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Abstract— Sine wave fitting is usually done with least squares minimization in the time domain. This can be slow when the number of 

samples is large (105-106 or more). It is shown that the fit can be done more effectively in the frequency domain, using the Fourier 

transform of windowed data. This paper shows that using a Blackman-Harris window, it is enough to process just a few samples around 

the sine peak. To obtain accurate results in ADC characterization the input signal has to meet strict conditions: coherent sampling, 

uniform distribution of phases. It will be shown that the precision of the estimator is enough to determine if the signal meets the two 

conditions above and sometimes it provides even better results than the original time domain least squares estimator. 
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I.  INTRODUCTION 

Possibly accurate characterization of analog-to-digital converters (ADC) is important in practice. A widely used method for 

characterizing ADC’s is the so-called histogram test [1]. In this method first the ADC is excited with a predefined input (e.g. sine 

wave), then the integral nonlinearity (INL) and differential nonlinearity (DNL) can be identified from the histogram (the number of 

samples in each of the code bins). Obviously, the parameters of the applied sine wave and the sampling frequency are important for 

proper calculations. The IEEE standard for ADC testing [2] defines that sampling should be coherent (a number of whole periods 

need to be measured) and the number of periods has to be relative prime to the number of samples, in order to achieve the most 

accurate results (uniform distribution of phase values). However, the satisfaction of these conditions can only be checked from the 

measured signal, since both the frequencies of the signal generator and of the sampling have limited precision. With the increase of 

the number of samples to obtain more precise measurement of the characteristics of the device under test, even a small deviation 

from coherence in the sampling may cause significant errors in the characterization with false INL and DNL values, and also causes 

a significant increase in the time required to execute the least-squares four parameter sine wave fit algorithm proposed by the IEEE 

standard. In this paper an increased-speed algorithm will be presented with the extra capability to decide from the samples if the test 

signal is suitable to test the ADC or not, this is presented in Section III. In Section IV this estimator is compared to the time domain 

least squares estimator proposed by the IEEE standard, both from the point of view of statistical properties and speed. Finally, in 

Section V it is shown that the precision of the estimator is enough to decide the suitability of the measured signal for the histogram 

test. 

II. BACKGROUND AND NOTATION 

A. Standards for choosing signal and sampling frequencies 

In our histogram test the ADC is excited with a sine wave input. The form of the input can be represented in the so-called 

trigonometric form: 
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where R, f, φ and C are the amplitude, frequency, initial phase and dc component of the signal, respectively. Let H[i] be the total 

number of samples received in the code bin i, and the cumulative histogram values be 
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If the amplitude and the dc offset of the sine wave are known, the nth transition level can be estimated as 

  ̂[ ]         ( 
  [   ]

 
)  

For more details about the histogram test, see [1], [2]. 

B. Standards for choosing signal and sampling frequencies 

The sine wave input is optimal if the sampling is coherent, so a number of full periods are sampled, and all the samples 

represent different phases. If the sampling frequency is fs, the number of samples is N, than the signal frequency fx is optimal if 

    (
 

 
)      

where J is an integer relatively prime to N. In this case the sampling is coherent and the phase difference between arbitrary two 

adjacent samples is 2π/N, which is the ideal phase distance. In addition, this also means that the phases of the samples are uniformly 

distributed between –π and π. However, such a condition can never be perfectly met since fx and fs can never be set (or even known) 

exactly. To take the possible error in the frequency ratio into account the following model is used [1]: 


  

  
 

 

 
     

where Δρ is the relative frequency deviation. In [1] it is shown that none of the sampling points deviates from their ideal phase 

position by more than ±1/4 part of the ideal phase distance if 
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In [3], Carbone and Chiorboli found this too conservative, and showed that 
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is enough to keep the distribution of the samples close to uniform. 

Based on [1], [3], the effect of Δρ on the variance of the transition levels can also be determined. In [3] the relation between Δρ 

and Var{Hc[k]} is defined where the latter is the variance of the kth element of the cumulative histogram. If this is known, the 

variance of the kth transition level can be written as [1] 
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Based on the previous formulas, if the error (e.g. worst case error) of a frequency estimator is known (the satisfaction of the above 

two conditions depends on the sine wave’s relative frequency to the sampling frequency), one can determine its effect on the result 

of the histogram test. Later we will use the formulas to answer if the precision of the sine wave estimator is enough to ensure 

accurate results for the histogram test or not. 

