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Abstract— In this paper the theoretical operation of incremen- u 1 Unorm o |-L e S
tal (charge-balancing) delta-sigma QX)) converters is reviewed, ' 171 " 7| 11 out
and the implementation of a 22-bit incremental A/D converte is Discrete—time Comparator Counter
described. Two different analyses of the first-order increnental integrator
converter are presented, and based on these results two ergons
to higher-order modulators are proposed. Since line-freqency

noise suppression is often important in measurement applations, _. ) ) ) . .
. : . Fig. 1. Discrete-time model of a first-order bipolar increraé converter. In
modulators followed by sinc filters are also analyzed. Equations this modelu is the normalized input signadyorm is the normalized output of

are derived for the estimation of the required number of cyces the discrete-time integratog, € {—1, 1} is the normalized feedback signal (a

for a given resolution and architecture. Finally, the desig and  single-bit output sequence), whitk; is the output of the digital integrator.
implementation of a third-order incremental converter with a

fourth-order sinc filter is briefly discussed.

well matched to the requirements of I&M. They can provide
precise high-resolution conversion with low offset andngai
Delta-Sigma QX) analog-to-digital converters are widelyerrors. For higher-order structures, the conversion time c
used in telecommunication and multimedia applications Tlye relatively short [3], [4]. For the measurement of dc input
key property of these converters is that they do not rely @fignals, IDCs need only simple digital postfilters. Since th
precisely matched analog elements to achieve high resolutigperation of such converters is intermittent, they can lse al
but on oversampling, noise-shaping and digital post-iiter readily multiplexed between multiple channels.
Thus, these converters can be integrated well into todayes fi  Thig paper gives an overview of the theory and design
line-width CMOS technologies. The theory and operation @f incremental data converters. The first part of the paper
these converters is discussed in detail in, e.g., [1]. (Secs. 1I-1V) discusses the theoretical operation of suchia
Unfortunately, these classicaly structures are not well tectures, while the second part (Sec. V) describes the mlesig
suited for instrumentation and measurement (I&M) applicgmplementation and measured results of a low-power 22-bit
tions, in which very high absolute accuracy and linearityd & |pC containing a third-ordeAX modulator. The converter
very low offset and gain errors are required, in additionighh exhibited a 22-bit performance with an INL below 4 ppm, an
dynamic range and signal-to-noise ratio. In battery-oeera jnput-referred noise below 3Vrus, a gain error typically

applications (such as smart sensors, portable weightsscalgound 2;,V, and dc offset around 2V.
or digital multimeters) low power consumption may also be
critical. On the other hand, the frequency band of the input. FIRST-ORDERAY. A/D CONVERTER FORDC SIGNALS
signal is usually. Very narrow, ofteq only few_Hertz wide. A discrete-time model of a first-order converter processing
In summary, in telecommunication applications usually g o . . . e
: S . oth positive and negative signals (“bipolar ADC") is shown
running waveform needs to be digitized, and mainly the

output's spectral properties are important, while in I&M—apIn Fig. 1.
L ’ : The operation of the converter [2] is as follows: before a new
plications an accurate sample-by-sample mapping, as well a ! . ; )
. conversion, all memory elements, i.e., the switched-dspac
very good INL performance are required.

Incremental data converters (IDCs) [2], [3], which can bESC) integrator in the loop and the digital counter at theoatyt

: — ombit of i .
considered delta-sigma data converters in transient marde, are reset. Next, a fixed r}umbéﬁ_f( 2mer) OT mtggrqﬂon steps
are performed. Herey,;; is the final resolution in bits. In each

This work has been supported by the Hungarian Scientific &eke~und, CyCIe* depending on th? sign of the output of th_e SC integ,rato
under contract OTKA TS 049 743. the loop feeds back either aVies or a —Vi.r signal to the

I. INTRODUCTION



input of the integrator. and the final output becomes
The exact behavior of this architecture can be analyzed in 1

two different ways. One is to use time-domain analysis to Dout(2) = 2771

derive the output signalf,,,) of the internal integrator at 1-z

cyclen. Another way is to use-domain analysis, then return  Switching back to time-domain and evaluating the output at

to the time domain and find the quantization error. Sincegthes= n leads to

two analyses result in two different higher-order extensiof n—1

the original first-order converter, they are performedfhyiem Dout[n] = Z uli] + eli]. (5)

the next two subsections. Throughout the derivations, abrm i=0

ized signals are used, i.e., all analog signals are scald@beby Rearranging this equation, and assuming tfat = yli] —

reference levelie:. Unorm|t] € [—1,+1] (i.e., the quantizer is not overloaded),
A. Analysis of the Output of the Integrator in the Time-Domain  '€SUlts in an expression similar to (2):

