
Active noise control in the concept of IoT

Róbert Galambos
Department of Measurement and Information Systems
Budapest University of Technology and Economics

Budapest, Hungary
Email: galambos@mit.bme.hu

László Sujbert
Department of Measurement and Information Systems
Budapest University of Technology and Economics

Budapest, Hungary
Email: sujbert@mit.bme.hu

Abstract—This paper introduces a ”proof of concept” system
for Active Noise Control (ANC) where the audio data from the
reference microphones are travelling through the already existing
Ethernet network. The system realizes the active noise control
with the help of a multi channel DSP card. The noise control
algorithm is the Filtered Error Least Mean Square (ELMS) – an
LMS variant –, which has already proven its efficiency previously
in different environments. The audio data from the reference
microphone to the DSP card are digitalised with the help of
an ADSP-BF537 Ez-Lite Kit, and transmitted over Ethernet to
a counterpart ADSP-BF537 Ez-Lite Kit card, which converts it
back to an analogue signal to be able to be fed into the multi
channel DSP card. The article highlights the usage of Ethernet
network for audio transmission, and shows the problems that are
caused by the properties of such medium, as well as the potential
that lies in it. The working of the system and its efficiency is
illustrated by measurement results.

I. INTRODUCTION

Active noise control (ANC) is a well known technology in
the engineering, and is used to replace passive isolation where
the usage of that is not sufficient, not possible, or not worth.
ANC is used for low-frequency acoustic noise suppression, and
it is based on the phenomenon of destructive interference [1].
The interference is created by a controlled noise source that
suppresses – cancels out – the primary (e.g.: original) noise
source.

Although the basic concept of ANC is known since almost
a century, it became only in the last few decades more and
more the center of interest. This was due to the increase of
computation power, and the wide spreading of digital signal
processors (DSPs), and so the new possibilities that were avail-
able to use. The experience acquired in these decades clarified
the possible application areas of the principle [1] [2] [3].

The ANC as problem can be seen and separated into
two branches: acoustics and control. The acoustic part of
the problem is placing microphones and loudspeakers in an
arrangement best suited for the given situation. The control
part on the other hand is how the loudspeakers have to be
controlled by taking into account the information from the
microphones. In the last years many algorithms have been
developed and implemented. These algorithms can also be
grouped into two main categories: algorithms for stochastic
or periodic noise cancellation. For periodic noise cancellation
a feedback controller is sufficient, but for broadband stochastic
noise cancellation feed-forward control is needed [1] [2]. This
feed-forward control needs reference microphones and is more
efficient when these microphones are located near to the

noise source. Our ”proof of concept” system targets stochastic
broadband noise cancellation, because it is the most sensitive
for audio signal latency.

Even when the microphone arrangement can be deter-
mined, the realisation can be a problem. Noise sources can be
far away from the cancellation area, and it takes a lot of effort
to create a proper cable network suitable for audio transmission
for the reference microphones to get information from near
the noise sources, and so get better results. However in the
information age, almost every building is already equipped
with a sufficient network for local communication and for the
internet. These networks have a bandwidth ranging from 100
Mbit/s to 1 Gbit/s, and even the internet connections are in the
10 Mbit/s range. Although the topology of these networks is
mostly complex and hierarchical the response time is within
the millisecond range. These two properties could make the
Ethernet networks suitable for low-latency audio transmission.

The goal of our ”proof of concept” system is to show
that there is a certain potential in using these networks.
By replacing the analogue cables with the digital Ethernet
transmission, we achieve a more flexible system that can be
rearranged and modified much easier [2]. Even further this
system allows to apply the concept of Internet of Things (IoT)
in the field of ANC.

The structure of this paper is as follows. Section II gives a
high level overview of the system, by defining each major
component, and the arrangement of the microphones and
loudspeakers. Section III introduces the algorithm used for
the ANC, and gives a more detailed description about its
properties. Section IV shows how the audio was transmitted
over Ethernet, including the software architecture, the buffering
scheme, and their properties. Section V contains the mea-
surements results for the ”proof of concept” system, showing
the efficiency of the ANC with the Audio over Ethernet and
without.

II. SYSTEM DESCRIPTION

Fig. 1 shows the arrangement of the ”proof of concept”
system. As seen the least complex arrangement was used
for the system, with one reference microphone, one error
microphone, and one noise source, but this noise source that
needs to be cancelled radiates stochastic broadband noise, to
be able to detect problems caused by the audio latency of the
reference signal path. Besides that, two different kinds of DSP
cards were also used. A multichannel DSP card, and two card
for audio data transformation.