Above conditions show the importance of precise frequency estimation to guarantee accurate results in ADC characterization 

using the histogram test.  

The standard also recommends that the measured signal should contain at least five periods (to ensure the convergence of the 

sine fitting algorithm). 

C. Estimation of sine parameters 

The previous chapter shows the way how to ensure the best test results. Condition (7) needs to be checked which requires 

accurate knowledge of the frequency of the input sine wave. Generally, its value is unknown with the required accuracy, so it has to 

be estimated. The proposed method in the standard terminology for ADC testing is the four parameters least squares fit on the 

measured data, which is an iterative Newton-Gauss algorithm since the model of the input is nonlinear in the frequency. The 

properties of this algorithm have been analyzed in details in several earlier papers.  

In [4] Deyst studied the effect of harmonic distortion and noise on the frequency estimation of the sine wave using the four 

parameters least squares fit. It was shown that if the signal contains a harmonic component the maximum error on the estimation of 

the number of periods in the measured data is bounded by 

    |  |  
   

       
  

  
 

for p≥2, where Δp, p, h, Ah, Af are the error of the estimation of the number of periods in the signal, the number of periods in the 

signal, the order of the harmonic distortion, the amplitude of the harmonic component and the amplitude of the sine wave, 

respectively. It was also shown (with measurements) that for sine waves corrupted by noise the variance of the frequency estimator 

normalized by the variance of the noise is the function of the number of periods and the fundamental phase. 

Handel in [5] studied the error of the frequency estimator of the four parameters sine fit algorithm when a noisy sine wave is 

quantized and found that the variance of the frequency estimation highly increases for signals which contain a small number of 

periods, and recommends a one-dimensional grid search for the frequency instead of the nonlinear fit algorithm.  

Due to the limitations of the least squares fit for a small number of periods (e.g. less than one) a few other algorithms were 

developed. In [6] Max, in [7] Fonseca, Ramos and Serra present a new algorithm which can handle the situation of very small 

number of samples. 
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A further factor on which the precision of the frequency estimator depends is the starting value of the frequency. Generally the 

initial value of the frequency is estimated with interpolated FFT (IpFFT). In [21] Giaquinto and Trotta shows a method where the 

IpFFT is done on the DFT of the Hanning-windowed input sine wave, using the highest peak and its two neighbours. Bilau, 

Megyeri, Sárhegyi, Márkus and Kollár in [8] suggest a different method (based on [13]) which provides the analytic solution for the 

rectangular window. The main advantage of the IpFFT methods is that they provide a better estimate than counting zero crossings 

in the sine wave or using the highest point of the DFT for initial guess, thus the quality of the estimator is increased. 

The presence of nonlinear distortions, timebase errors and pathological bins (overdrive) are also likely to have a harmful effect 

on the estimation of the parameters of the sine wave. For methods which can handle such problems, see [9], [10].  

The larger the number of samples is, the better the test results of the histogram test are. However, the computational burden for 

the four-parameter sine wave fit strongly depends on the number of samples since the whole sample record is used in every 

iteration of the Newton-Gauss algorithm to obtain a better estimation of the parameters. Alternative methods for frequency 

estimation of the sine wave were developed which can speed up the estimation process, such as [22] where Hejn, Morling 

introduces a method based on the Householder orthogonalization, [11] where Chen and Xue suggest Gram-Schmidt 

orthogonalization to speed up the solving of the matrix equations, or [12] where Zhang, Xinmin, Xiao and Jinwei present a total 

least squares method which can identify the parameters of the sine wave much faster than the original least squares algorithm.  

Previous methods used the time-domain samples of the sine wave. In [20] Holm recommends an algorithm which fits Gaussian 

function to the peak in the DFT and its two neighbors, and shows that this method provides an estimator which is approximately 

Maximum Likelihood. In the next chapter an alternative, also frequency domain method will be introduced which provides the 

parameters of the sine wave much faster than the original least squares fit but with similar (sometimes increased) precision. 

