wave characterizes the quality of the 

conversion. The most widely used method is the Least Squares (LS) sine wave fitting algorithm [1]. It attempts to fit a sine 

to the measured data, minimizing the Mean Square Error (MSE) 

 𝑦𝑘 = 𝐴 ∙ cos(2𝜋𝑓𝑡𝑘) + 𝐵 ∙ sin(2𝜋𝑓𝑡𝑘) + C, (1) 
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 𝑀𝑆𝐸 = ∑(𝑥𝑘 − 𝑦𝑘)
2

𝑁−1

𝑘=0

, (2) 

where yk and xk denote the kth sample in the fitted sine wave and the measured data set, respectively, N is the record length, 

A, B and C are the amplitudes of the cosinusoidal and sinusoidal components and the offset, respectively. The signal 

frequency is denoted by f. Furthermore, tk is the time instant, at which xk was sampled [1]. For regular sampling time instants 

are given by  

 𝑡𝑘 = 𝑘 𝑓𝑠⁄ ,          𝑘 = 0,… , 𝑁 − 1, (3) 

where fs denotes the sampling frequency. If the sampling is not equidistant, k can assume non-integer values. In this paper 

equidistant sampling is assumed. Since the signals are processed digitally, the sampling frequency is not necessarily known. 

The parameter that is needed to describe the sine wave is the ratio of the signal frequency to the sampling frequency 𝑓/𝑓𝑠.  

In case of the three-parameter fitting (3PF) 𝑓/𝑓𝑠 is assumed to be known. This problem is linear in the parameters. Thus, 

parameters can be calculated in one step, without iteration [1]. However, if the frequency ratio is unknown, the problem 

becomes non-linear. It is to be mentioned here that the unknown frequency is still assumed to be constant, that is, the 

frequency drift of the generator, [3], is not considered. There are two different approaches for the solution. In the first one, 

the frequency ratio is estimated in advance. Then, a 3PF is executed. The frequency ratio can be estimated, for instance, by 

interpolated FFT (see e.g. [4] or an overview in [5]). It  was pointed out in  [6] that if the frequency is known within an 

interval, the 3PF outperforms the four-parameter fitting (4PF), which is the other approach. In the 4PF, all the four parameters 

are estimated at the same time.  

The properties of the LS fitting methods have been widely investigated. It was shown in [7] that harmonic distortion 

and noise affect the result of the 4PF. In particular, these distortions result in a biased frequency estimate.  

In addition, the 3PF was also investigated in point of bias. [8] and [9] pointed out that although the amplitude estimate 

of this method is also biased, it is asymptotically unbiased. A more rigorous analysis has been executed, taking also 

quantization into consideration. It was shown that the amplitude and offset estimates are biased if the quantization cannot 

be modelled as additive, uniformly distributed noise [10], [11]. Besides, convergence of the 4PF has been analyzed, [12]. 

Certainly, there are other possible algorithms to fit a sine wave to noisy measured data, such as the Maximum Likelihood 

(ML) estimator [13] or the Quantile Based Estimator [10]. However, ML is computationally more demanding compared to 

the LS [14], while the use of QBE is limited to coherent sampling. In fact, if error sequence 𝑥𝑘 − 𝑦𝑘  is random, white and 

of Gaussian distribution, the LS estimate coincides with the ML estimate [15]. Furthermore, in practice the LS method 

yields good results. 

This paper focuses on the 3PF and 4PF algorithms, aiming to improve numerical stability and computational time of 

these methods. 

In Section II the conditioning of the 3PF and the 4PF is investigated. It is proved that the 3PF is well-conditioned, 

provided that at least 4 periods are sampled. Contrarily, the 4PF is shown to become ill-conditioned for high amplitude 

values and long records. In Section II-C, a scaling factor is suggested for the 4PF in order to ensure well-conditioning. This 

scaling factor is shown to enhance conditioning significantly. In Section III data centering for time instants is introduced. 

This technique is shown to improve numerical properties of both the 3PF and the 4PF. Finally, in Section IV proposals are 

given in order to evaluate Least Squares algorithms in a numerically efficient way. 



4 

 

II. INVESTIGATION OF THE CONDITIONING OF THE STANDARD METHODS 

 

In this section, the conditioning of the 3PF and the 4PF is investigated, assuming they are evaluated as it is prescribed in 

[1]. 

