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Abstract—Nowadays, the usage radio channel or Internet
connection grows for real-time transmission of measurement data
or signals. For these applications, not reliable communication
needs to be analyzed from a signal processing point of view.
Our paper contributes to this topic with the analysis of data
loss as a signal distorting phenomenon. The paper contains
a possible mathematical description of the data loss via the
indicator function. Moreover, the Gilbert-Elliott data loss model
class is presented, which gives a framework to analyse numerous
data loss phenomena in general. In order to analyse the data loss
in the frequency domain, the spectrum of the indicator function is
required. This paper presents the derivation of the power spectral
density of the Gilbert-Elliott model. The paper reviews a possible
identification method for the simpler models derived from the
Gilbert-Elliott model. Theoretical analysis and simulations are
supported by measurements. The measurement results are used
to show how the data loss models function in practice.

Keywords—data loss, data loss model, spectrum, identification,
hidden Markov model, Gilbert-Elliott model

I. INTRODUCTION

Traditional communication and measurement systems offer
high-precision, reliable and fast data transmission. Recently,
due to the technological development, sensor networks with
less reliable communication appeared. E.g., this means that
some measurement data gets damaged during the transmission.
The idea of the Internet of Things takes this a step further:
connect every electronic equipment to the Internet to create an
enormous sensor network, measure and control the physical
world from a distance. These systems give motivation to
examine data loss phenomena from a signal processing point
of view.

Data loss can be viewed as a measurement error caused
by the not reliable equipment and procedures. A radio signal
may be received incorrectly due to interference, packets can
be lost over Internet connections or external circumstances can
hinder the measurements. Data loss can mean invalid samples,
for example an overdrive AD-converter. Lost packages over
an Internet connection can cause missing samples. External
circumstances (e.g., weather for an astronomical measurement)
may also lead to missing or invalid samples. In a system with
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multiple clock domains, synchronization issues are able to
cause for a sample to be doubled or omitted in a transition
over the clock domain.

In the prevoius works [1] [2], data loss models chosen
by the physical models have been examined. These were
the random independent, Markov, block-based models and
in general, models with some memory. In this paper, the
Gilbert-Elliot model [3] is investigated as it comprises all the
previously analyzed models. After the investigation, the results
can be simplified with deductive reasoning for the simpler
models: random independent, two-state Markov, Gilbert [4]
and complementary Gilbert. The benefit of this methodology
is the unified description of these models in time and frequency
domain.

If an application transmits data via a communication chan-
nel and the useful information is the spectrum of the signal,
even one lost sample is crucial. Here the spectra of the signal
and the indicator function are convolved. In order to analyze
the data loss in the frequency domain, the spectrum of the
indicator function is required. Data loss appears as a noise
in the spectrum which can hinder the detection and accurate
measurement of weaker spectral components. On the other
hand, this noise can be used to identify the data loss model.

When data are lost, a natural idea is to resend, remeasure,
but in some cases it cannot be done. When a signal is
measured in real-time, the lost samples cannot be replaced.
For reliable communication, a complex state machine needs
to be implemented. Moreover, reliable communication in a
finite time is impossible, thus in real-time systems data loss
needs to be taken into account.

There are methods which require a whole block of samples,
e.q. spectral analysis, where even one lost sample is crucial.
When processing in blocks, it is a possibility to discard blocks
with lost samples. However, even with weak data loss, the time
required to acquire a whole block can result in an unacceptable
measurement time.

In section II we give the mathematical description of data
loss and some basic definitions are introduced. Section III
contains the description of the examined data loss models.
Time domain and statistical properties are given in section
IV while frequency domain analysis results are presented in
section V. Section VI deals with the identification problem
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and section VII concludes with measurement results.