III. FOUR-PARAMETER SINE WAVE ESTIMATION IN THE FREQUENCY DOMAIN 

A. Implementation 

Since the original four parameter least squares method in the time domain (TDLS) can be very time consuming for large 

number of samples, the goal was to create an estimator which identifies the parameters of the sine wave with less computational 

burden.  For this purpose, the frequency domain form of the sine wave is used instead of the time domain form during the 

estimation. The discrete Fourier transform (DFT) of an N length sine has a -13 dB side lobe level because it is the convolution 

result of the DFT of a rectangular window and of the DFT of an infinitely long sine wave. This is bad since then most samples are 

needed for a proper fit. To compress the data in the frequency domain into a few points the 3-term Blackman-Harris window is 

used which has a side lobe level of 71.5 dB ([15], [16]). Then, the very small side lobe samples need not to be fitted, only the main 

lobe samples. The time domain expression of the window function is the following based on [14], [15]: 

               (
   

 
)       (

   

 
)   

where a0, a1, a2 are the coefficients of the 3-term window and their exact values are [15]: 

                                             (12)

   To use the formula of a sine wave windowed with the 3-term Blackman-Harris window first the expression of the non-
windowed N length sine wave is needed in the frequency domain: 
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where 

                        (16) 

and the expression of the sine wave in the time domain is 

           (
    

 
  )  (17)

and R, f, ϕ is the amplitude, frequency and initial phase of the sine wave, respectively. During the algorithm the following formulas 

are used to avoid large arguments in the input of the trigonometric functions: 
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where fi is the integer part and ff is the fractional part of f. One should note that the last terms of the expressions (19) and (20) which 

has the general form 


        

       
  

may cause serious roundoff errors when ω→0 and results in NaN (not a number) instead of N when ω=0. So in the implementation 

the fraction was replaced by a 6th order polynomial to avoid such errors. 

If the measured signal contains also a DC component in addition to the sine wave, its mathematical model becomes the 

following: 

           (
    

 
  )     

where C is the level of the DC component. This means that an Xdc part has to be added to the Xsin part in the frequency domain to 

represent this signal correctly: 
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where            for                  and          otherwise. If the signal x(t) is windowed with the 

samples of the 3-term Blackman-Harris window w(t) (11), the multiplication in the time domain becomes a convolution in the 

frequency domain, so the kth sample of the sine wave in the frequency domain is 
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The (22), (23) expressions above are linear in the amplitude, initial phase (more precisely in the terms A, B related to R and the 

initial phase) and the DC component, and nonlinear in the frequency. This means that the estimation has to be done using an 

iterative numerical method. The Newton-Gauss method was used to perform this operation on the cost function 

   
 

 
     

where e is the vector of residuals. The definition of the Newton-Gauss step is 

                    

where p, J, 𝛴 is the vector of parameters, the Jacobian matrix (see Appendix A) and the covariance matrix, respectively. 

Since the (24) model is nonlinear in parameter f, at the beginning of the Newton-Gauss algorithm it is important use an 

appropriate initial guess for the frequency, otherwise the minimization of the cost function may got stuck in a local stationary point. 

For this purpose, IpFFT (the analytic solution for the rectangular window) is used (described in [8],[13]). 

The increase of speed is achieved as follows. The Fourier transform of a continuous sine wave with a DC component consists of 

Dirac delta functions at the sine frequency (-f and f) and at the DC frequency. If the continuous signal is sampled and windowed 

with the 3-term Blackman-Harris window, its DFT becomes periodic with fs and the Dirac delta functions are convolved with the 

DFT of the window function. Due to the 71.5 dB side lobe level, the information about the sine wave is compressed into a few 

points in the frequency domain (if no window function was used, the Dirac delta functions would be convolved with the discrete 

sinc function which has a side lobe of 13 dB, thus it is much wider). When the FFT is performed on the windowed samples, a few 

points are collected from the result around the DC and the sine wave’s frequency (the width of the 3-term Blackman-Harris window 

is 5 bins in the frequency domain). If the frequency of the sine wave is closest to the kth bin, then during the fit the following 8 

samples are used:  

 [                            ] (30)
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where X(0), X(1), X(2) represent the DC part of the input signal and X(k-2)…X(k+2) are the points of the sine wave. The use of the 

points around N-k (where the second peak of the sine wave appears) is unnecessary since these are the complex conjugates of the 

points around k, thus they do not provide new information about the parameters of the input sine wave
1
 (and X(-1) and X(-2) are the 

complex conjugates of X(1) and X(2), so the DC part can be represented with 3 bins instead of 5). The number of the used samples 

is constant and independent from the length of the measured record. These points represent the sine wave and contain enough 

information to identify the parameters of the input. The original TDLS estimator uses every sample of the sine in every iteration of 

the Newton-Gauss algorithm. In our alternative method, only the time required to perform the FFT depends on the length of the 

input. As it will be shown later, from the computational burden’s point of view, it is worth to perform the FFT and then do the fit on 

a few samples instead of using every time domain sample during the calculation of the parameters. 