A. The three-parameter case 

In case of the three-parameter fitting (3PF) 𝑓/𝑓𝑠 is assumed to be known. For this problem the following equation system 

has to be solved in LS sense 

 𝐱 = 𝐃0𝐬0 + 𝐞. (4) 

where 𝐃0 is the system matrix of the 3PF 

 

 

𝐃0 = (

cos𝜑0    sin𝜑0 1
cos𝜑1    sin𝜑1 1
 ⋮ ⋮ ⋮

cos 𝜑𝑁−1    sin𝜑𝑁−1 1

 )  , 𝜑𝑘 =
2𝜋𝑓0
𝑓𝑠

𝑘, (5) 

𝐬0 contains the amplitudes of the cosine and the sine waves, and the unit offset and e is the error sequence to be minimized 

in LS sense. Finally, f0 is the frequency estimate. The problem is linear in the parameters. Thus, parameters can be calculated 

in one step, without iteration. The solution of (4) is given using the pseudo-inverse of 𝐃0 [16] 

 𝐬̂ = 𝐃0
+𝐱. (6) 

where 𝐬̂ contains the parameter estimates and 𝐃0
+ is the pseudo-inverse of 𝐃0. There are several methods to calculate the 

pseudo-inverse in (6). It can be directly evaluated using formula 

 

 𝐃0
+ = (𝐃0

𝐓𝐃0)
−1𝐃0

𝐓. (7) 

However, in practical cases this formula is rarely used due to numerical considerations [17]. If 𝐃0 is ill-conditioned (we 

will see in Section II-B that in standard 4PF this can happen), i.e., the ratio of its maximal singular value to its minimal one 

is high, then solving (6) is numerically instable. The ill-conditioned problem results in high sensitivity of the estimated 

parameters to small perturbations of x. In fact, the condition number (CN) of the system matrix D0 provides an upper bound 

for the error of the solution. The smaller the CN is (this can be modified e.g., by applying a linear transformation to (4)), the 

smaller the upper bound of the error of the solution will be, in proportion to the CN.  

Notice that ill-conditioning is independent of the measured signal. Therefore, the additive noise on x, which is known to 

increase the variance of the estimate, does not influence the numerical accuracy of the solution. Thus, numerical accuracy 

and the effect of input noise can be investigated separately from each other. This paper investigates the former problem. 

The pseudo-inverse calculation of ill-conditioned problems is also numerically instable if it is calculated by (7). In this 

case, the CN of 𝐃0 is squared at the calculation of 𝐃0
𝐓𝐃0. To avoid the latter problem, numerically stable methods are used 

in practice, like singular value decomposition (SVD) or QR-decomposition [16]. However, decomposition methods can be 

computationally demanding especially for long observations. If 𝐃0
𝐓𝐃0 is well-conditioned, the calculation method of (7) 

can be used without numerical issues.  

In the following the conditioning of the 3PF, that is, the conditioning of 𝐃0
T𝐃0 will be investigated. This matrix can be 

calculated by 
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𝐃0
T𝐃0 = 𝐇 =

(

 
 
 
 
 
 

∑ 𝑐𝑜𝑠2𝜑𝑘  

𝑁−1

𝑘=0

∑  cos𝜑𝑘

𝑁−1

𝑘=0

sin𝜑𝑘 ∑  cos𝜑𝑘

𝑁−1

𝑘=0

∑  cos𝜑𝑘

𝑁−1

𝑘=0

sin𝜑𝑘 ∑𝑠𝑖𝑛2𝜑𝑘  

𝑁−1

𝑘=0

∑ sin𝜑𝑘

𝑁−1

𝑘=0

∑  cos𝜑𝑘

𝑁−1

𝑘=0

∑  sin𝜑𝑘

𝑁−1

𝑘=0

∑ 1

𝑁−1

𝑘=0 )

 
 
 
 
 
 

. (8) 

This matrix can be given as 

 𝐇 = 𝑁(𝐇̃ + 𝐄), (9) 

where 

 
𝐇̃ = (

1/2 0 0
0 1/2 0
0 0 1

), (10) 

and E contains the error terms [26]. From an analytical point of view, H can be described by N times matrix 𝐇̃, and a 

perturbation matrix E. Notice that the multiplication with N does not change the CN. Thus, in the following the CN of 𝐇̃ +

𝐄 will be investigated.  

Matrix entries of E can be proved to be bounded with the following elements [26] 

 

𝐄𝑏 =
1

𝐽

(

 
 
 
 
±
1

8
±
1

8
±

1

2√2

±
1

8
±
1

8
±

1

2√2

±
1

2√2
±

1

2√2
0

)

 
 
 
 

, (11) 

provided that  

 𝐽

𝑁
=
𝑓0
𝑓𝑠
≤ 4, (12) 

where 𝐄𝑏 denotes the bound elements of perturbation matrix E, and J denotes the number of sampled periods. The condition 

in (12) prescribes that at least 4 samples should be sampled from one period. It can be observed that the elements of 𝐄𝑏 

decrease with increasing J. Thus, H can arbitrarily approach a diagonal matrix. Furthermore, for coherent sampling E is a 

null-matrix and H is diagonal. 