Multichannel
DSP card

Sound level
meter

Divider

JTAG

Noise source

Error
microphone

Controlled noise
source

PreAmplifier

Reference
microphone

La
p

to
p

S
o
u
n
d

 c
a
rd

LAN

AD to
LAN

LAN
to DA

reading
measurement

Fig. 1. The arrangement

The multichannel DSP card is a special DSP card consist-
ing of a floating point ADSP-21262 Shark DSP processor [4]
and is capable of sampling simultaneously several channels [5].
The noise control algorithm is running on this board, using the
input channels to produce the cancellation noise on the output.

Because the multi-channel DSP card does not have any
Ethernet interface there was a need for a solution to transmit
audio over local area network (LAN). For this transmission
two ADSP-BF537 Ez-Lite Kit boards were used [6]. These
boards consist of an ADSP-BF537 (Blackfin) 16-bit fixed point
DSP, and are equipped with 48 kHz/24 bit capable analogue to
digital (ADC) and digital to analogue converters (DAC), and
a 10/100 Mbit/s LAN interface.

III. NOISE CONTROL

A. Noise control problem

The basic problem of the ANC can be summarized and
shown in a very compact way, as seen in Fig. 2. In the
generalised form of ANC all the signals are vectors, since
usually the control system consists of several microphones
and loudspeakers. The x input vector is the vector containing
the samples of the reference inputs of the system, and the e
vector is the error vector. These two vectors are fed into the
F adaptive system, which is mostly some kind of an adaptive
filter. The anti-noises generated by the system (y) are than
radiated from the loudspeakers [7]. An important feature of the
problem – from theoretical perspective – is that the generated
anti-noise is not subtracted directly from the disturbance (d)
signal, rather than filtered by the system A. This is the transfer
function from the F adaptive system to the cancellation area. It
includes the transfer functions of all analogue and digital parts
and the imperfection of the sound radiation. Usually A is called
the secondary path transfer function, since the acoustic path
appeared only because of the ANC system, while the primary
path is in-between the noise source and the d disturbance

F A(z)
e

d
x

y

Fig. 2. The noise control problem

W(z)

LMS

e

d

x y

Fig. 3. The LMS algorithm

signal. The adaptive system F can utilize the reference vector
x if it is a feed-forward controller, or do not use any reference
input if it is a feedback-controller. A more detailed analysis of
the problem can be found in [1] [8].

There are different approaches for ANC design, but all
of them needs to take into account the identification of the
secondary path A. An insufficient or inaccurate model of the
secondary path A destabilises the system [3]. The system
is stable if and only if the phase error of the model does
not exceeds π/2. Considering that above the quarter of the
sampling frequency a simple unit delay identification error can
destabilize the system, this is a hard condition.

B. Noise controller

The mostly used adaptive algorithm for ANC is the least
mean square (LMS) algorithm. The LMS adaptive filter can
be seen in Fig. 3, where W (z) denotes the adaptive transverse
filter, x is the reference signal, y is the output of the filter, and
e is the error signal of the system [9]. The signals are already
one dimensional ones, as the ”proof of concept” system is a
one-channel system.

However this fairly idealistic model does not take in
account the disturbance caused by the secondary path (A),
that can destabilize the controller. So an improved algorithm
is needed. An advanced version of the LMS algorithm is
the filtered-reference LMS (XLMS) algorithm [9], where the
secondary path (A) is also considered in the form of filtering
the reference signal accordingly. In order to increase the
convergence rate, our ”proof of concept” system uses the
filtered-error LMS (ELMS) algorithm [9]. The arrangement
can be seen in Fig. 4, where A(z) is the secondary path of
the system, A−1

D (z) is the so called delayed inverse of the
secondary path, and z−D is the same delay that is used in
the delayed inverse. The system can be described with the
following equations:

yn = wT
nxn (1)

en = dn −A(z)yn (2)
wn+1 = wn + µA−1

D (z)enrn (3)

where

rn = z−Dxn (4)



W(z)

LMS

e

d

x y
A(z)

z-D A-1
D(z)

Fig. 4. The ELMS algorithm

The delayed inverse A−1
D (z) can be defined as follows:

A(z)A−1
D (z) ≈ z−D (5)

where A−1
D (z) is a finite impulse response (FIR) filter, and the

overall transfer function of the secondary path and the error
signal path approximates a simple delay.