B. Properties 

In this subsection the statistical properties of the estimator will be discussed from a theoretical approach. Since there are many 

possible sources of noise on the measured signal (random noise, harmonic distortion, quantization, etc.) the distribution of the noise 

on the frequency domain samples is hard to determine. For this reason, we use Jennrich’s theorem [19] on nonlinear least squares 

estimators which states that these are asymptotically normally distributed. However, the mean value and variance of each normally 

distributed estimator ( ̂  ̂  ̂  ̂) has to be determined experimentally, this is done in the next section. 

IV. COMPARISON OF THE NEW AND THE ORIGINAL ALGORITHM 

A. Comparison of precision and accuracy 

In this subsection the statistical properties of the estimation errors of all the algorithms are compared. We also want to justify 

why the 3-term Blackman-Harris window is used in the estimation algorithm instead of Blackman-Harris windows with more 

terms. For this purpose, algorithms with 3-term, 4-term and 5-term Blackman-Harris windows were compared to the TDLS 

estimator. In this section, based on [18], we use the term accuracy as the quantification of the bias of the estimator, and similarly, 

precision is the quantification of the standard deviation of the estimator. 

In the following tests all the estimators were executed on the same input record, and then the error of the frequency estimation 

was analyzed. Although both estimators provide every parameter about the sine wave, we study only the frequency because our 

goal is to decide from the measurement if the sampling is coherent and the phases are distributed uniformly (properties of the other 

estimated parameters are studied in [17]). 

To simulate real-like circumstances in the examinations, a nonideal 14 bit quantizer was used to digitize the input record. Fig. 1 

shows the integral and differential nonlinearity of the converter. To model the imperfection of the signal generator, independent 

Gaussian noise was added to the samples with zero mean and LSB/6 standard deviation (this assures the additive random noise is 

less than a half LSB with 99.7% probability). A harmonic component of the input was also added with the double value of the 

signal frequency and LSB/2 amplitude, so this way the input signal contained a noise which was only seldom larger than LSB. The 

noisy input was quantized with the nonideal converter and then the estimation algorithms were executed to identify the parameters. 

In the tests we took into account that every estimator’s behavior change on various frequencies and this was also analyzed. The 

                                                           
1
 If the roundoff errors are not negligible compared to other error sources, it is worth to include the complex conjugateg into the 

measurement points. 
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amplitude and the dc offset of the input signal were constants with R=FS where FS is the full scale range of the AD converter, and 

C=0 (see (1)). 

 

Figure 1.  INL and DNL characteristics of the 14 bit quantizer 

The initial phase and the frequency were random variables, where φ was uniformly distributed between –π and π. In the following 

tables the frequency of the input signal is given by the mean value of the number of periods it contained. Generally, if the number 

of periods is given as M, it means that the number of periods in the test case was a uniformly distributed random variable in the  

[M-0.05, M+0.05] interval. This is modeling that the user who want to perform a histogram test is trying to meet the conditions 

defined by the IEEE standard but due to the error in the sampling frequency and signal frequency he will not meet them exactly 

(but will be close). The initial phase of the harmonic component is also a uniformly distributed random variable between –π and π, 

and the record length in every case is N=2
18

. On every frequency (every given M value) 750 tests were run. The minimum number 

of periods studied is 5 (based on the standard), the greatest is 78125 (this means very few, only 3.35 samples in a period). One 

should note that the frequency estimator estimates the value of N∙fx/fs, so it is a value without dimension (practically the number of 

periods the signal contained). 
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TABLE I.  PRECISION OF ESTIMATORS 

 3-term BH window 4-term BH window 5-term BH window Time-domain LS 
M σ3 (×10-8) σ4 (×10-8) σ5 (×10-8) σt (×10-8) 

