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Abstract. In this paper a frequency domain multiharmonic least squares estimator is presented. The 

least squares minimization can be slow for long measurement records. It is shown that performing 

the fit in the frequency domain using Blackman-Harris window function, the number of samples used 

during the calculations can be reduced significantly. The statistical properties and computational 

demand of the algorithm is compared to the time domain least squares method.  

1. Introduction 
Estimation of parameters of multiharmonic signals based on the measurement record is an 

important task in measurement technology. The problem arises in the identification of dynamic 

systems, the analysis of harmonic distortion in power measurements and in impedance 

measurement, too. Several solutions have been suggested in the literature. Some methods are 

based on the four parameters least squares fit defined in the IEEE 1241 standard [1] (in case of 

one sine component and unknown signal frequency). This iterative method determines the signal 

parameters by minimizing the least squares cost function. The method was generalized in [2] for 

the multiharmonic case. The resulting procedure is able to characterize any periodic signal that 

meets the Dirichlet conditions. The convergence of the method was deeply studied in [3]. Due to 

the harmonic components on higher frequencies, the algorithm is very sensitive to the frequency 

parameter, especially for long records. Two suggestions were proposed to increase the 

convergence of the algorithm and reduce the number of iterations. A similar nonlinear least 

squares method was presented in [4] where the multiharmonic signal was described by its 

complex Fourier series.  

Some methods separated the determination of the signal frequency and the amplitudes of the 

harmonic components. The algorithm presented in [5] aims to determine the Fourier coefficients 

of the measured signal. First, the period is determined in two steps, and then this is used to 

estimate coefficients of the Fourier series and their variance also. Further developments of the 

method lead to an approximate maximum likelihood estimator [6].  

Different approaches also exist to characterize multiharmonic signals. In [7] and [8] a genetic 

algorithm is used to estimate the signal parameters. [9] proposes an adaptive notch filter based 

least squares solution.  

A common property of the above methods that the determination of the signal parameters is done 

using the time domain samples of the signal (fully or partially). This paper presents a frequency 

domain approach that allows much less computational cost compared to time domain solutions. 

The presented method is the generalization of [10] for multiharmonic signals.  

2. Background and notation 
2.1. Signal model and computational costs in the time domain 

A periodic signal that consists of � harmonic components can be modelled as the following: 

 �(�) = � +���	 cos 
2���� � + �	 sin 
2���� ���
	��  (1) 

where � is the DC offset, �	  and �	  are the amplitudes of the �th cosine and sine,  is the number of 

periods and � is the number of samples in the record. Since the model is nonlinear in , an iterative 

method is needed to determine the parameters. The computational burden of an iterative, time 
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domain least squares method (e.g. [2]) is � ⋅ (4�� + 10� + 6) operations in every iteration. In 

addition, the IpDFT based initial estimation of the frequency requires � log� � operations.  

 

2.2. Information compression in the frequency domain 

To reduce the number of samples during the calculations and decrease the computational 

complexity of the estimation algorithm, it is worth describing the signal in the frequency domain. 

This is done by performing FFT on the measurement. If the signal is not windowed, the harmonic 

components are convolved with the discrete sinc() function. The highest sidelobe level of the 

discrete sinc is -13 dB. Consequently, the information about a sinusoidal component is not 

concentrated around its frequency in case of noncoherent sampling. However, the application of 

a proper window function can help to reduce the spectral leakage and concentrate almost every 

information of the sine components around their peaks. Blackman-Harris window functions [11] 

are an ideal choice for this purpose due to their low sidelobe level. The function separates the 

information of the harmonic components in the frequency domain. A further advantage of 

windowing is that it minimizes the negative effects of not modelled harmonic components on the 

precision of the estimation. Fig. 1 shows a multiharmonic signal of three harmonic components in 

the time and frequency domains. In the time domain representation of the signal, the information 

about the signal parameters is distributed among the samples. However, in the frequency domain 

the information about the components are separated and concentrated in a few samples. This 

property of the frequency domain representation will be exploited in the proposed method.  