Because the secondary path is unknown, the structure
requires to identify A(z). This can be done with a simple
LMS algorithm in case of XLMS or ELMS algorithms, only
the order of the approximated filters are different from the
order of W (z). For both algorithms the identification requires
a white noise signal, and in the case of ELMS the z−D delay
has to be set experimentally.

Another problem of the structure is the required number of
coefficients to realize the A−1

D (z) inverse filter. Taking the fair
assumption that A(z) is rational, the ideal inverse can easily
be constructed by exchanging the poles and zeros of the A(z).
If A(z) is a minimum phase filter, the exact inverse can be
calculated without the need of any extra delay (z−D), however
if A(z) is not minimum phase only the delayed inverse exist
(D 6= 0). This is because if A(z) is not minimum phase, the
inverse would require a non-casual inverse filter. A workaround
of the problem is to delay the inverse filter, and make it
quasi causal. By constructing the delayed inverse the impulse
response of A−1(z) has to be truncated at step n = −D, and
it has to be shifted by D.

IV. SIGNAL PATH

As mentioned earlier our ”proof of concept” system uses
Ethernet communication instead of analogue cable to transfer
audio data from the reference microphone. The audio to LAN
and the LAN to audio adapter is an ADSP-BF537 Ez-Lite
Kit board, that uses the Visual DSP++ Kernel (VDK) as real-
time environment (RTE). The board is equipped with LAN
connectivity and the Visual DSP++ Framework is capable to
generate a functional TCP/IP stack, and uses therefore the
open-source lwIP implementation.

Unfortunately the VDK Framework provided possibilities
for rapid prototyping (e.g.: generating TCP/IP stack) are some-
times drawbacks when fine tuning of the system is needed
(e.g.: modification of the stack is a huge effort). It means that
currently the lwIP stack is only capable of using Dynamic Host
Configuration Protocol (DHCP) to obtain Internet Protocol
address (IP). This makes it impossible to connect two cards
directly via a simple Ethernet cable. Fortunately the realistic
use case always requires a present and working network, and
in such an environment it is safe to assume that DHCP can be
used.

ADC
drive

VDK

lwIP
stack

Input
thread

Client
thread

DAC
driver

Server
thread

Output
thread

VDK

lwIP
stack

LAN

D
M

A

D
M

A

Audio
input

Audio
output

Buffer system Buffer system

CLIENT SERVER

Fig. 5. The Software architecture

A. Software architecture

As seen in Fig. 5 the software consist of a client and a
server. They are built from the same source, and only some
configuration parameters need to be changed to compile for
client or for server. The parameters that can be configured
to fine tune the system are, the server IP address where the
client tries to connect, the port on which the server accepts
the clients’ communication, the size of the buffers used for
audio transmission, and the number of buffer for the buffering
scheme.

On client side the audio data returned from the ADC
are handled by the ADC driver which with the help of the
DMA copies the data – without blocking the CPU – into
the application buffers. The input thread waits in a blocking
statement till the DMA finishes a block and signals through
the VDK that it is ready. After this the input thread passes
the buffer to the client thread’s buffer, where the package is
constructed. The client thread upon receiving the data from the
input thread, starts a transmission over LAN. The packages
go through the lwIP stack which attaches the required frame
headers for the given transmission protocol. The final package,
after processed by the lwIP stack, is put by the boards Ethernet
peripheral onto the LAN as physical signals.

On server side, after the package has arrived into the boards
LAN peripheral the lwIP stack removes the protocol headers
from the frame, and passes the stripped buffer to the server
thread. This thread extracts the audio information from the
received buffer, and passes the buffer to the output thread.
The output thread is in a blocking state till it gets a buffer
from the server thread, and upon awakening it passes the audio
data from the buffer received to the DMA. The DMA will put
the data to the audio peripheral of the DSP and through the
peripheral the DAC will produce the analogue sound.

B. Buffering scheme

On the client and on the server side, the buffering of data
between the input thread and client thread, as well as the server
thread and the output thread is done in a circular manner.

As seen in Fig. 6 there are several small buffers between
the data source and the data destination, and if a data package
is received by the data source from the input, the data will
be extracted and put into one of the circular buffers, and then
sent to the data destination. The data destination then sends
the content of the buffer to the output.