Knowing the bounds on the elements of E, eigenvalues of 𝐇̃ + 𝐄 can be estimated. Let us notate the eigenvalues of 𝐇̃ 

with 𝜆𝑖 and the eigenvalues of 𝐇̃ + 𝐄 with 𝜆𝑖
′ . From matrix perturbation theory, the following limits can be given 

 |𝜆𝑖 − 𝜆𝑖
′| ≤ ‖𝐄𝑏‖𝐹 (13) 

where ‖∙‖𝐹 denotes the Frobenius norm, [21]. However, as described in Section I, for the calculation of the CN the singular 

values are needed. Let us notice that 𝐇 = 𝐃0
T𝐃0 is symmetric and positive semidefinite [16]. It follows that its eigenvalues 

equal to its singular values. Thus, 

 
|𝜎𝑖 − 𝜎𝑖

′| ≤ ‖𝐄𝑏‖𝐹 =
0.75

𝐽
 (14) 
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holds, where the singular values are denoted by 𝜎𝑖 and 𝜎𝑖
′. It is obvious from (10) that the largest 𝜎𝑖

′ equals to 1 and the 

smallest 𝜎𝑖
′ equals to 1/2. Thus, the following limitation can be given for conditioning of the 3PF 

 
𝑐𝑜𝑛𝑑(𝐃0

T𝐃0) = 𝑐𝑜𝑛𝑑(𝐇̃ + 𝐄) =
max (𝜎𝑖)

min(𝜎𝑖)
≤
max(𝜎𝑖

′) + ‖𝐄𝑏‖𝐹
min(𝜎𝑖

′) − ‖𝐄𝑏‖𝐹
, (15) 

that is 

 

𝑐𝑜𝑛𝑑(𝐃0
T𝐃0) ≤

1 +
0.75
𝐽

0.5 −
0.75
𝐽

      if    𝐽 > 1.5. (16) 

The condition on J is needed in order to ensure that the denominator is greater than 0. It follows that the CN is lower 

than 11, provided that the number of sampled periods is greater than 2. If J is increased beyond 4, the CN drops under 3.8. 

Furthermore, inequality (16) can be approximated by  

 

𝑐𝑜𝑛𝑑(𝐃0
T𝐃0) ≤ 2

1 +
0.75
𝐽

1 −
1.5
𝐽

≈ 2 +
4.5

𝐽
      if    𝐽  is large. (17) 

It can be seen that the condition number is small. Consequently, it is not important to use computationally more demanding 

decomposition methods. 

The calculated maximum for the CN of 𝐃0
T𝐃0 is a worst case limit. In practical situations, the CN is usually smaller 

than this limit. This is shown for different record lengths, if 𝐽 𝑁⁄ = 1/1000 in Fig. 1. It can be observed that if at least 2 

periods are sampled, the CN is under 2.25 and the CN asymptotically approaches 2. Furthermore, for coherent sampling, 

the CN is exactly 2, because in this case 𝐃0
T𝐃0 is diagonal. 

 

Fig. 1.  CN of 𝐃0
T𝐃0 for different record lengths for the given example 

B. The four-parameter case 

In the 4PF, all the four parameters are estimated at the same time. To solve this problem, an iterative solution is needed. 

In [1] Taylor series expansion around the frequency estimate in iteration step i is suggested for frequency estimation. The 

problem can be described as 

 𝐱 = 𝐃𝑖𝐬𝒊 + 𝐞, (18) 
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𝐃𝑖 = (

cos𝜑0    sin𝜑0 1 𝐷𝑖,14
cos 𝜑1    sin 𝜑1 1 𝐷𝑖,24 

⋮ ⋮ ⋮ ⋮
cos 𝜑𝑁−1    sin𝜑𝑁−1 1 𝐷𝑖,𝑁4 

 ), 

𝐷𝑖,𝑘4 = 2𝜋(−𝐴(𝑘 − 1)  𝑠𝑖𝑛 𝜑𝑘−1 + 𝐵(𝑘 − 1) 𝑐𝑜𝑠 𝜑𝑘−1) 

𝜑𝑘 = 𝑘2𝜋𝑓𝑖/𝑓𝑠  

(19) 

 
𝐬𝒊
𝐓 = (𝐴𝑖    𝐵𝑖    𝐶𝑖    Δ (

𝑓𝑖

𝑓𝑠
)), (20) 

The matrix equation can be simplified, if Δ𝜔𝑖/𝑓𝑠 is searched instead of Δ(𝑓𝑖/𝑓𝑠), where 𝜔 is the angular frequency, and 

𝜔 = 2𝜋𝑓. In this case 𝒔𝑖,4 = Δ(𝜔𝑖 𝑓𝑠⁄ ) and 

 𝐷𝑖,𝑘4 = −𝐴 (𝑘 − 1)𝑠𝑖𝑛 𝜑𝑘−1 + 𝐵(𝑘 − 1)𝑐𝑜𝑠 𝜑𝑘−1. (21) 

After the solution of (18) the frequency ratio has to be updated 

 𝜔𝑖+1/𝑓𝑠 = 𝜔𝑖/𝑓𝑠 + Δ(𝜔𝑖 𝑓𝑠⁄ ). (22) 

Then, Di+1 has to be constructed with the updated frequency ratio.  