5 13.2 288.6 250.5 282.3 

6 9.53 38.7 363.9 241.3 

7 9.75 7.52 166.3 197.4 

8 9.63 8.27 12.6 171.1 

9 10.38 9.49 6.70 158.1 

10 9.58 9.12 7.59 142.7 

11 10.15 9.85 9.07 129.8 

12 10.11 9.78 9.46 120.07 

13 9.79 9.48 9.26 110.35 

14 9.96 9.46 9.38 100.64 

15 9.69 9.47 9.25 93.8 

25 10.05 9.91 9.49 57.05 

75 10.00 9.57 9.41 19.09 

125 10.58 10.20 9.97 12.94 

625 10.14 9.79 9.61 6.50 

3125 10.29 9.97 9.68 6.47 

15625 11.11 10.61 10.21 6.56 

78125 10.01 9.73 9.56 6.37 

 

TABLE II.  ACCURACY OF ESTIMATORS 

 3-term BH window 4-term BH window 5-term BH window Time-domain LS 
M μ3 (×10-8) μ4 (×10-8) μ5 (×10-8) μt (×10-8) 

5 2.29 -64.63 -59.72 97.26 

6 -3.11 -8.40 42.11 108.44 

7 -0.34 3.00 -20.95 91.91 

8 7.07 3.45 -0.86 158.03 

9 1.20 1.02 0.32 58.38 

10 -9.15 -5.42 -2.31 16.19 

11 -0.07 -0.11 1.47 3.97 

12 3.36 2.96 2.90 19.63 

13 -4.14 -1.73 -2.73 -9.56 

14 5.18 5.37 4.04 -5.72 

15 -0.42 2.29 1.81 8.93 

25 -0.74 -3.51 -3.15 33.33 

75 0.16 1.42 1.81 12.48 

125 -2.27 -0.68 -1.17 3.61 

625 -0.35 2.01 1.89 -2.81 

3125 -0.11 1.83 -0.05 2.68 

15625 -6.14 -4.41 -5.53 -0.52 

78125 -0.97 0.95 0.93 0.86 

 

First we compared the precision of the estimators. Table II. shows the standard deviation of each on different frequencies. In the 

case of the 3-term window, the standard deviation oscillates around 10∙10
-8

 with small amplitude, so it gives balanced performance 

on every studied frequency. The estimators with 4-term and 5-term windows reach their “stationary value” when the number of 

measured periods become greater than seven. We can see that σ3>σ4>σ5 when M>6, where σ3, σ4, σ5 are the standard deviations of 

the estimation errors of the frequency domain least squares (FDLS) estimators with 3-term, 4-term and 5-term Blackman-Harris 

window, respectively. The explanation for the less variance is that the 4-term and 5-term windows are wider (in the 4-term case the 

fit is done on 4+7 points (bins around the DC and the sine, see (12)) and in the 5-term case 5+9 points are used), so more 

measurement points provide more information. The original, TDLS estimator provides high standard deviation (σt) on low 

frequencies. As the frequency increases σt decreases and when it reaches its “stationary value”, it provides the estimation with the 

best precision. Behave of σ4 and σ5 are similar, on small number of periods their value are both higher than σ3. To understand this 
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behavior of the estimators we need the frequency domain approach. In the frequency domain, the 3-term Blackman-Harris window 

is the narrowest (5 points), and the DFT of the “unwindowed” (actually it is the DFT of the sampled rectangular window, the 

discrete sinc function) is the widest. These windows appear also on the frequency of the harmonic component, and on low 

frequencies the window of the harmonic component disturbs the window of the sine wave, it can be considered as a noise on the 

points of the window of the sine, and this results in estimation with higher variance. As the frequency increases and the signal 

contains more and more periods, the distance between the window on the signal’s frequency and the window on the frequency of 

the harmonic component increases, and they will not contain common bins in the frequency domain. The discrete sinc is the widest 

window, so its variance will decrease at the very latest. The value of σ4 and σ5 decreases later then the value of σ3 because the 4-

term and 5-term Blackman-Harris windows are wider than the 3-term. Table II. also shows that the 3-term window estimator can 

estimate the frequency with the least variance when the input signal contains 5 periods, the minimum number recommended by the 

standard.  

Next, the accuracy of the frequency estimators is studied. We describe this with the mean value of the estimation error (μ). 

Table III. shows the results on different frequencies. The FDLS estimator which uses the 3-term Blackman-Harris window provides 

balanced results again. The value of μ4 and μ5 decreases when the number of periods is greater than seven. However, μt decreases 

only on greater number of periods when the effect of the overlap of the rectangular windows on the sine and on the harmonic 

component decrease. These results also confirm that on small frequencies it is worth to use the FDLS estimator. 

