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Abstrac t- In this paper a novel approach to A/D conversion is introduced. After significant oversampling data 
points can be selected of which we precisely know the value – these are the samples at transition level crosses. 
The levels are determined beforehand using histogram testing. To have sufficient number of transition level 
crosses, dither can be added. Finally, to obtain uniformly sampled data, interpolation is performed. Using this 
method, the error of AD conversion can be significantly reduced still using the same low-bit converter. 
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I. Introduction 

Analog-digital converters yield imprecise output due to integral and differential nonlinearities. The 
distortion due to the finite resolution of the converter is also a nonlinearity, although this is more regular. The 
smaller are these errors, the better is the ADC. In this paper, an approach to reduce the above errors in analog-
digital conversion is described.  

By conventional conversion the information available from the output of the converter is that the 
corresponding analog signal sample was in a given interval at the sampling instant, but nothing more is known. 
Although this uncertainty cannot be totally eliminated, it can be reduced appreciably by the following method. If 
the amplitude cannot be determined at a time instant precisely enough, let us determine for a level (comparator) 
the time instance when this level was crossed, similarly as in [3]. This is called asynchronous AD conversion. 
The method introduced in this paper is aimed to improve a synchronous AD converter, using a similar approach, 
as described in Section II. 

II. Description of the method 

II.1. Non-uniform sampling 

This paper aims to reduce the nonlinearity of conventional AD converters. Similarly to sigma-delta 
converters, significant oversampling can be used, only keeping data that were sampled when a code transition 
level crossing occurred (Fig. 1). The advantage of this approach is that certain points of the input signal are 
precisely determined: 

• because of oversampling, timing of the level crossings is determined with acceptable accuracy, 
• amplitudes at these instants are quite precisely known, since these are equal to the transition levels of 

the A/D converter and can be precisely known from calibration. 

 

Figure 1 Illustration of non-uniform sampling 

                                                 
1 This work has been supported by grant TÁMOP - 4.2.2.B-10/1--2010-0009. Special thanks to National Instruments Hungary for providing 
the ADC hardware.  
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Since we utilize these precise values instead of using the non-ideal (i.e. non-linear) output of the converter, the 
nonlinearities of the converter can be compensated. 

With this approach, the samples are not equally spaced, because the crossings of the transition levels occur 
at non-uniform time instants. Therefore not only the digitized data must be saved, but also the time instants of 
the sampling. Furthermore, computers usually require equally spaced samples, thus interpolation has to be used 
to restore equidistant sampling.  

For this, transition levels have to be determined beforehand, using histogram test. The method is described 
in [1], and an implementation in [2]. 

II.2. Interpolation 

The samples are sampled by a traditional AD converter. Fig. 1 shows that the samples at transition level 
crosses are building a subset of all the samples which are located on an equally spaced time grid. Using 
interpolation, samples on this original time grid (or a similar uniform grid) can be regenerated and after that 
these data can be stored and processed in the conventional way.  

The simplest way of interpolation is linear interpolation, but the result of this is too much distorted. To 
decrease this distortion effect, a more complicated but still executable interpolation method, e.g. Lagrange 
interpolation can be utilized. This method fits a polynomial of order (n-1) to n data points. The formula of 
Lagrange interpolation is as follows: 
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where xj  are the data points. Using this method the derivative of the interpolated function is continuous, but the 
disadvantage is that an increase in the number of data points causes an increased degree of the interpolating 
function. Furthermore, having noisy samples this interpolation method forces the function through these data 
points, distorting the result (see Fig. 2), thus in such cases smoothing is desirable.  
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Figure 2 Effect of Lagrange interpolation using noisy samples 

Another possibility would be to use splines for interpolation of the samples. 
Throughout this paper, noise is assumed to be small. 
Although Lagrange interpolation is a global method, it can be executed as a local interpolation using 

windowing technique. In this case e.g. a 4-point window is used, and after the execution of the local 
interpolation the middle part is kept, shifting the window forward. The global interpolated function is obtained as 
the sum of these parts. This method is useful because the computational demand of a 4 degree Lagrange 
polynomial is much lower than that of the whole sample set. 