The 4PF is more complex than the 3PF. The conditioning of the 4PF system matrix (19) is much worse than that of the 

3PF system matrix, since 

 𝐃𝑖
𝐓𝐃𝑖 = 𝐇 = 𝑁(𝐇̃ + 𝐄), (23) 

where 

 

𝐇̃ = (

1/2 0 0 𝐵𝑁/4
0 1/2 0 −𝐴𝑁/4
0 0 1 0

𝐵𝑁/4 −𝐴𝑁/4 0 𝑅2𝑁2/6

), (24) 

R is the aggregated amplitude: 𝑅 = √𝐴2 + 𝐵2. Again, with increasing J, the elements of E approach zero. Furthermore, if 

sampling is coherent, that is, if J is an integer number, E is a null-matrix. However, for the 4PF, H cannot be approximated 

with a diagonal 𝐇̃, as it was done for the 3PF. 

It is easy to construct ill-conditioned examples, like a condition number of 1020, with the following parameter setting: 

 𝑦𝑘 = 𝑠0(1) ∙ cos 𝜑𝑘 + 𝑠0(2) ∙ sin𝜑𝑘 + 𝑠0(3)     𝑘 = 0…𝑁 − 1,𝑁 = 10
6 

𝐬0
T = (20000   25000   215) 

(25) 

and 𝐽 𝑁⁄ = 0.001. Since the sampling is coherent, 𝐄 = 𝟎. With the given data, the CN is 

 cond(𝐃𝑖
T𝐃𝑖) = 1.37 ∙ 10

21, (26) 

so the problem is ill-conditioned. In addition, the CN is even larger than 1 𝑒𝑝𝑠𝑑⁄ = 4.5 ∙ 1015, where 𝑒𝑝𝑠𝑑 is the resolution 

of double precision number representation [22]. This implies that the pseudo inverse should not be calculated as in (7). 

However, it is visible from (24) that the CN of the 4PF depends on the amplitude of the signal and the record length. 

The higher the amplitude or the longer the record is, the worse the conditioning of 𝐃𝑖
T𝐃𝑖 will be. Furthermore, it is clear 

that 𝐃𝑖
T𝐃𝑖 is not diagonal, even for coherent sampling. This is caused by the added fourth parameter. To reach diagonality, 
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e.g., the Gram-Schmidt orthogonalization could be used to ensure robustness [18]. In Section III another method will be 

described, with the help of which 𝐃𝑖
T𝐃𝑖 can be approximated with a diagonal matrix. 

C. Improvement  of conditioning by scaling for the four-parameter case 

In Section II-B it was pointed out that the CN of the 4PF depends on the amplitude of the sine and on the record length. 

The problem is caused by the fact that while parameters A, B and C are connected to quantities in the same dimension (to a 

voltage value on the analog side), 𝑓/𝑓𝑠 is connected to the signal/sampling frequency. The fourth parameter is the needed 

frequency change. Thus, it is connected to the derivative of the signal model with respect to 𝑓/𝑓s, see (19). It follows that 

the fourth column is proportional to sampling instant k. Since k goes from 0 to N, it can cover several orders of magnitude. 

Furthermore, the derivative is also proportional to A and B. These parameters can also assume values in a wide range. This 

explains the well-conditioning of 3PF and the ill-conditioning of 4PF.  

The problem can be solved by proper scaling of (19), [16]. In [19] it was shown that the condition number of 𝐃𝑖
T for 

long records can be optimized to approximately 3.7. It follows that the CN of 𝐃𝑖
𝐓𝐃𝑖 can be optimized to approximately 14. 

Furthermore, it was pointed out in [20] that scaling the fourth column results in a much better-conditioned matrix. This 

means that the fourth column in (19) is divided by a scaling factor γ. The division affects the last row and the last column 

of 𝐃𝑖
𝐓𝐃𝑖 

 (𝐃𝑖
𝐓𝐃𝑖)𝑠𝑐 = 𝑁(𝐇̃𝑠𝑐 + 𝐄𝑠𝑐), (27) 

where 

 

𝐇̃𝑠𝑐 =

(

 
 
 
 
 

1

2
0 0

𝐵𝑁

4γ

0
1

2
0 −

𝐴𝑁

4γ
0 0 1 0
𝐵𝑁

4γ
−
𝐴𝑁

4γ
0

𝑅2𝑁2

6γ2 )

 
 
 
 
 

, (28) 