II. PRELIMINARIES

A. Mathematical Description of Data Loss

1) Indicator Function: Data loss can be modeled in discrete
time with an availability indicator function:

Kn =

{
1 if the sample is available at n
0 if the sample is lost at n

(1)

2) Statistical Properties: In this paper, consecutive samples
are called a sequence, a sequence with a fix length is a
block. Using the indicator function we can define the µ data
availability and γ data loss rates:

µ = Pr (Kn = 1) γ = Pr (Kn = 0) (2)

where Pr (·) is the probability operator. The R (L) reliability
and R′ (L) complementary reliability functions give informa-
tion about the time distribution of the lost samples. They give
the probability of L consecutively available and lost samples:

R (L) = Pr (∀i ∈ {1, . . . , L} : Ki = 1) (3)

R′ (L) = Pr (∀i ∈ {1, . . . , L} : Ki = 0) (4)

The average length of available and lost sequences will be
marked with EN1 and EN0, respectively.

B. Modeling of a Data Loss Process

With the indicator function we can easily model a data loss
process. If an x0n discrete signal and the Kn indicator function
are given, the xn signal with lost samples is the product of
them:

xn = x0nKn (5)

Thus, the spectrum of a signal with lost samples is the
convolution of the spectra of the original signal and the
indicator function.

III. GILBERT-ELLIOTT DATA LOSS MODEL FAMILY

A. Gilbert–Elliott Model

The Gilbert-Elliott data loss model is a two-state two-output
hidden Markov-model. In this paper the two states will be
marked with A and B. The state transition probabilities are p
and q. The probabilities of the available samples in the two
states are a and b, respectively. These probabilities will be
called as the output probabilities.

A B
p

q

1-p=r 1-q=s

1 0

a

1-a=c

1-b=d

b

Fig. 1: Gilbert-Elliott data loss model

The probabilities of staying in the same state will be marked
with r = 1 − p and s = 1 − q. Similarly, the probabilities of
lost samples will be marked with c = 1− a and d = 1− b.

This model can be used for such systems which have two
states, an ’Up’, where the system mostly works and a ’Down’,
where the system is mostly faulty.

B. Simpler Models

The simpler models are different from the Gilbert-Elliott
in their behavior in the ’Up’ and ’Down’ states. In either or
both states can be the data availability deterministic, or the
two states can generate the same output.

1) Gilbert Model: Gilbert model is the simplified version
of the Gilbert-Elliott model when a = 1. This means that
in one state, the sample is always available. This model is
applicable for a system which works perfectly in state ’Up’
and in a mostly faulty way in state ’Down’.

2) Complementary Gilbert Model: We get the complemen-
tary Gilbert model from the Gilbert-Elliott when b = 0. In
other words, the sample in state B is always lost. The model
can describe a system which is mostly working in the ’Up’
state and totally faulty in the ’Down’ state.

3) Two-state Markov Model: The two-state Markov-model
is a special case of Gilbert-Elliott model with a = 1 and b = 0.
It is also the special case of the Gilbert and complementary
Gilbert models. Here the output is a deterministic function of
the state. The two-state Markov-model is useful to describe a
system which works perfectly in state ’Up’ and not at all in
state ’Down’.

4) Random Independent Model: Random independent data
loss model is the simplest data loss model. Each sample is
available with a fixed probability. Unlike the previous models,
here the availability of different samples is independent from
each other. This also means that the random independent
model is memoryless. In the ’Up’ and ’Down’ terminology:
the behavior of the system is the same in the two states.

We can get a random independent model from the Gilbert-
Elliott in two ways: the simpler one is when a = b. This means
that the probability of an available sample is equal in the two
states, thus from outside the two states are indistinguishable.
The other possibility is when p+ q = 1, which means that the
next state is independent from the current one. It can be shown
using the stationary distribution of the underlying Markov-
chain.

IV. TIME DOMAIN AND STATISTICAL PROPERTIES

In this section the time domain properties defined in section
II are given for the Gilbert-Elliott model family.