In the windowed case the derivatives are not continuous because at the joining points the function may have 
breaks, but the interpolated samples are still good representatives of the original signal.  
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II.3. Adding dither 

The presented method assumes that the input signal has a sufficient number of transition level crosses. 
When this is not the case (the input is of low frequency or is a DC signal), not enough information can be 
obtained to execute the interpolation. Furthermore, for these signals the given points might not even satisfy the 
Shannon theorem. To ensure an adequate number of level crosses, dither can added to the signal. This 
pseudorandom noise “pushes the signal through” the transition levels. 

On the other hand, when the signal is digitized with added dither, significant error would occur. To avoid 
this, the dither needs to be subtracted at the digital side. A possible method for this is to generate the dither using 
a D/A converter. In this case we know the value of it quite precisely. 

II.4. Choosing appropriate inputs 

To test the method, first of all a convenient input signal is to be chosen. The aspect of the choice is to find a 
signal that has the largest slew rate. This case supplies the worst case situation for the examination because when 
the signal changes too fast, it may cross more than one transition levels, resulting that the amplitude cannot be 
accurately determined. 

Considering band-limited signals, a sine wave with the frequency of the bandlimit was chosen. 
When choosing the type of the dither the aim is to find a relatively slow signal to be able to determine the 

time instant of the level crossing. The most convenient signal for this purpose is a signal with constant slew rate. 
A triangular signal can be chosen as dither. 

II.5. Error analysis 

The purpose of the method is to reduce the MSE (mean-square error) value as much as possible. As 
reference the PQN-model (Pseudo Quantization Noise model, [6]) can be used, in which the quantization noise is 
uniformly distributed between –q/2  and  q/2  (q denotes the size of the quantization box). In this model the MSE 

equals to 
12

2q .  

We should try to create the digital signal with lowest possible MSE. Supposing that the signal had crossed a 
transition level at tcross, this can be noticed only at the next sampling moment (Fig. 3). Let us denote this with 
kiTCLK (in Fig. 3 ki = 5). 

 

 

Figure 3 Illustration of the amplitude error, Figure after [3] 

In this case the available information is that the signal code level changed in interval [ki-1TCLK; kiTCLK], thus 
the timing error is 

 crossCLKit tTke
i

−= . (2) 

If the signal changed during this time, the amplitude could be determined only with an error: 
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Since the sampling frequency is much higher than the frequency of the signal, the amplitude error can be derived 
from the current slew rate and the timing error using following equation: 

 .)('
ii tcrossy etye =  (4) 

Assuming that the input of the A/D converter is statistically independent of 
it

e , furthermore the expected value 

of the derivative  y’(tcross) equals to 0, and that 
it

e is uniformly distributed between 0 and TCLK, the mean square 

error can be computed as follows: 

 ][])('[][ 222
tLX eEtyEyEMSE ⋅==  (5). 

Further derivation can be found in [3], and the MSE can be calculated (using sine input and triangular dither) by: 
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This equation shows that MSE decreases with increasing the sampling frequency. On the other hand, the use of 
dither slightly increases this value. Nevertheless, adding dither is necessary to ensure adequate number of 
transition level crosses.  

To reduce the conversion error, the knowledge can be used that the input signal is significantly oversampled. 
Assuming that the power density function of the quantization noise is white between 0 and the half of the 
sampling rate, a lowpass filter can considerably reduce MSE. Besides, this can also reduce the effect of the 
breaks at the joining points of the interpolated function, caused by the windowing technique described in II. 3.  

II.6. Determining the number of level crosses 

Assuming that the slew rate of the input signal is known (slew rate of the sum of the dither and the sine 
wave), the number of transition levels crossed between two sampling instants can be determined. The change is 
highest when the derivative of the sine is maximal and the sign of it equals to the instantaneous sign of the 
dither. In this case during a sampling period the following change will occur at the input of the converter 
(assuming that the sampling frequency is much higher than that of yin): 
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Knowing the LSB, the number of level crosses during a sampling period equals to 
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Keeping this value low would be advantageous, because the instant of the code level change could be determined 
more exactly. But having too rare transition changes is also inappropriate because of the insufficient number of 
data points for the interpolation.  

II.7. Determining the parameters of the signal 

Considering a 8 bit A/D converter with 4 Vpp and with sampling frequency of 200 kHz, LSB = 15.625 mV. 
After the analysis, the frequencies and amplitudes of the input signal and the dither are to be determined. 