𝐄𝑠𝑐 contains the scaled values of the fourth row and column of E in (23). In order to solve the same equation system, the 

fourth parameter in (20) has also to be changed 

 𝐬𝑖,𝑠𝑐
𝐓 = (𝐴𝑖    𝐵𝑖    𝐶𝑖   𝛾 ∙ Δ(𝜔𝑖 𝑓𝑠⁄ )). (29) 

Now, the scaling factor has to be found, for which the condition number of (𝐃𝑖
𝐓𝐃𝑖)𝑠𝑐 is minimal. The CN of (𝐃𝑖

𝐓𝐃𝑖)𝑠𝑐 

equals to that of 𝐇̃𝑠𝑐 + 𝐄𝑠𝑐. In the following it is assumed that 𝐄𝑠𝑐 = 𝟎. Thus, the CN of 𝐇̃𝑠𝑐 has to be investigated. To this 

aim, singular values 𝜎𝑖 of (28) have to be determined as a function of 𝛾. In Section II-A it was shown that  𝜎𝑖 = 𝜆𝑖 . 

Eigenvalues 𝜆𝑖 are given by the characteristic polynomial of (28) 

 
𝐶(𝜆) = [0.5 − 𝜆] {(0.5 − 𝜆)(1 − 𝜆) (

𝑅2

6γ2
𝑁2 − 𝜆) −

𝐴𝑁

4γ

𝐴𝑁

4γ
(1 − 𝜆)}

−
𝐵𝑁

4γ
(0.5 − 𝜆)

𝐵𝑁

4γ
(1 − 𝜆) = 

=(0.5 − 𝜆)(1 − 𝜆) {(0.5 − 𝜆) (
𝑅2

6γ
𝑁2 − 𝜆) −

𝐴2𝑁2

16γ2
−
𝐵2𝑁2

16γ2
}= 

(30) 
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= 𝐶(𝜆) = (0.5 − 𝜆)(1 − 𝜆) {(0.5 − 𝜆) (
𝑅2

6γ2
𝑁2 − 𝜆) −

𝑅2

16γ2
𝑁2}. 

It follows that 𝜎1 = 1 and 𝜎2 = 0.5 are always singular values. From the third term the other two singular values can be 

determined 

 
𝐶2(𝜆) = (0.5 − 𝜆) (

𝑅2

6γ2
𝑁2 − 𝜆) −

𝑅2

16γ2
𝑁2 =

𝑅2𝑁2

12γ2
− 0.5𝜆 −

𝑅2𝑁2

6γ2
𝜆 + 𝜆2 −

𝑅2𝑁2

16γ2
= 

= 𝜆2 − (
𝑅2𝑁2

6γ2
+ 0.5) 𝜆 +

𝑅2𝑁2

48γ2
 

(31) 

The third and fourth roots of the characteristic equation are: 

 

𝜎3,4 =

𝑅2𝑁2

6γ2
+ 0.5 ± √(

𝑅2𝑁2

6γ2
+ 0.5)

2

−
𝑅2𝑁2

12γ2

2
 .   

(32) 

Let us use notation 𝑧 =
𝑅2𝑁2

γ2
. After simplifications we get: 

 

𝜎3,4 =

𝑧
6
+ 0.5 ± √

𝑧2

36
+
𝑧
12
+ 0.25

2
. 

(33) 

If z is close to zero, 𝜎3 ≈ 0.5, and 𝜎4 get close to 0, too. Thus, the problem becomes ill-conditioned because of 𝜎4. 

Contrarily, if z is large, 𝜎3 ≈ 𝑧/6, and 𝜎4 ≈ 0.25. Thus, the conditioning of the problem becomes ill with increasing z, too. 

The minimal condition number can be achieved at z=3.429, see Fig. 2. The optimal scaling factor that minimizes the CN 

of the problem is therefore:  

 γ𝑜𝑝𝑡 = 𝑅𝑁/√3.429 = 𝑅𝑁/1.852, (34) 

and the CN of 𝐇̃𝑠𝑐 is 14.0 in this case. This is a major improvement, compared to (26). The result shows that the minimal 

CN given in [19] can be reached. As expected, the scaling factor depends on the record length and the aggregated amplitude. 

It should be noted the result coincides with [19], except (34) also contains record length N. However, this difference is 

significant. 