So, the main reason for choosing the 3-term window for the fit algorithm is that it provides balanced performance equally on 

high and low frequencies. When its standard deviation and mean value are worse compared to other estimators, the difference is not 

significant (naturally, from the aspect of our goal). However, it is an interesting result that the original time domain estimator 

provides better results only when the number of periods is greater than 125. 

The behavior of the frequency estimator of the TDLS method coincides with the results published in [4], [5]. Namely, in [4] 

Deyst with the (10) formula predicts that as the number of periods in the measurement increases (so distance between the windows 

on the frequency of the sine and the frequency of the harmonic component increases), the maximum error of the frequency 

estimator decreases. Furthermore, Handel in [5] showed that the standard deviation of the frequency estimator is higher for less 

number of periods. 

B. Comparison of speed 

In this subsection the required total computational times for the FDLS estimator with the 3-term Blackman-Harris window 

(time requirement of the FFT is included) and the time domain estimator are compared. Both algorithms were executed on a 

computer with Intel® Core™ i3 530 2.93 GHz processor and 4 GB system memory. The algorithms were implemented in Matlab. 

Fig. 2 shows the implementation of each algorithm. 



Paper ID: 1569536891 

 

 

Figure 2.  Algorithm of the frequency domain and the time domain estimator 

The number of iterations was chosen to 10, this was enough to ensure convergence in the studied cases. Table IV shows the 

required computation times.  

TABLE III.  COMPARISON OF REQUIRED COMPUTATIONAL TIME 

N 
Original 
method 

Frequency 
domain 
method 

214 0.051 s 0.025 s 

216 0.192 s 0.032 s 

218 0.778 s 0.063 s 

220 2.954 s 0.206 s 

222 46.131 s 1.078 s 

 

The reason for the significant increase of speed is that after performing the FFT the fit is done using 3+5 samples in the iterations of 

the Newton-Gauss algorithm instead of the original algorithm which uses every sample. This can be done since the 3-term 

Blackman-Harris window compresses the information about the sine wave and the dc component into two narrow bands in the 
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frequency domain. After determining approximately the frequency of the sine wave and choosing the adequate 3+5 points to 

perform the fit the other points of the FFT result are neglected. 

C. Convergence 

In this subsection the convergence of the FDLS estimator is studied in the case of frequency estimation. As it was mentioned in 

Section III, the initial guess for the frequency is determined with interpolated FFT. The analytic solution for the rectangular 

window is used (see [10], [13]) as initial guess, using the highest peak and its neighbor of the FFT of the unwindowed sine wave. 

Fig. 3 shows the logarithm of the absolute value of the frequency estimator’s step size during the iterations. 

 

Figure 3.  Change of the frequency estimator during the Gauss-Newton algorithm 

In this test 50 different cases were studied, the test environment was similar to the one used in Section IV. In every case the size of 

the first step is above 10
-6

 which proofs that the IpFFT itself does not provide an estimation of the frequency with the required 

precision. After 3 iterations the step size decreases under 10
-12

 (sometimes under 10
-18

), so the frequency estimator does not change 

significantly in the remaining iterations. 

V. EFFECT OF THE ERROR OF THE FREQUENCY ESTIMATION 

In this section the goal is to confirm that the precision of the estimator is enough to decide if the sampling is coherent and the 

distribution of phases is uniform in the measured data. This way it can be used to check the signal before the histogram test is done 

to ensure accurate results.   

As it was mentioned earlier, the error of the frequency estimator, ef is a random variable which is asymptotically normally 

distributed. Its standard deviation has been measured in many cases in the previous section.  



Paper ID: 1569536891 

 

 

Figure 4.  Standard deviations for J, J+ΔJ and J-ΔJ measured periods, respectively. 

In view of σ, we can say that 99.7% is the probability that (-3σ < ef  < 3σ). In the next examinations we will assume that the value 

of ef  is -3σ and 3σ. The frequency estimator estimates the value of N∙fx/fs, which is the number of periods in the measured signal. 

This will be denoted by J, the error of J will be denoted by ΔJ, so we will study the cases when ΔJ=-3σ or ΔJ=3σ. These cases 

model the situation when the estimator founds the signal to contain exactly J periods while in fact it contains J-ΔJ or J+ΔJ periods.  