Data
source

Data
destination

Buffer queue

Empty buffers

Full buffers

Fig. 6. The buffering queue

Buffer returned

Transmitted

Buffer sent

Arrived

Buffer returned

Transmitted

Buffer sent

Arrived

Data
destination

Data
source

Fig. 7. The threads queue communication

Fig. 7 shows that the data source thread is blocked till new
data arrived from the input, and after sending it to the data
destination it will became blocked again. The data destination
behaves similarly. It is in blocked state waiting for the buffer
coming from the data source, and upon arrival, it processes
the data and transmits it to the output. The already used buffer
will be returned to the data source, so it will be able to use it
again.

The implementation of the buffering is based on this
scheme in both the client and the server side code. On client
side the arrived data from the ”input” are coming from the
ADC and the DMA will signal if the data reception for a
buffer is read. The ”data source” is the input thread, and the
”data destination” is the client thread, and therefore when the
data are sent to the ”output”, it means it is sent through the
lwIP TCP/IP stack and put on the Ethernet network. On server
side the arrived data from the ”input” are actually coming from
the Ethernet network and the lwIP will signal if there are data
which can be processed. The ”data source” is the server thread,
and the ”data destination” is the output thread, that will send
data to the ”output” and therefore through the DMA out of the
DAC.

C. Protocol consideration

As for communication over the Ethernet network first
TCP/IP was considered because of it provides reliable, ordered
and of course error-checked delivery of data between client and
server [10]. Unfortunately even on a LAN the overhead of such
a complex protocol is too high. In our tests we saw that even

with the minimum number of circular buffers, and with the
smallest circular buffer size, it was only possible to reduce the
latency to approximately 18.5 ms. By taking into account that
the speed of sound is approximately 334 m/s, that means that
the noise source must be 18.5 ·10−3 ·334 approximately 6.2 m
away to reach the noise cancellation area at the same moment
as the TCP/IP packages arrived on the LAN. Therefore we
switched to User Datagram Protocol (UDP), as it is much
simpler, connectionless transmission model with the minimum
amount of protocol mechanism (e.g.: no handshaking) [11]. Of
course by using such a protocol there is a risk that we loose
packages, but considering that in a real-time application there
is not much time to handle lost or damaged packages it is not
a big restriction. By using UDP packages the latency of signal
path was reduced to approximately 3 ms, which means that
the noise source must only be 3 · 10−3 · 334 approximately
1 m away. This is an acceptable compromise, since for a
noise source in range of 1-2 m of the cancellation area, it is
anyway easier to use analogue cables, than Ethernet network
connection.

V. RESULTS

The setup for the measurement was based on the arrange-
ment in Fig. 1, the reference microphone was connected to the
ADSP-BF537 Ez-Lite Kit board via analogue cable. The data
were digitalized by the board and sent over Ethernet to the
counterpart board, that did the digital to analogue conversion
and fed the signal to the multichannel DSP card’s reference
input through a pre-amplifier. The multichannel DSP card was
also connected to an error microphone, and a loudspeaker.
These connections were analogue because the multichannel
DSP card was located near to the noise cancellation area. The
signal of the error microphone was measured with a sound
level meter, and divided in two, so making it possible to record
the error signal with the laptop. The source of the noise was
another loudspeaker, getting its signal from the laptop through
an external sound card.

The microphones used for the measurement are ECM8000
Behringer measurement microphones. The loudspeakers are
active monitor loudspeakers. The primary noise was a band
limited noise with a range from 100 Hz to 1000 Hz. The
resolution of the laptop’s external sound card was 44100 Hz
at 24 bit.

The experiments were carried out in a laboratory, which
is a 7.5 m × 5 m × 3 m room with moderate reflexions.
The primary noise source was located approximately 4 m
far from the cancellation area, while the error microphone
was set directly to the secondary loudspeaker. The reference
microphone was 1 m apart from the primary source.

The first measurement was the ”reference measurement”
and therefore the reference microphone was directly connected
with an analogue cable to the multichannel DSP card, replacing
so the Ethernet link for audio transmission.