 

Fig. 2. Condition number of (𝐃𝑖
𝐓𝐃𝑖)𝑠𝑐 as a function of the scaling factor 
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Notice that 𝛾𝑜𝑝𝑡 is given for the case when 𝐬𝑖,4 = Δ (𝜔𝑖/𝑓𝑠). If 𝒔𝑖,4 = Δ (𝑓𝑖/𝑓𝑠), the optimal scaling factor is  

 𝛾𝑜𝑝𝑡,𝑓𝑟𝑒𝑞. = 𝛾𝑜𝑝𝑡/(2𝜋) = 𝑅𝑁/11.62.   (35) 

However, this derivation holds only if 𝐄𝑠𝑐 = 𝟎. In order to show the gained enhancement in case 𝐄𝑠𝑐 ≠ 𝟎, a Monte 

Carlo simulation was carried out with the following parameters: 𝐽/𝑁 was uniformly distributed in [10−3; 0.25], A and B 

were uniformly distributed in [0; 20000]. The simulation was run for 105 times for two different cases: first, the number 

of sampled periods was uniformly distributed in [4; 5]. For the second time, it was in the interval [100; 101]. Results can 

be seen in Fig. 3. 

 

Fig. 3. Histogram of the CN of (𝐃𝑖
𝐓𝐃𝑖)𝑠𝑐 if (a) 4 ≤ 𝐽 ≤ 5 and (b) 100≤ 𝐽 ≤ 101 

It can be observed that if at least 4 periods are sampled, the CN of (𝐃𝑖
𝐓𝐃𝑖)𝑠𝑐 is less than 17. For increasing record length, 

as expected, the conditions of the approximation are fulfilled better. For 100≤ 𝐽 ≤ 101, the CN is between 13.9 and 14.1.  

 

III. CENTERING TIME INSTANTS 

A. Description of the method 

In Section II it was pointed out that for the 3PF matrix 𝐃0
T𝐃0 can be approximated with a diagonal matrix. In the 

following a new technique is introduced in order to be able to approximate the 4PF matrix 𝐃𝑖
T𝐃𝑖 with a diagonal one, too.  

As described in (3), in practical applications mostly uniform sampling occurs and for the measurement k goes from 0 to 

N-1. However, [1] does not define time instants tk. Since the offset of time is usually not important in time invariant systems, 

the starting value of k can be chosen arbitrarily. This way, an offset is given to the time axis, similarly to data centering for 

the case of polynomial fitting [23]. Thus, time instants of the measurement can be transformed so that they become 

symmetrical to zero. By this, for coherent sampling the 4th column of 𝐃𝑖 will be shown to be orthogonal to its other 

columns. Thus, we can expect improvement on the condition number. 

With data centering for time instants, t=0 can be shifted to the middle of the data set. Generally, the needed time offset 

l can be calculated as: 

 𝑙 = (𝑁 − 1)/2. (36) 
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After this data centering, the following parameters will be determined: 

 (𝐬𝒊
𝐓)
′
= (𝐴𝑖

′   𝐵𝑖
′   𝐶𝑖    Δ (𝜔𝑖/𝑓𝑠)), (37) 

that is, the offset and the fine tuning of the frequency remain unchanged, while 𝐴𝑖
′  and 𝐵𝑖

′ are the amplitudes at t=0. With 

the new parameters, the time domain signal can be written as: 

 𝑦𝑘 = 𝐴′ ∙ cos(𝜑𝑘−𝑙) + 𝐵′ ∙ sin(𝜑𝑘−𝑙) + C. (38) 

Notice that the index of y is unchanged, since data centering does not influence the fitted sine wave as a time domain signal. 

The original parameters can be calculated with the new parameters by 

 
𝐴 = 𝐴′ cos (2𝜋

𝑓

𝑓𝑠
𝑙) − 𝐵′ sin (2𝜋

𝑓

𝑓𝑠
𝑙) ,   𝐵 = 𝐴′ sin (2𝜋

𝑓

𝑓𝑠
𝑙) + 𝐵′ cos (2𝜋

𝑓

𝑓𝑠
𝑙), (39) 

Naturally, the aggregated amplitude remains unchanged: 

 𝑅 = √𝐴′2 + 𝐵′2 = √𝐴2 + 𝐵2. (40) 

This technique becomes advantageous if every data point is used, i.e., there is no discarded sample. Namely, in this case 

it can be exploited that due to symmetry, the sum of odd functions is exactly 0.  

Both three- and four-parameter LS matrices contain sums of functions of sine and cosine values. Consequently, every 

sum contains elements of even or odd functions. Data centering sets time parameters so that the sampling instants are 

symmetrical to zero. For odd functions, for instance, for sin(𝜙), the following equation holds: 

 

∑  sin(𝜑𝑘−𝑙)

𝑁−1

𝑘=0

= 0. (41) 

Notice that the sum is exactly zero. Thus, there is no need to calculate it. Similarly: 

 

∑ sin(𝜑𝑘−𝑙)

𝑁−1

𝑘=0

cos(𝜑𝑘−𝑙) = ∑
1

2
sin(2𝜑𝑘−𝑙)

𝑁−1

𝑘=0

= 0. (42) 

After describing data centering for time instants, its effect on both the 3PF and 4PF will be demonstrated. In order to 

further increase numerical stability, the original algorithm is also slightly modified at another point. It can be seen from 

(10) that the conditioning of 𝐇̃ is not optimal. It could be improved if the offset parameter were scaled, similarly to the case 

of the 4PF in Section II-C. Now, the third column of 𝐃′0 and 𝐃′𝑖 should be divided by √2 to ensure that the diagonal 

elements in 𝐇̃′ are equal to each other. By this means, its condition number can be decreased to 1. Certainly, the parameter 

vector is also modified 

 (𝐬𝒊
𝐓)
′
= (𝐴𝑖

′    𝐵𝑖
′  𝐶𝑖√2   Δ (𝑓𝑖/𝑓𝑠)), (43) 

After this modification, let us observe the effect of data centering. 