1 1
u— —Dout|N|| < —. 6
T Dol < & ©

U(z) + E(z). 4

The output of the delaying SC integratar,{.,) in time
stepn equals the accumulated sum of its input which is the
difference of the input signal[:] and the feedback signal:]:

The main difference between the two analysis methods is

n—1 that in the current case thwunded internal quantization error
Unorm[N] = Z(U[i] —yli]), (1) was used to obtain an upper bound on the final output quanti-
i=0 zation error, while in the previous case thaunded output of

assUMiNguuorm[0] = 0 (note thatu € [—1,+1] andy ¢ theintegrator resulted in keeping the output quantization error

{—1,41}). With proper signal management (see [2] and [4inder a given limit. These two conditions lead to two differe
Sec. 2.1.3)]), it can always be ensured that., € [—1,1], extensions of the incremental converter to higher-orier

i.e., in time stepV, loops, discussed later in Sec. ll.
N—-1
Ty vl
YTN _ y As it was shown in the previous analysis, the first-order
=0 , ) . . . .
_ ) ) ~converter’'s biggest drawback is that far-bit precision it
whereu is the estimate of the mean value of the input signglequires 7 = 27w clock cycles (e.g., fomp, = 16, N =
Eq. 2 gives the key to performing analog-to-digital CONs5, 536), which leads to a very slow conversion.
version with such an architecture: it shows that the error gefore the discussion of IDCs based on higher-ora\&t
between the unknown input signal= Vi, /Vi.r and the sum |oops (Sec. Ill), structures which retain the first-orderddout
of the known termg[i] and N is bounded by a known limit. jynrove its operation are reviewed. Most of these modifica-
In a bipolar analog-to-digital converter, the maximum errgjons are based on the fact, that with proper signal manage-
between the normalized input and its digital represemao ment, the quantization error of the conversion is available

LSB/2, whereLSB = 2umax/2"", tmax is the maximum  anajog form at the output of the switched-capacitor integra
normalized input signaluma.x = 1 in this case), anth,;; is j e

the resolution in bits. Thusl/N = LSB/2 = 1/2"v¢. This Vnorm[N] = —2
. . norm Q7 (7)

means that to achieve,;; resolution, the converter has to be
operated throughv = 2™+ cycles. Note that the digital filter, where ¢ is the quantization error of the output of one con-
which provides an estimate of the input signal, according wersion cycle, andy,o.m[N] is the normalized output of the
(2), is a discrete-time integrator, operated in transientien integrator at the end of the conversion [4, Sec. 2.1.3]. This
Since the input signal to this filter is a single-bit sequencts a large signal (the analog signal swing is betwesn.),
this integrator may be realized by a simple up/down countetich can be further digitized, and the result may be used to
[2]. refine the output.

The easiest way to reduce the required number of cycles
for the conversion is to apply a Nyquist-rate A/D converter

The first-order incremental converter may also be analyzedhich takesv,o,m[N] @s an input signal and converts it to a
using classicalAX modulator methods. With this techniquedigital word. This can be concatenated with the output of the
the operation of the converter is analyzed in thdomain, and IDC to obtain a more accurate result. Using the comparator
then the result is converted back to the time-domain ancfinitalready in the circuit as a single-bit A/D, the resolution
duration operation. To use linear system analysis, theimeert may be increased by one bit, or the required number of
quantizer is modelled by an adder, which adds the apprepriatcles can be halved. This idea was actually utilized in the

1 C. Improvements of the First-Order Converter
< T (2)
- N

B. Analysisin the z-Domain

quantization errorg(i], E(z)) to the quantizer input. original circuit of [2]. In [5], a multibit Nyquist-rate A/D
Using z-domain analysis, the output of the modulaltfz) converter was placed into the circuit to conveft,,[N] into
is a digital correction word. More sophisticated solutiongdis

Y(2)=2"'U(2)+ (1 - 2 HYE(2), (3) the same hardware to process the output of the integrator:



In [6], successive approximation was used at the end of thethe time-domain (assuming= 0 for simplicity, which can
conversion, while [7] and [8] introduced the extended-dogn always be ensured [13]) this becomes
principle based an algorithmic conversion, and [9] propose . kL s
a two-step algorithmic converter, resulting in very low ~
and reduf:)ed g<;:hip area. ’ YIOWERY Do . ln] = Yo D D ulkltel]l  (10)
Another solution to reduce the number of cycles is to
use a multi-stage (MASH) incremental converter. A two- La
stage architecture was described in [10], reducing theirediu  |f the input signal is constant(= %), e.g., sampled and
number of cycles to abou¥ = 27vi+/2, A similar solution was held using an S/H circuit, then
proposed in [11].
Another way of extending the resolution of incremental Dout, 1, = (n+L“ B 1>u+5[n]. (12)
converters is to use a higher-order single-stage loop. The La
theory for such incremental converters utilizing a casdadeNote that if no S/H circuit is used in front of the converter,
integrators/feed-forward (CIFFAX architecture has beenthen the output signdD,.; 1., is only an estimate af, but the
published earlier by some of the present writers in [3]. lpariance of any noise of is greatly reduced by the internal
addition, the detailed description of a 22-bit, third-ard2eC oversampling and the low-pass filtering effect of conve@gr
has been presented by us in [12]. Here, the theory is extengiedSec. 4.1].
to two types of modulators based on [4, Sec. 3.2] (Sec. HB,t  From this equation, proceeding as in Sec. II-B, the quanti-
design equations for modulators followed &iyic® filters are  zation errorg of the conversion can be found:
given (Sec. 1V), and the design of the high-resolution cotere

krg,=0kr,—1=0 k1=0

INE . e[N] 1
is briefly discussed (Sec. V). 1= Nrr - < NTL T (12)
( L, ) (l - 1)( L, )

[Il. EXTENSIONS TOHIGHER-ORDER AY, MODULATORS  wherez[N] € [-1/(I-1),1/(I—1)] is the quantization error of
the internali-level quantizer in time stev. The maximum
In the previous section, two different analyses of the ﬁrS&uantization error must be equal to h@l§B of the target
order incremental converter were given: it was shown thafsolution. Since in higher-order architectures the irgigmal
the bounds on either the internal quantization error or @n th) must be limited to a fraction of the reference signal
output of the analog integrator can be used to determine {f)e ;) to prevent the integrators and the internal quantizer from

required number of cyclesN)) for a given resolution ). saturation, i..Vin/Viet = 4 < umax < 1, the LSB of the
Based on these criteria, two generalizations of the firdeor pipolar converter can be defined 8,,,,/2™ . Then, the

converter are derived in the following. following equality has to be fulfilled byV:
Umax 1
A. Modulators with Maximally Flat Noise Transfer Function o ((— )(FFL)’ (13)
La
Consider a higher-order modulator whose output is givem)m which the required number of cycles for a given
by resolutionn,,;; can be found:
Y(Z) = z*kU(Z) + (1 — Zfl)LaE(Z)’ (8) N+L,—1 OMbit 1
< La ) B (l - 1)umax. ( )

whereE(z) is the normalized quantization error of the internal
quantizerl(z) is the normalized input signal,, is the order As an example, for 16-bit resolution, with a second-order
of the analog modulator, and < L, holds. To ensure the architecture, assuming = 5 and umax = 0.8, N = 203
stability of such AY modulator for L, > 2, multibit (- results.
level) internal quantizer may be used [1, Chap. 4]. As the
nonlinearity of the multibit feedbackAC will cause severe B The Cascaded-Integrators, Feed-Forward Sructure
degradation in the performance, tlAC linearity must be  As shown in Sec. II-A, the bound on the output of the
improved, usually by a dynamic mismatch shaping algorith(tast) analog integrator may also be used to obtain the final
[1, Chap. 6]. guantization error. This method is effective for higheder

As for the first-order modulator, i, = L, digital inte- converters, however, only if the output of the last integrat
grators are applied at the output of the modulator, the finddes not contain the input signal itself. This property can
digital output will contain the sum of thé&,th integral of be ensured by using the Cascaded-Integrators, Feed-Fbrwar
the unknown input signal and the last sample of the intern@IFF) structure [14], where the input signal is also fed to

guantization error: the input of the quantizer [13]. A third-order CIFF examde i
shown in Fig. 2. In the following, a single-bit internal quiaer
27k is assumed to avoid dealing with the problems of the multibit
Dou,1.,(2) = U +EE. () J P

(1—2"1)La feedbackDAC.
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Fig. 2. A third-order Cascaded Integrator, Feed-Forward (CIFF) architecture with the input signal fed forward to the inpdttbe quantizer.a =
[1.4, 0.99, 0.47], b = 0.5674, ¢ = [0.5126, 0.3171], umax = 0.67.