A. Properties of the Gilbert-Elliott Model

1) Data Availability and Data Loss Rates: To give the data
availability rates, we need the π stationary distribution of the
underlying Markov-chain, which is

π =
[
πA πB

]
=
[ q
p+q

p
p+q

]
(6)



Combining with the probabilities of available samples in both
states, we can get the data availability rates:

µ = aπA + bπB =
aq + bp

p+ q
γ = cπA + dπB =

cq + dp

p+ q
(7)

2) Reliability Functions: The reliability function takes the
following form:

R(L)=
aq
[
λ2λ

L−1
1 −λ1λL−12 +

(
λL−12 −λL−11

)
(ra+pb)

]
(p+ q) (λ2 − λ1)

+

+
bp
[
λ2λ

L−1
1 −λ1λL−12 +

(
λL−12 −λL−11

)
(qa+sb)

]
(p+ q) (λ2 − λ1)

(8)

λ1,2 =
ra+ sb±

√
[ra+ sb]

2 − 4aby

2
(9)

where y = 1−p−q. For the derivation of the reliability func-
tion see appendix A. Due to the symmetry of the model, the
complementary reliability function can be expressed from the
reliability function, with the a 7→ c and b 7→ d substitutions.

3) Average Length of Avavilable and Lost Sequences: The
average length of available sequences is

EN1 =
aq + bp− ab (p+ q) y

(aq + bp) (1− (ar + bs) + aby)
(10)

For the derivation of the average length of available sequences
see appendix B. The average length of lost sequences can be
expressed from the previous equation using the a 7→ c and
b 7→ d substitutions.

B. Properties of Simpler Models

The properties of the simpler models generally can be
derived from the properties of the Gilbert-Elliott model using
appropriate substitutions. For example, the reliability function
of the Gilbert model can be expressed from (8) with a = 1.

Assuming geometric probability distribution of the data
loss, much simpler equations can be derived. In the following
expressions, indices G, CG, M and RI indicate the Gilbert,
complementary Gilbert, Markov and the random independent
model’s parameters, respectively.

1) Gilbert Model:

R′G (L) = γG (sd)
L−1

EN0,G = 1/ (1− sd) (11)

2) Complementary Gilbert Model:

RCG (L) = µCG (ra)
L−1

EN1,CG = 1/ (1− ra) (12)

3) Two-state Markov Model:

RM (L) = µMr
L−1 R′M (L) = γMs

L−1 (13)

EN0,M = 1/q EN1,M = 1/p (14)

4) Random Independent Model:

RRI (L) = µLRI R′RI (L) = γLRI (15)

EN0,RI = 1/µRI EN1,RI = 1/γRI (16)

V. DESCRIPTION IN FREQUENCY DOMAIN

This section presents the derivation of the power spectral
density of the Gilbert-Elliott model.

A. Derivation of the Spectrum of the Gilbert-Elliott Model

The derivation is based on the spectrum of Markov chain
driven signals [5]. Let Xn be a discrete time Markov chain
with transitions occurring every T seconds. A zi(t) waveform
is assigned to every state of the Markov chain. The z (t)
Markov chain driven signal is the following:

z (t) =

∞∑
n=0

zXn (t− nT ) (17)

Firstly, we need to convert the Gilbert-Elliott model to an
equivalent Markov chain. The states will be A1, A0, B1, B0
with e.g., A0 meaning getting a zero output from state A. The
P4S transition matrix of this Markov chain is

P4S =


ar cr bp dp
ar cr bp dp
aq cq bs ds
aq cq bs ds

 (18)

A rectangular impulse with amplitude 1 and length T is
assigned to the states A1 and B1. The waveform for the other
two states is the constant zero. According to [5] the φ (f)
power spectral density of the Gilbert-Elliott model is

φ (f) = T sinc2 (fT ) ·

·

[
µγ + 2

pq (a−b)2

(p+q)
2

y(cosx−y)
|1−ye−jx|2

+µ2
∞∑

n=−∞
δ (fT−n)

]
(19)

where x = 2πfT . According to [1], the S (fk) spectrum in
discrete time can be expressed as

S (fk) = GH (fk) + µ2δ (fk) (20)

where fk = k
N is the relative frequency, k = 0 . . . N−1, N is

the DFT size, G is a scale factor, and H (fk) gives the shape of
the spectrum. Equation (19) gives the spectrum of the indicator
function restored with a zero order hold. T sinc2 (fT ) comes
from the ZOH, and in the brackets we can find the shape of
the spectrum:

H (fk) = µγ + 2
pq (a− b)2

(p+ q)
2

y (cosx− y)
|1− ye−jx|2

(21)

The scale factor G is [1]:

G =
µ (1− µ)∑N−1
k=0 H (fk)

=
µγ

N
(
µγ + 2pq(a−b)

2

(p+q)2
yN

1−yN

) (22)

Putting together, the spectrum of the Gilbert-Elliott model is

S (fk) =
µγ

N

µγ + 2pq(a−b)
2

(p+q)2
y(cos x−y)
|1−ye−jx|2

µγ + 2pq(a−b)
2

(p+q)2
yN

1−yN
+ µ2δ (fk) (23)



B. Discussion

The shape of the spectrum is determined by y. When y ≈
1, the spectrum is lowpass. y ≈ 0 means a nearly uniform
spectrum, y ≈ −1 means a highpass shape.

Furthermore, a = b also results in a uniform spectrum. The
smaller the absolute difference between a and b, the flatter the
spectrum is. Figure 2 illustrates the spectrum shapes.

The blue continuous line shows the spectrum when the
transition probabilities are small (y ≈ 1) and the output prob-
abilities strongly differ. This results in a lowpass spectrum.
Green continuous line is also a lowpass shape, however this
is almost entirely flat. This flatness is caused by the only
slightly different output probabilities. Blue dashed line is a
flat spectrum. Although the output probabilities are different,
y = 0 thus a random independent data loss occurs, which
means a flat spectrum. Green dashed line shows the spectrum
when the transition probabilities are high (y ≈ −1). This with
the different output probabilities result in a highpass spectrum.
It is worth noting that the DC component contains a unit
impulse proportional to the squared data availability rate.

Fig. 2: Examples for the spectrum of the Gilbert-Elliott model

C. Spectra of the Simpler Models

The spectra of the simpler models can be derived from the
spectrum of the Gilbert-Elliott model using the conditions to
derive said model. For example, we get the spectrum of the
Gilbert model from (23) when a = 1.

1) Gilbert Model:

SG (fk) = S (fk) |a=1 =

=
µGγG
N

µGγG + 2pq(1−b)
2

(p+q)2
y(cos x−y)
|1−ye−jx|2

µGγG + 2pq(1−b)
2

(p+q)2
yN

1−yN
+ µ2

Gδ (fk)
(24)

2) Complementary Gilbert Model:

SCG (fk) = S (fk) |b=0 =

=
µCGγCG

N

µCGγCG + 2 pqa2

(p+q)2
y(cos x−y)
|1−ye−jx|2

µCGγCG + 2 pqa2

(p+q)2
yN

1−yN
+ µ2

CGδ (fk)

(25)

3) Two-state Markov Model:

SM (fk) = S (fk) |a=1,b=0 =

=
µMγM
N

1− yN

1 + yN
1− y2

|1− ye−jx|2
+ µ2

Mδ (fk)
(26)

4) Random Independent Model:

SRI (fk) = S (fk) |a=b = µRIγRI/N + µ2
RIδ (fk) (27)

VI. IDENTIFICATION

Identification of a data loss process is finding the best fit data
loss model and its parameters. As the Gilbert-Elliott model
is a hidden Markov model, the Baum-Welch algorithm [6],
Viterbi path counting [7] or other procedures can be used for
identification.

These methods are applicable for the simpler models too,
however, they require higher computational capacity or lack
in accuracy. We designed a method for identifying the simpler
models of the Gilbert-Elliott model family. This method will
be introduced in this section.