Fig. 8 shows the result of the reference measurement. The
figure depicts the stochastic noise Sound Pressure Level (SPL)
change during the adaptation of the filter in decibel scale.
The raw SPL level was smoothed and every 100 samples of
SPL was replaced with the corresponding average SPL level,
therefore the unit of the x axis is sample/100. As it can be



0 5000 10000 15000 20000 25000 30000 35000
-7

-6

-5

-4

-3

-2

-1

0

sample/100 @ 44100 Hz

SP
L 

in
 d

B 
(C

-w
ei

gh
te

d)

Fig. 8. The ANC using microphone cables

0 5000 10000 15000 20000 25000 30000 35000
-7

-6

-5

-4

-3

-2

-1

0

sample/100 @ 44100 Hz

SP
L 

in
 d

B 
(C

-w
ei

gh
te

d)

Fig. 9. The ANC using audio over Ethernet

seen, the attenuation of the stochastic noise was approximately
6 dB, and it took the system more than 70 sec to settle.

The second measurement was the ”audio over LAN mea-
surement” and therefore the reference microphone was con-
nected via Ethernet link to the multichannel DSP card, instead
of an analogue cable.

Fig. 9 shows the stochastic noise Sound Pressure Level
(SPL) change in decibel scale during the adaptation of the
filter. This signal was also smoothed, and every 100 samples
of SPL was replaced with the corresponding average SPL
level, therefore the unit of the x axis is the same as before:
sample/100. As it can be seen, the attenuation of the stochastic
noise was almost the same: approximately 6 dB, and it took
the system more than 70 sec to settle. This means that the two
responses of the system are not significantly different, and in
the current setup the ELMS algorithm tolerates the network
latency. Note that the physical arrangement as well as the
algorithm has not been optimised for control purposes in this
acoustic environment. However the results are characteristic
for the development of a LAN-based ANC system.

VI. CONCLUSION

In this paper we have introduced a ”proof of concept” sys-
tem to show that it is feasible to use Ethernet communication
to transfer real-time audio data over the LAN in an ANC
system, making it possible to transfer the reference micro-
phones’ signal from a distant noise source without the need
of expensive analogue wiring, by using the already present
Ethernet network. Our system as shown in the measurement
results did not significantly deviated from the analogue wired
system, showing that if the sound propagation time from the
noise source to the cancellation area is more than the latency
on the network, then the ELMS algorithm is robust enough
and the result will be almost the same as in the analogue
wired case. The main goal of future work is to analyse the
system’s behavior with realistic network load, improve the
network package handling, and make the system more robust
against network load related problems (e.g. package lost).

ACKNOWLEDGMENT

This work was partially supported by the ARTEMIS JU
and the Hungarian Ministry of National Development (NFM)
in frame of the R5-COP (Reconfigurable ROS-based Resilient
Reasoning Robotic Cooperating Systems) project.

REFERENCES

[1] S. M. Kuo and D. R. Morgan, “Active noise control: A tutorial review,”
in Proceedings of the IEEE, vol. 87, no. 6, June 1999, pp. 943–973.

[2] K. Czyz and J. Figwer, “Suboptimal multichannel adaptive anc system.”
in IEEE Intelligent Systems and Computer Vision, vol. 14, July. 2007.

[3] S. Elliott and P. Nelson, “Active noise control,” in IEEE Signal
Processing Magazine, Oct. 1993, pp. 12–35.

[4] Analog Devices. (2015) Datasheets for the adsp-21262 sharc processor.
[Online]. Available: http://www.analog.com/en/processors-dsp/sharc/
adsp-21262/products/product.html

[5] Analog Devices. (2012) Datasheet for the ad773322 codec.
[Online]. Available: http://www.analog.com/en/audiovideo-products/
audio-codecs

[6] Analog Devices. (2015) Datasheets for the adsp-bf537 ez-lite kit.
[Online]. Available: http://www.analog.com/en/evaluation/bf537-ezlite/
eb.html

[7] S. J. Elliott, I. M. Stothers, and P. A. Nelson, “A multiple error
lms algorithm and its application to the active control of sound and
vibration.” in IEEE Transactions on Acoustics, Speech, and Signal
Processing, no. 10, Oct. 1987, pp. 1423–1434.

[8] Y. Kajikawa, W.-S. Gan, and S. M. Kuo, “Recent advances on active
noise control: open issues and innovative applications,” in APSIPA
Transactions on Signal and Information Processing, vol. 1, Aug. 2012.

[9] E. Widrow, B. Walach, Adaptive Inverse Control. Prentice Hall, Inc,
1996.

[10] RFC-793: Transmission Control Protocol, DARPA Std., 1981.
[11] RFC-7688: User Datagram Protocol, Std., 1980.