The key property of this architecture is that the signal IV. LINE NOISE SUPPRESSION
transfer function of the modulatsiTF (z) = 1, i.e., the output
of the modulator isY (z) = U(z) + NTF(z)E(z), and thus  In the previous subsections two extensions of the original
the signal entering to the integrator stage$/iz) — Y (z) = first-order incremental converter were presented. In (1@) a
NTF(z)E(z). This way, the integrators in the loop do no{16) the required digital filters to process the output of
process the input signal, only the shaped internal quditiiza the modulator were also implied: in both cases, cascade-of-
error. This architecture has several additional benefi$ [1 integrators (Col) filters, operated in a transient mode,ewer
The output of the last (third) integrator in the loop in timerequired to calculate the output of the converter. The nurobe
stepn is the triple sum of the difference of the input and thdigital integrators ;) was equal to the order of the modulator
feedback signal multiplied by the gain factors in the loop (c(L,).

Fig. 2) [3]: The higher-order ADCs discussed above have a practical
e e 11 disadvantage compared to the first-order converter: theise c
ormln] = b El — ulk]). 15) Verters cannot provide a suppression of a periodic noigdy su
" n] = exes mz::() = = (ulk] = y[k) (13) as 50 or 60 Hz line noise [4, Secs. 4.1.2, 4.1.3]. In some

cases, suppression of the line frequency noise is esséutial
If the loop is stabilized by appropriate feedforward gaingrecise measurements in 1&M applications. Then, the digita
[14], the normalized output swing of the last integrator cafilter following the modulator has to be modified to meet this
be kept betweent1 by appropriately setting the; scaling requirement. One possibility is to use a higher-ordiei”
coefficients. Then, similarly to the previous cases, there filter [16], in which case the required number of cycles canno
a relation giving an upper bound on the difference of thge calculated anymore using (14) or (18), but can be derived
unknown constant input signal and some known terms:  as follows.

An Ljth-ordersinc filter with a decimation ratio of\/ has

N N—-1m-—11-1 1 the t f f i
- Ell < ) 16 e transter runction
|(3)u BB B) B EFE S CD

m=0 [=0 k=0

1 [1—M\"
From this, the halfLSB of the target resolution may be H(2) = 3707 (ﬁ) : (19)
obtained:

1 LSB max . . .
= _ Umax. a7) To design the filter, one has to find the ordey, and the

N T o9nyy . . . . .
CQClb(3) 2 2 decimation (or oversampling) ratio of the filtéd. M also
Rearranging this equation, the required number of cycles%’esfthef ratio between the clock ralte and the first nullegj the
achieve a given resolution can be calculated from transfer function. S|rjce incremental converters are useal i
transient mode, as in the previous discussions, time-domai

N\ 2Mbit 18 methods can be used to fidd, and thus the required number
L.,) Lo—1 ’ (18) of cyclesN. In the following analysis, systems with filter order
Umax ( _1:[1 Ci) b L;=L,and Ly = L, + 1 are examined. It can be proven

that filters with higher orders do not give optimal trade-off
which gives an expression similar to (14). The main diffeen between the required number of cycles and circuit complexit
is that the number of levels in the quantizer are replacedhéy {4, Sec. 4.2.1]. Note that when the value /af required for a
gain factors of the loop. As an example, a 20-bit convertén wigiven resolution is derived, it is advantageous to incréaie
third-order modulator and,,., = 0.67 and with gain factors be a power of2: this way, 1/M*< can be implemented very
given in Fig. 2, the required number of cyclds= 468. easily, e.g., using a shift register.