A. Spectral Parameters

We can define three spectral parameters using the following
substitutions:

p+ q 7→ X pq (a− b)2 7→ Y aq + bp 7→ Z (28)

Applying them we can write (23) as

S (fk)=
Z
X

(
1− Z

X

)
N

Z
X

(
1− Z

X

)
+2 Y

X2

(1−X)[cos 2πfk−(1−X)]

|1−(1−X)e−j2πfk |2

Z
X

(
1− Z

X

)
+2 Y

X2

(1−X)N

1−(1−X)N

+

+(Z/X)
2
δ (fk)

(29)

Notice that while there are 4 model parameters, there are only
3 spectral parameters. This makes it impossible to identify
the Gilbert-Elliott model from its spectrum. However, as
the simpler models have at most 3 parameters, they can be
identified using the spectral parameters. We can calculate the
spectral parameters from the spectrum as

X =
(
2− 2

√
H − 1

)
/ (2−H) Z = µX (30)

Y =
(S′ (0)− S′ (1/2))Z (X − Z) (2−X)X

2 (1−X) [X (S′ (0)− S′ (1/2)) + 2S′ (1/2)]
(31)

H=
S′ (0)− S′ (1/2)
S′ (1/4)− S′ (1/2)

S′ (fk)=S (fk)− µ2δ (fk) (32)

B. Calculation of Simpler Model Parameters

The parameters of the Gilbert, complementary Gilbert and
Markov models can be expressed from the spectral param-
eters using the definition of the spectral parameters and the
conditions used to derive the model.



1) Gilbert Model: We get the XG, YG and ZG spectral
parameters from (28) with a = 1. The model parameters:

p =
XG (XG − ZG)2

(XG − ZG)2 + YG
q =

XGYG

(XG − ZG)2 + YG

b =
ZG (XG − ZG)− YG
XG (XG − ZG)

(33)

2) Complementary Gilbert Model: We get the XCG, YCG
and ZCG spectral parameters from (28) with b = 0. The model
parameters:

p =
XCGYCG
Z2
CG+YCG

q =
Z2
CGXCG

Z2
CG+YCG

a =
Z2
CG+YCG
ZCGYCG

(34)

3) Markov Model: We get the XM , YM and ZM spectral
parameters from (28) with a = 1 and b = 0. The model
parameters:

p = XM − ZM q = ZM (35)

C. The Proposed Identification Method

The proposed method is the extension of the procedure
described in [2]. The method is the following:

1) Handling of the block-based data loss, obtaining of block
indicator function.

2) Executing the procedure in [2]: spectral estimation,
IDFT, auto-regressive model fitting.

3) If the third and further coefficients are sufficiently small,
two-state Markov model or random independent model
describes the process. This can be decided using the
second coefficient.

4) Attempt of identification of the Gilbert model using the
spectral parameters.

5) If the estimated parameters are outside of the range of
parameters, attempt of identification of the complemen-
tary Gilbert model using the spectral parameters.

6) If the estimated parameters are outside of the range of
parameters, other model describes the data loss.

Block-based data loss means that the samples are bundled into
fixed size blocks and these blocks are either fully available or
fully lost. In this case, it is sufficient to examine the availability
of a single sample from each block.

Figure 3 illustrates the identification method. The boxes
filled by yellow handle the block-based data loss, red boxes
contain the procedure of [2] and the blue boxes show the ad-
dition to identify Gilbert and complementary Gilbert models.
The method requires relatively low computational capacity and
memory.

VII. MEASUREMENTS

The theoretical investigations are completed by measure-
ments, e.g., by measurement of packet loss over UDP connec-
tion and sound transmission over Skype. The UDP measure-
ments will be introduced in this section.

UDP is a well-known, not reliable communication protocol
between computers. In some real-time applications there is not
enough time for the retransmission of lost packets. In other

applications, the resource cost of reliable communication is
too high. Thus, UDP protocol is worth examining.

In the measurement setup, the sender computer was sending
packets to the receiving one. The receiving computer deter-
mined which packets were lost. In some measurements, the
computers were in a LAN, in others, they were physically
about 250 km apart. The computers were connected via
Ethernet, VPN (Hamachi) or the shared internet connection
of a mobile phone. In some measurements, as parallel traffic
a large file was uploaded to a cloud storage. The size of the
packets, the number of simultaneously sent packets and the
time between the packets were also varied.