 

Figure 1. Time and frequency domain representation of a multiharmonic signal 

To define the cost function, first the frequency domain representation of a sinusoidal component 

is required: 

 �(�) = � cos 
2��� � + � sin 
2��� �, 
 �(�) = ���{�(�)} = ���(�� )!��! ⋅ 
� + "�2 � ⋅ sin#�(� − )$sin 
�(� − )� � + ⋯ 

 ���(�& )!��! ⋅ 
� − "�2 � ⋅ sin#�(� + )$sin
�(� + )� �. 
(2) 

Let �'�(�) be the �th sample of the windowed sinewave using the three-term Blackman-Harris 

window function. �'�(�) can be expressed using the samples of �(�): 
 �'�(�) = *�2 �(� − 2) + *�2 �(� − 1) + *-�(�) + *�2 �(� + 1) + *�2 �(� + 2). (3) 

The above expressions can be generalized for a periodic signal of � components: 
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 �/(�) = ��� 3� +���	 cos 
2���� � + �	 sin 
2���� ���
	�� 5 = 

 

� ⋅ � +�7���(��	 )!��! ⋅ 
�	 + "�	2 � ⋅ sin#�(� − �)$sin 
�(� − �)� � +
�
	�� … 

 

���(�&	 )!��! ⋅ 
�	 − "�	2 � ⋅ sin#�(� + �)$sin
�(� + �)� �8. 
(4) 

The windowed case can be computed using (3). Similar to the time domain case, the above model 

is nonlinear in the number periods parameter (  ). Hence, an iterative method is needed to 

minimize the cost function. In this paper, a least squares cost function is used to determine the 

parameters. We assume that � ⋅  < !�  holds true for the measurement, thus the Nyquist condition 

is fulfilled.  

2.3. The estimation method and its computational burden 

Let 9(:) be the least squares cost function of the estimation method: 

 9(:) = ;(:)�;(:). (5) 

where : is the vector of the unknown parameters and ; is the residual vector. Applying Taylor’s 

expansion, the Gauss-Newton method can be derived [12]:  

 Δ: = (?@��?)��?�@��;. (6) 

Here ? is the Jacobian matrix (the matrix containing the derivatives of (4) with respect to the 

unknown parameters) and C is the covariance matrix (it is needed due to the application of the 

window function). Evaluation of the (6) step iteratively provides the unknown parameters. The 

algorithm can be divided into two steps: 

� Calculation of the FFT and initial estimation of  using IpDFT, 

� Minimizing the least squares cost function using the Gauss-Newton method. 

The computational burden of the first step of the algorithm depends on the number of samples 

(� log� � operations). However, the second, iterative part can be done by using only 5 samples 

for each harmonic component around its frequency [10]. This way the computational costs can be 

significantly reduced, since it depends only on the number of harmonic components. In case of � 

components, the least-squares fit requires 20�A + 70�� + 80� + 30  operations per iteration, 

which is a notable decrease compared to the time domain method (� ≪ �).  

3. Simulation results 
The statistical properties of the proposed method were compared to the time domain 

multiharmonic fitting algorithm, presented in [2]. In these tests both algorithms were executed on 

the same noisy multiharmonic input signal, the parameters were estimated and the statistical 

properties of each estimator were determined based on the estimation errors. The additive noise 

had the following three sources: additive Gaussian noise, quantization noise and harmonic 

distortion (a non-modelled harmonic component). The algorithms estimated the parameters of 

the following signal: 

 F(�) = � + �� cos 
2��� � + �� sin
2��� � +�� cos 
2�ℎ��� � + �� sin 
2�ℎ��� � + 

�A cos 
2�ℎA�� � + �A sin 
2�ℎA�� �. (7) 

Parameters �, �	  and �	  were uniformly distributed random variables in the [0, 1] domain. The 

number of periods, , was also a random variable in [5, �/30], so at least 5 periods were measured 
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from the periodic signal. The number of samples was set to � = 2�J, and the simulations were 

repeated K = 1000 times. After the 1000 simulations, the mean value and standard deviation of 

the estimation error of each parameter were calculated. The initial value of the nonlinear number 

of periods parameter () was determined using interpolated DFT [13]. The statistical properties 

of the methods were compared in two cases. In the first case, first Gaussian noise with L = 0.01 

standard deviation was added to the original signal, then it was quantized using a 10 bits ideal 

quantizer. The results can be seen in Table I.  