A. Modulators with Maximally Flat NTF's shown in Fig. 3(b). In this case, many samples of the internal

1) Lq = L. Consider ar,th-orderAY. modulator with a duantization erroe[i] are weighted and summed together to
maximally flat NTF, followed by anLjth-ordersinc™ filter, g€t the output quantization errqr Thus, statistical methods
where nowL, = L, = L. In this case, the combined transfef@ve to be used to find the statistical properties of the final

function of the modulator and the filter becomes quantization error. If the internal quantization eredi] has
approximately uniform distribution betweenl /(I — 1), (i.e.,
Dout(2) = H(2)U(2) + H(z)(1 — 2 HEE(2) = m. =0 ando? =4-12/12(1 — 1)?), the output quantization
1 1 —M\E 1 . error has an a_pproximately Gaussian distri.butionz acagrdi
=3z <ﬁ) U(z) + UL (1- z*M) E(z), to the central limit theorem. The output variance is the sum
of the variances of the individual samples, weighted by the
(20) ' - )
square of the filter coefficients:
whereH (z) is defined in (19). Thus, the input signal is filtered )
by a regulgr higher-ordesinc f||t§r, wh|ch_ does npt _affect_ o2 = 4-1 (M-12+M-32+M-32+M-12) =
the input signal at dc, and which provides periodic noise ¢ 12M8(l —1)?
suppression at its zeros. 20 (26)
To find the required number of cycles for a given resolution, 3M7(1—1)2

the largest output error has to be found, and equated to th
half LSB of the target resolution. Considering a third-ordeé
structure = 3), the error at the output is given by

Since the output error distribution is approximately
aussian, one may estimate its lower and upper bounds as
koq, wherek > 3. In this case, the expected maximum output
- z*M)L B(z) = error becomes
M* k 20
= 1/M3(1 —327M 4 3,72M _ ,=3Mp(2). (21) kog = m\/;a (27)

The finite impulse response of this transfer function (witho \yhich equals to half.SB of the target resolution:
the scaling coefficient) is shown in Fig. 3(a). From this equa

Q(2)

tion and the figure, two conclusions can be drawn: (i) to fill k 20 _ LSB _ umax (28)
the digital filter with valid data, the minimum required nuenb M35(1—1)V 3 2 2w’

of cycles isN = 3M, and (ii) the worst-case sequence of.;m which

the internal quantization error (assuminglaevel quantizer) \/m

is when the error samples take on their positive (negative) M= °f| —Y (29)
maximum value, whenever the filter coefficient is positive (0= Dumax

(negative). That is, the worst-case sequenceiis= (1, —1, and the required number of cycléé = 4M follows. Note
1, —1)/(l—1) at time steps), M, 2M and3M, respectively. that simulations indicate that = 5 (i.e., using a “5-sigma
This gives for the upper bound for the final quantization erreule”) gives correctd/ and N values [4, Sec. 4.2.1].

1+3+3+1 8 (22) B. Modulators with CIFF Structure

lq| < = :
M3(l -1 M3(l -1
. ( ) ( ) . As already noted in Sec. IlI-B, the performance of one-bit
which must equal the haltSB of the target resolution: modulators is not degraded by imperfections of the feedback
3 Umax DAC, and hence they are often used. Thus, in this section,

M3 —1)  2mwie’ (23) one-bit CIFF structures followed byinc filters are examined.
From this equation} can be calculated However, the analysis of such systems is more difficult in
the time domain, since the stabilization of the one-bit li®p
Mo s 8 - 2mbit (24) achieved by shifting the poles from= 0 in the NTF', which

Umax (I — 1) now has an infinitely long impulse response. As before, two
dth ired ber of les i — cases are of interest, when the loop and filter orders are the
and the required number of cyclesié = 3. same {4 = L,), and when the filter order is higher by one

2) Ly = L,+1: Consider now the case when the modulatcgr1an the order of the loopl{; = L, + 1). In the following
order isL, = 3 and that of theinc filteris Ly = L, +1 = 4. third-order modulator will be assul;ned '

In this case, the mergeNTF of the system becomes 1) Ly = L,: The required number of cycles using same-

Dot (2) 1 (- Z_M)4 ordersinc filter at the output can be calculated as follows. The
% =i T - NTF of the system depicted on Fig. 2 is
z —Z
1 1—2M M3 NTF(z) = -z (30)
= ME 11— 21 (1 -z ) , (25) a D(z2) ’

which is the product of atl,th-order differential filter and a where D(z) contains the stabilizing poles of the modulator.
first-ordersinc filter. The impulse response of such a filter i€ombining this with the transfer function of the same-order



i
AN O NN
T
=
=
I

I I I I I I
0 20 40 60 80 100 120 140 160 180 200 220

’H’
|

I I I I I
0 20 40 60 80 100 120 140 160 180 200 220

BS
‘7
\

<

1 I
[ 20 40 60 80 100 120 140 160 180 200 220

@

S oS

|
a

3-4 (CIFF)3-3 (CIFF) 3.4 (flat) 3-3 (flat)