The measurements lasted 10 minutes long each. After the
measurements, the indicator function were constructed as the
availability of the received packets. The indicator function
have been processed by the method described in section VI.
The identification results are displayed in table I.

TABLE I: Identification results

Model Number of occurrences
No data loss 499
Negligible data loss 238
Random independent 18
Two-state Markov 46
Gilbert 10
Other model 41
Total 852

Negligible data loss means that there were too few samples
or too few lost sequences to perform an accurate identifica-
tion. The cases that generated the other models were mostly
deterministic losses caused by the overloading of the VPN
software.

VIII. CONCLUSION

In this paper, not reliable communication was analyzed from
a signal processing point of view. This supports the usage of
radio channel or Internet connection for real-time transmission
of measurement data or signals. We analyzed the data loss as
a signal distorting phenomenon.

The Gilbert-Elliott data loss model family was presented.
These models were the Gilbert-Elliott, Gilbert, complementary
Gilbert, two-state Markov and random independent data loss.
They were examined in time and frequency domain. We
derived the data loss and availability rates, the reliability
functions and the average sequence lengths for the models. The
power spectral density of the models were also derived. We
proposed an identification method for the simpler models in
the family. Finally, some measurement results were presented.
In further research the identification method can be refined
or extended to include other models. The time or frequency
domain properties of other data loss models can also be
examined.
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APPENDIX

A. Reliability Function

For the derivation of the reliability function we introduce
the probability of being in the A (B) state after k available
samples:

Ak = Pr (∀i ∈ {1, . . . , L} : Ki = 1 ∧Xk = A) (36)

Bk = Pr (∀i ∈ {1, . . . , L} : Ki = 1 ∧Xk = B) (37)

where Xk is the state in the kth time instant. From the
stationary distribution, for k = 1 these values are

A1 =
aq

p+ q
B1 =

bp

p+ q
(38)

For Ak and Bk the following recursive equation holds:[
Ak+1

Bk+1

]
=

[
ra qa
pb sb

] [
Ak
Bk

]
= P1

[
Ak
Bk

]
(39)

with the starting probabilities:[
Ak
Bk

]
= Pk−11

[
A1

B1

]
(40)

For the expression of these probabilities we need the λ1,2
eigenvalues of P1, which are

λ1,2 =
ra+ sb±

√
[ra+ sb]

2 − 4aby

2
(41)

where y = 1 − p − q. Because the eigenvalues are different,
according to [8] and [9] we can write Pk1 as

Pk1 =

(
λ2λ

k
1 − λ1λk2

)
I +

(
λk2 − λk1

)
P1

λ2 − λ1
(42)

Using this result we can write the introduced probabilities as

AL=
aq
[
λ2λ

L−1
1 −λ1λL−12 +

(
λL−12 −λL−11

)
(ra+pb)

]
(p+ q) (λ2 − λ1)

(43)

BL=
bp
[
λ2λ

L−1
1 −λ1λL−12 +

(
λL−12 −λL−11

)
(qa+sb)

]
(p+ q) (λ2 − λ1)

(44)

The reliability function is the sum of these two probabilities:
R (L) = AL +BL.

B. Average Available Sequence Length
Let A and B the lengths of the available sequences starting

from A and B states. According to the law of total expectation
the next equations hold:

A = 1− ar − bp+ ar (1 +A) + bp (1 +B) (45)

B = 1− bs− aq + bs (1 +B) + aq (1 +A) (46)

1−ar−bp and 1−bs−aq are the probabilities of immediately
terminating the available sequences. The other terms are the
probabilities of continuing the sequence in the same or in the
other state than the current one. From these equations we can
express A and B:

A =
1− by

1− (ar + bs) + aby
B =

1− ay
1− (ar + bs) + aby

(47)

With another application of the law of total expectation, the
average length of available sequences is

EN1 =

(
aq

p+ q
A+

bp

p+ q
B

)
1

µ
=

aq + bp− ab (p+ q) y

(aq + bp) (1− (ar + bs) + aby)

(48)
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