Choosing the parameters in a way that the slew rate of the dither is much higher than that of the input signal 
seems to be an appropriate choice, considering the followings. When the slew rate of the dither is much lower 
than the maximum slew rate of the sine, the method can work for a sine, but may fail with other low-frequency 
signals. When the derivatives are of the same order, the slew rate at some sampling points will be high, at others 
it will be much lower. This is problem, because for signals with the same slew rate the instant of the transition 
time cannot be determined with the same accuracy (see Fig. 4). 

A reasonable setting can be that after maximum 4 samples, at least one code level transition should occur. It 
follows that nmax=0.25.  Let the dither have an amplitude of 3.5 LSB (7 LSB peak to peak). In this case 
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Let us choose the frequency of the dither as 3.6 kHz. Now we can set the values of the sine. Choosing the 

frequency  fx = 100 Hz,  and the amplitude  Ax = 150 mV, the slew rate of the dither is 8 times greater than that of 
the sine, causing that after maximum 4.51 and minimum 3.54 samples a code transition occurs. 

 

Figure 4 Illustration for sine wave and dither having the same slew rate 

It has to be mentioned that setting the parameters this way does not really assure that a code transition 
occurs after each 4 or 5 samples. When the sign of the dither changes just before the code transition, even 8 
sampling intervals can elapse until one transition, but this is rare and does not spoil the method. 

III. Verification of the method 

III.1. Verification by simulation  

To illustrate the more complicated functionality of the method also including using dither, simulation can be 
set in. In this section the values determined in Subsection II.7. are utilized. With conventional conversion the 

MSE is 
59.10

2
q , which is higher than the MSE of the PQN model 
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Figure 5 Simulation results 
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When a lowpass filter is also set in with stopband frequency of 3.5 kHz and a suppression of 80 dB, the MSE 

falls to 




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



3065

2q  which is a major decrease compared to conventional conversion and proves that lowpass 

filtering have significant reducing effect on conversion error. These data show that the effective number of bits 
of the A/D has increased. The results of the simulations can be seen in Fig. 5.  

III.2. Verification by measurement 

Using an A/D converter of National Instruments myDAQ (resolution 16 bit, input range V2± , sampling 
frequency 200 kHz), let us compare how much error is made during the conversion using the conventional 
method and by the novel approach.  
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Figure 6 Illustration by measurement 

The calibration of the A/D converter was not a part of this work, so the transition levels were determined 
relatively to each other [2]. To keep the measurement simple, no dither was added because it is only needed to 
ensure transition level crosses for very low frequency signals. As input, sine wave was used with parameters 1 
Vpp and 500 Hz. To keep nmax in Eq. (8) low, only the higher 8 bits of the A/D were considered. Results can be 
seen in Fig. 6. Since the amplitudes and offsets of the two signals were different, these parameters of the 
conventionally digitized signal were normalized to illustrate that the interpolated signal follows the required 
form. The FFTs of the two signals are shown in Fig. 7. The two figures illustrate clearly that the interpolated 
signal follows the sinusoidal form much better. The high-frequency FFT components of the interpolated signal 
are about 6 dB lower.  

 

Figure 7 FFT of the conventionally digitized and the interpolated signal 
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Knowing that we have sine waves, LS fit can be executed. For the conventionally digitized signal  
MSEconv. = 0.0826 LSB2, while for the interpolated signal MSEinterp = 0.0403 LSB2, and the effective number of 
bits EOBconv. = 8.006 and EOBinterp. = 8.524. The results show that the resolution of the A/D was improved. It can 
be noticed that using Eq. (6) theoretical MSE = 0.0421 LSB2 which is close to the measured MSEinterp.. With 
higher clock frequency or lower signal slew rate the resolution could be even more enhanced.  

IV. Conclusions 

The aim of this paper was to prove that the nonlinearities of an A/D converter can be reduced by 
oversampling and interpolation. Instead of using each sample only data points are kept which were taken at 
transition crossings, because in this case the value is much more precisely known than for a randomly selected 
data point. After data processing (interpolation) the original signal can be restored with much higher accuracy 
than by conventional methods. In this way not only non-linearity but also the resolution of existing A/D 
converters can be improved (improved resolution by oversampling). The improvement of the resolution is much 
more than by usual averaging. 
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