I I I I I
0 20 40 60 80 100 120 140 160 180 200 220

Samples

Fig. 3. Merged impulse responses of tN&'F' of the AX modulator and theinc filter without scaling, with a decimation rati®/ = 50. (a) third-order
maximally flat modulator and third-ordeinc filter (b) third-order maximally flat modulator and fourtheer sinc filter (c) third-order CIFF modulator and

third-ordersinc filter and (d) third-order CIFF modulator and fourth-ordgnc filter.

sinc filter, the mergedVTF from the internal quantizer to thewhich equals the halfLSB of the target resolution
output of the filter becomes (Umax/2™¥i*). This leads to

1 (1M’ NS
Dout(2)/E(2) = B DE) (31) M = b1yt (36)

A typical example of the impulse response of the mergeghg v — 377 + .
transfer function is shown in Fig. 3(c): the response of therfi 2) Ly = L, + 1: The last case discussed here is when a
1/D(z) is convolved with that of the differential response ofne_pit, third-order CIFF modulator is followed by a fourth
Fig. 3(a). The required number of cycles thNs= 3M +m,  qgrgersine filter. In this case, the mergedlTF of the system
wherem is the number of samples required for the settling ¢focomes
the low-pass filterl/D(z), while M is the decimation ratio 5
of the sinc filter. Note that if thesinc filter is realized using 1l (=M 1M
the Hogenauer-structure [16], the output sample of the fite Dout(2)/E(2) = MA D(z) 1 ,-1°
time 3M +m is not available, thus one has to wait for the first . . .
valid decimated sample at timigl/. An alternative possibility Its ty_plcal transient response can be seen on Fig. 3(,d) (con-
is to enlargeM, which causes smaller quantization error Olution of the response of Fig. 3(c) with a first-ordnc

the output and then ignore the error introduced by neglgcti Iter). Thus, the required number of cyclesis= 4M_ +m.
To find M, the bound on the output of the last integrator

the lastm samples of the transient. . : o .
To estimate the required number of samples, the bound By again b_e used. Since both this S'Q”a' and the f!nal output
the output of the last integrator can be used. Due to the fegifinal contain many samples of the internal quantizer error

forward structure, this signal contains only the quaniizat the statistical properties of the internal quantizatioroecan
be used to find the properties of the final output error. The

(37)

error. so b tput of the last integrat
output of the last integrator,
Vs norm (2) = ;i;‘E(z) <1, 32) P g
b0102
i.e., ‘/Zi,norm(z) = _—D(Z) E(Z) <1, (38)
1 1
E(z) < — (33) . . . . . . .
D(z) beyco is a stochastic variable with an approximately Gaussian dis
holds. Substituting this inequality into (31) leads to tribution. o _
5 5 The output error distribution is also approximately
1 (1= () < 1 (=) (34) Gaussian. Its variance can be readily estimated, and from it
M3 D(z) M3 beica the decimation ratio required for a given resolution may be

With this substitution, the problem becomes similar to th@und. The result is

previous case (maximally flalvTF with same-ordersinc

filter). Using the results derived there, the bound on the U A
maximum output error becomes v | 220 l;l wali] -
_ 3 - m
1 (1 —z M) 1 8 beicatimax Z wd[zP

(35)
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Here, wy[i] is the ith sample of the impulse responseV/, but the tail end of the transient response) (could be
corresponding td /D(z). The required number of cycles cameglected.
be estimated fromiV = 4M + m. To prevent the overloading of the delta-sigma loop, but yet

The derivation of these results can be found in [4, Sec. 4.2). allow the input signal to reacH-V,., the input signal
needed to be attenuated by a suitable factor. Since the IDC
(unlike most conventional delta-sigma ADCs) must provide

In critical applications, the suppression available byngsi accurate gain along with high linearity, the gain reductiounst
the simplesinc filters may not be adequate, especially ibe realized by a circuit which is insensitive to the inaccyiraf
the line frequency and/or the on-chip oscillator frequeigcy its components. This can be achieved by usingcapacitors
inaccurate. In this case, the zeros of thac® filter can be at the input stage, out of which only.. < n. is used to
staggered around the line frequengy thus widening the sample the input signal ang. are used to sample the feedback
frequency range where the rejection is high. signal, thus realizing a scaling by./n. of the input signal.