A. Distribution of the samples 

We will use the (7) condition of Carbone and Chiorboli to decide if the samples are uniformly distributed in a record which 

contains J±ΔJ periods. The formula can be converted: 

 |  |  
 

  
 

Any ΔJ value calculated from the measured standard deviations of the frequency estimator using the 3-term Blackman-Harris 

window (see Table I.) meets the above condition. This means that it can be decided based on the estimation if the samples are 

uniformly distributed or not. 
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B. Standard deviation of transition levels 

In this subchapter the effect of a ±ΔJ error will be studied on the result of the histogram test. Using the (8) equation, we will 

determine the standard deviation of the estimation of transition levels in three cases. The fluctuations characterized by the standard 

deviation have two main sources. The first is the initial phase of the signal and the second is the error in the number of periods, 

±ΔJ. The transition levels of the ADC are estimated from the cumulative histogram which is based on the histogram of the 

measured sine wave (this shows how many code hits occurred in each bins). If the initial phase of the signal changes, some of the 

samples may occur in a neighbor code bin, which causes an essential uncertainty in the result of the histogram test. The second 

source means that we have J±ΔJ periods instead of J, which also affects the histogram because samples from the fractional period 

at the end of the sine wave (this can be either a very little part of a period or an almost full period) occur in some code bins. But if 

this effect is negligible compared to the first one (because with the maximum error of the frequency estimator the fractional period 

contains only few samples at the end of the signal, or only a few samples are missing from the end to be complete a complete 

period), we can say that the estimator’s error does not affect significantly the result of the histogram test. So, in the following tests 

the standard deviations of the histogram tests will be compared when the signal contains J, J+ΔJ and J-ΔJ periods. The tests were 

run with those values of J from Table II. where J and N were relative primes (every odd values of J). The value of ΔJ was also 

calculated from Table II., namely ΔJ=3σ. Then the standard deviation of the histogram test was estimated in the three cases (when 

the input record contained J, J+ΔJ and J-ΔJ periods). Fig. 4 shows the typical results for the standard deviations (the results were 

very similar for all tested values of J). It can be seen that there is no significant increase in the standard deviations of the result of 

the histogram tests when the record contained J+ΔJ or J-ΔJ periods instead of J. So the simulation showed that the maximum error 

with which the frequency estimator founds the signal coherent does not raise significantly the standard deviation of the estimation 

of the transition levels, thus it is a negligible error source compared to the random initial phase. 

C. Difference between the cumulative histograms 

Next the cumulative histograms were compared of measurements which contained J, J+ΔJ and J-ΔJ periods. This was done 

because the transition levels are the functions of the cumulative histogram, which is a discrete probability variable. Therefore, 

describing them with their standard deviations may be misleading because this description may hide the case when the error is 

significant but its probability is very small so it occurs rarely, but when it occurs it causes huge errors in the result.  

In these tests the initial phase of the signal was a uniformly distributed random variable between –π and π. 1000 tests were run 

with every value of J, and the cumulative histogram of the J , J+ΔJ and J-ΔJ cases were compared. After the comparison we found 

that none of the bins of the cumulative histograms in the coherent (exactly J periods) and almost coherent cases (J+ΔJ and J-ΔJ 

periods) differ by more than 1 sample (the least number of hits in the cumulative histogram is more than 10
3
, the total number of 

samples was 2
18

, so the 1 sample difference does not cause significant change in the result). 

These tests showed that using the frequency estimator the meet of both regulations defined by the IEEE standard can be decided 

based on the measured data. 

VI. CONCLUSION 

In this paper an alternative fitting method was presented which provides faster estimation of the four parameters of the sine 

wave with no significant loss in the precision. The FDLS estimator sometimes provides better result than the original TDLS 

method, recommended by the standard. The coherence and relative prime condition can be determined from the measured sine 
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wave, so a tool based on the frequency estimation method can be used to determine quickly if a measurement is appropriate to 

characterize an AD converter or not. 

APPENDIX A 

In this appendix the forms of the derivatives used in the Newton-Gauss algorithm are presented. The Jacobian matrix, J, has a 

size N×4 (N measurements, 4 parameters) and consists of the derivatives with respect to the parameters A, B, C, f: 

   [
    

  
 
    

  
 
    

  
 
    

  
]  

This is calculated using the derivatives of the expression         {     (
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With the above expressions the derivatives of XBH(k) can be calculated as: 
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When the last term in (21) is replaced by a polynomial, the derivatives with respect to f, A, B, C are also replaced by the derivatives 

of the polynomial used to avoid roundoff errors (similarly as in Chapter III). 
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