 

B. Condition number enhancement for the 3PF 

The effect of data centering and dividing the third column of 𝐃0 by√2 on the 3PF is the following. Similarly to the 

original problem, the system matrix can be described by  
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 𝐇′ = 𝑁(𝐇̃′ + 𝐄′), (44) 

where 

 

𝐇̃′ = (

1/2 0 0
0 1/2 0
0 0 1/2

), (45) 

and 𝐄′ can be bounded by 

 

𝐄𝑏
′ =

1

𝐽
(
±1 8⁄ 0 ±1 4⁄

0 ±1 8⁄ 0
±1 4⁄ 0 0

), (46) 

 

provided that (12) holds, see [26]. According to the matrix perturbation theory (14) we have 

 

cond {(𝐃0
T𝐃0)′} = cond {(𝐇̃ + 𝐄)′} ≤

0.5 + ‖𝐄′𝑏‖𝐹
0.5 − ‖𝐄′𝑏‖𝐹

=
0.5 +

0.4
𝐽

0.5 −
0.4
𝐽

,   if  𝐽 > 0.8 (47) 

This can be approximated as 

 

cond {(𝐃0
T𝐃0)′} ≤

0.5 +
0.4
𝐽

0.5 −
0.4
𝐽

≈ 1 +
1.6

𝐽
,   if  𝐽  is large (48) 

 

Comparing (17) to (48), the upper bound of the condition number has been decreased. In fact, with data centering and 

scaling the third column of 𝐃′0, the condition number is always lower than 1.5, if at least 4 periods are sampled, and at least 

4 samples are sampled from one period. 

C. Condition number enhancement for the 4PF 

Similarly to the 3PF, the effect of time offsetting and scaling the third column of 𝐃′𝑖 can be investigated. For the 4PF 

we have 

 𝐇′ = 𝑁(𝐇̃′ + 𝐄′), (49) 

where 

 

𝐇̃′ =

(

 
 

1/2 0 0 0
0 1/2 0 0 
0 0 1/2 0

0 0 0
𝑅2(𝑁2 − 1)

24
 )

 
 
, (50) 

and 𝐄′ contains the error terms of 𝐇̃′, [26]. It is obvious that with increasing record length or for large amplitude values, 𝐇̃′ 

becomes ill-conditioned. Thus, the fourth column of 𝐇′ should be divided by 

 

γ′ = √
𝑅2(𝑁2 − 1)

12
. (51) 

After this scaling we have 



13 

 

 𝐇sc
′ = 𝑁(𝐇̃′𝑠𝑐 + 𝐄′𝑠𝑐), (52) 

where 

 

 

𝐇̃′𝑠𝑐 = (

1/2 0 0 0
0 1/2 0 0 
0 0 1/2 0
0 0 0 1/2 

), (53) 

and it can be shown that 𝐄′𝑠𝑐 can be bounded by matrix 𝐄′𝑠𝑐,𝑏, and  

 
‖𝐄𝑠𝑐,𝑏

′ ‖
𝐹
≤
0.96

𝐽
,   if 𝐽 ≥ 4 (54) 

provided that (12) holds, see [26]. Notice here that this bound is valid only if at least 4 periods are sampled. According to 

the matrix perturbation theory, [21], we have 

 

cond(𝐇𝑠𝑐
′ ) = cond((𝐃𝑖

T𝐃𝑖)
′
𝑠𝑐) ≤

0.5 +
0.96
𝐽

0.5 −
0.96
𝐽

,   if  𝐽 ≥ 4. (55) 

This can be approximated as 

 

cond(𝐇𝑠𝑐
′ ) ≤

0.5 +
0.96
𝐽

0.5 −
0.96
𝐽

≈ 1 +
3.84

𝐽
,   if  𝐽  is large. (56) 

This bound means that the condition number is guaranteed to be under 2.85, if at least 4 periods are sampled, and at least 4 

samples are sampled from one period. Notice that for coherent sampling the condition number can be decreased to 1, that 

is, to the smallest possible value. 