To modify the zeros of the filter, the rotateuhc” filter (RS To convert the gain error introduced by the mismatch of the
filter) introduced by Lo Presti [17] may be used. A secondscaling circuit to an out-of-band periodic noise, in evelnck

C. Improved Line-Frequency Suppression

order factor of its transfer function is of the form cycle differentm,. capacitors are selected to sample the input
() 1—2(cos Ma)z—M + —2M (@) signal. The details of this scheme can be found in [12].
z) = )
1—2(cosa)z=t + 272 B. Offset Correction
wherez = e/27///s anda represents the angle of the modified The inherent offset of the delta-sigma loop must be cor-
complex conjugate zeros in the plane. If « = 0, the rected with a very high accuracy, so that the residual offset

expression simplifies to the transfer function of a second less than 1QuV. This cannot be achieved using chopper
order classicadinc filter. The details of the design method andtabilization, which is only effective for a first-order oo
optimization of this filter to suppress noise in a given regioCorrelated double sampling can also be used for offset sup-
(say f; = 5%) can be found in [17]. Note that in the case opression, but it would have required an extra clock phase in
narrow-band filtering the angle of the zeres,is very small, this application. Hence, the offset correction used indeigice
thuscos(a) is very close to 1. In this case, the number of bite/as a generalized version of chopper stabilization, whiels w
in the digital word required for the accurate representatib named “fractal sequencing.” Here, the propagation path of
the coefficients would be very large. To save chip area, in thiee dc offset is inverted during conversion, controlled by a
implementation of this filter a different approach is usefl (csequence which provides offset correction for an arbitrary
Sec. V-C). number of cascaded integrator stages. The details of this
If such an improved filter is used at the output of th&éechnigue can also be found in [18] and [12].
modulator, it is very hard to find the required number of cgcle o ] o
analytically. But, sincev is typically very small, the impulse C: Digital Filter Realization
response of the modifiednc filter is very similar to that of  The fourth-order digitakinc filter used in the chip uses
the original filter. Thus, a good estimation f8f and N can multiple staggered zeros around each notch frequency fd.7],
be found by assuming that a simplc filter was used, and allow for drift in the clock rate or the line frequency. It has
can be corrected if required. a modified transfer function including staggered zeros, and
uses a novel implementation which differs from the familiar
V. CASE STUDY: A THIRD-ORDER, 22-BIT INCREMENTAL  Hogenauer structure [16] and also from the one suggested
ADC by [17]. It utilizes a programmable counter in place of the
In this section, a brief overview of the design of a 22four cascaded differentiators needed in the Hogenauenszhe
bit incremental converter is given. Details of the desigd arThe filter contains a control unit which stores the zeros of
performance of the converter can be found in [12]. H(z), and it operates the counter so as to implement these
zeros. It provides a high noise rejection, and needs onlya lo
complexity circuitry. Details about the filter implemerieet
A third-order low-distortion CIFF structure with a single-can be found in [19] and [12].
bit quantizer was chosen for the converter (Fig. 2), folldwe )
by a modified fourth-ordesinc filter. For the required 22- D- Implementation and Measurement Results
bit resolution, (39) suggests a minimum decimation ratio Three different versions of the complete ADC were imple-
M = 353, m = 30 and N = 4M + m, when the circuit mented in a 0.6sm CMOS technology. The first one has a
and coefficients of Fig. 2 were used. In the actual circuit, ®low maximum data rate (13.75 Hz), and includes a digital
make the implementation of /M%< easier,M = 512 was filter which rejects both 50 and 60 Hz with a wide multiple
used. Simulations indicated that using suth the tail end notch at 55 Hz. It has low output noise (0.25 ppm). The
of the transient response can be neglected without dengeasiecond chip also has a slow data rate (12.5 Hz or 15 Hz),
the performance, thus, in the final circiit = 4M was used. a main notch at either 50 or 60 Hz, with greater rejection
This way, the quantization error was reduced by using larg@t least 120 dB within a 3% variation from the selected

A. Modulator Structure and Gain Control



sion is often important in measurement applications, aildeta
analysis was given for modulators followed binc filters
which allow the suppression of narrow-band noise. Design
formulas for estimating the required number of clock cycles
for a given resolution were given for various combinations
of the modulators and filters. Finally, the implementatiowl a
measurement results of a third-order converter with a fourt
order modifiedsinc filter were briefly described.
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