Parameter C A1 B1 A2 B2 A3 B3 J 

Original method 4.01·10-5 5.57·10-5 6.49·10-5 6.31·10-5 6.23·10-5 8.06·10-5 8.21·10-5 3.14·10-6 

Proposed method 4.61·10-5 5.92·10-5 8.50·10-5 8.22·10-5 8.11·10-5 1.37·10-4 1.34·10-4 6.38·10-6 

Table I. Standard deviations of the parameters, no harmonic distortion  

Results show that despite the significantly reduced computational costs, the precision of the 

proposed method is close to the precision of the time domain algorithm. In the second case, a 

harmonic component was also added to the original signal with �M = 0.01 amplitude and M =  +10 periods. Table II. shows the results. Due to the compression of information in the frequency 

domain and the selection of samples around the harmonic components, the non-modelled 

sinewave had much less effect on the precision of the frequency domain estimator, compared to 

the original method.  

Parameter C A1 B1 A2 B2 A3 B3 J 

Original method 3.89·10-5 5.94·10-5 1.03·10-4 9.53·10-5 9.35·10-5 1.35·10-4 1.41·10-4 9.18·10-6 

Proposed method 4.45·10-5 6.24·10-5 8.77·10-5 8.18·10-5 8.29·10-5 1.31·10-4 1.38·10-4 6.52·10-6 

Table II. Standard deviations of the parameters, harmonic distortion is present  

4. Conclusion 
In this paper, a novel periodic signal estimation method was presented. It was shown that 

performing the fit in the frequency domain with the application of the Blackman-Harris window 

function, the computational costs can be notably reduced without significant loss in the precision. 

References 
[1] IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters," in IEEE Std 1241-2010 

(Revision of IEEE Std 1241-2000) , vol., no., pp.1-139, Jan. 14 2011 doi: 10.1109/IEEESTD.2011.5692956 

[2] P. M. Ramos, M. Fonseca da Silva, R. C. Martins and A. M. C. Serra, "Simulation and experimental results of 

multiharmonic least-squares fitting algorithms applied to periodic signals," in IEEE Transactions on 

Instrumentation and Measurement, vol. 55, no. 2, pp. 646-651, April 2006. 

[3] P. M. Ramos and A. Cruz Serra, "Least Squares Multiharmonic Fitting: Convergence Improvements," in IEEE 

Transactions on Instrumentation and Measurement, vol. 56, no. 4, pp. 1412-1418, Aug. 2007. 

[4] R. Pintelon and J. Schoukens, "An improved sine wave fitting procedure for characterizing data acquisition 

channels," Instrumentation and Measurement Technology Conference, 1995. IMTC/95. Proceedings. 

Integrating Intelligent Instrumentation and Control., IEEE, Waltham, MA, USA, 1995, pp. 700-. 

[5] J. Schoukens, Y. Rolain, G. Simon and R. Pintelon, "Fully automated spectral analysis of periodic signals," in 

IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 4, pp. 1021-1024, Aug. 2003. 

[6] M. L. D. Lumori, J. Schoukens and J. Lataire, "Approximate ML Estimation of the Period and Spectral Content of 

Multiharmonic Signals Without User Interaction," in IEEE Transactions on Instrumentation and Measurement, 

vol. 61, no. 11, pp. 2953-2959, Nov. 2012. 

[7] F. M. Janeiro and P. M. Ramos, "Multiharmonic Waveform Fitting of Periodic Signals using Genetic Algorithms," 

2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, Warsaw, 2007, pp. 1-6. 

[8] F. M. Janeiro and P. M. Ramos, "Impedance Measurements Using Genetic Algorithms and Multiharmonic 

Signals," in IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 2, pp. 383-388, Feb. 2009. 

[9] M. K. Biswal, P. K. Dash and S. Nanda, "Multi-harmonic frequency identification through multistage adaptive 

notch filter and least squares," 2011 International Conference on Energy, Automation and Signal, 

Bhubaneswar, Odisha, 2011, pp. 1-4. 

[10] V. Pálfi and I. Kollár, "Acceleration of the ADC Test With Sine-Wave Fit," in IEEE Transactions on 

Instrumentation and Measurement, vol. 62, no. 5, pp. 880-888, May 2013. 
[11] H. H. Albrecht, "A family of cosine-sum windows for high-resolution measurements," 2001 IEEE International 

Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), Salt Lake City, UT, 

2001, pp. 3081-3084 vol.5. 
[12] J. Schoukens and R. Pintelon, “Identification of linear systems: a practical guideline to accurate modelling”, 

Elsevier, 2014. 
[13] D. Belega and D. Dallet, "Efficiency of the three-point interpolated DFT method on the normalized frequency 

estimation of a sine-wave," 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced 

Computing Systems: Technology and Applications, Rende, 2009, pp. 2-7. 