 

IV. PROPOSALS ON THE EVALUATION OF LEAST SQUARES ALGORITHMS 

In this section, the evaluation of 3PF and 4PF is investigated. Since in the previous sections it was pointed out that the 

algorithms are well-conditioned, at least after proper scaling for the 4PF, the direct evaluation of the pseudo-inverse 

calculation can be utilized. For this evaluation, 𝐃0
T𝐃0 or 𝐃𝑖

T𝐃𝑖 has to be calculated. The proposals on the evaluation is given 

for the 3PF, but they also hold for the 4PF. Thus, in the following 𝐃0
T𝐃0 will be investigated 

 

𝐃0
T𝐃0 = 𝐇 = (

ℎ11 ℎ12 ℎ13
ℎ12 ℎ22 ℎ23
ℎ13 ℎ23 ℎ33

). (57) 

First, it should be noticed that this matrix is symmetric. It follows that 6 elements have to be calculated instead of 9. 

Furthermore, ℎ33 equals to N. Thus, there is no need to calculate it. Finally, using trigonometric identities 

 ℎ11 = 𝑁 − ℎ22, (58) 

that is, only one of these elements has to be computed. To conclude, only 4 elements from 9 has to be determined in order 

to be able to construct 𝐃0
T𝐃0. For the 4PF 8 elements from 16 have to be calculated to construct 𝐃𝑖

T𝐃𝑖. 
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If data centering is also used, ℎ12 and ℎ23 are exactly 0. Thus, for the 3PF 2 elements, for the 4PF 6 elements have to 

be determined. From a numerical point of view, it is beneficial if it is known that the value of an element is exactly 0. In 

this case, the result is exact and it is not distorted by the roundoff errors that are accumulating when summations are 

performed [24], or the roundoff error due to imprecise phase evaluation cannot be neglected [25].  

Furthermore, roundoff errors can be decreased for all matrix entries in (57), considering the following. Every element 

is a sum of cosinusoidal and sinusoidal functions that are equally sampled. (The only exception is ℎ33, but as it was 

discussed, it is always equal to N.) For these sums, a closed formula can be derived [26]. For example: 

 

ℎ11 = ∑ cos2 𝑘𝜑1 =

𝑁−1

𝑘=0

𝑁

2
+
cos(𝑁 − 1)𝜑1 sin𝑁𝜑1

2 sin𝜑1
. (59) 

By this means, there is no need for summation. The sums can be determined with a few multiplications and additions. 

Thus, the result is not distorted by the roundoff error of the summation.  In addition, roundoff errors due to imprecise phase 

evaluation can be eliminated, provided phase information (𝑁 − 1)𝜑1 is determined precisely. A detailed description for 

this error and a method for calculating precise phase information can be found in [25].  

It follows that accuracy is also improved. This is especially important for large values of N and/or for single precision 

evaluation, [20]. 

To conclude, results in Sections III and IV can be summed up in the following steps: 

 Use data centering for time instants, that is, shift 𝑡 = 0 to the middle of the data set.  

 Divide the third column of 𝐃′0 or 𝐃′𝑖, that is, system matrices after data centering, by  √2. 

 In case of the 4PF, divide the fourth column of 𝐃′𝑖 by 𝛾′ in (51). 

 For the calculation of the sums in (𝐃0
T𝐃0)′ or (𝐃𝑖

T𝐃𝑖)′ use closed formulas, and also take into consideration 

that these matrices are symmetric. Closed formulas can be found in [26]. 

 Calculate the pseudo-inverse directly. 

 Calculate the parameter vector. 

 To get the original parameter vector, divide the offset by √2 and in case of the 4PF, divide the frequency 

change by 𝛾′. To get original parameters A and B, use (39). 

CONCLUSIONS 

In this paper three- and four-parameter Least Squares sine fitting algorithms were investigated. It was proved that the 

three-parameter fitting is well-conditioned, if at least four periods are sampled, and at least four samples are sampled in a 

period. Then for the conditioning of the four-parameter fitting, a scaling factor was given which minimizes the condition 

number under some conditions. A Monte Carlo analysis was carried out to show the effectiveness of the scaling. Data 

centering for time instants was introduced. It was shown that with this technique, the 4PF problem can be approximated 

with a diagonal matrix. Furthermore, it was proved that the condition number of the 3PF is lower than 1.5, and the condition 

number of the 4PF is lower than 3, if at least 4 periods are sampled and at least 4 parameters are sampled from a period. 

For long records, the condition number of both methods was shown to approach 1. Furthermore, for coherent sampling, the 

condition number of 1 is reached. This value is the smallest possible condition number. Thus, both algorithms can be 

evaluated in a numerically stable way. Finally, an evaluation method was given for both the three- and four-parameter 
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methods. Proof for the condition number calculations can be found in [26]. Furthermore, source files of the described 

algorithms implemented in MATLAB are available in [27]. 
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