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ABSTRACT

Fixed-pole second-order parallel filters provide an efficient way of implementing IIR filters with a logarithmic
frequency resolution. However, the fine frequency resolution needed at low frequencies can only be achieved
by poles near the unit circle. This may lead to large roundoff noise at low frequencies when the filters
are implemented using bit-depths of 24 bits or lower in fixed-point arithmetic. This paper investigates the
performance improvement when the parallel second-order sections are implemented as warped IIR filters. In
addition, an analytical expression is given for computing the warping parameter as a function of the pole
location of the original second-order section so that the quantization noise power is minimized.

1. INTRODUCTION
Fixed-pole parallel filters provide an efficient way of im-
plementing IIR filters with a flexible allocation of fre-
quency resolution [1]. The basic idea of parallel filters is
that the transfer function is composed of a parallel set of
second-order IIR filters having two poles and one zero,
and an optional FIR path, given as

H(z) =

K
∑

k=1

dk,0 + dk,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M
∑

m=0

bmz−m

(1)
whereK is the number of second order sections.

Traditionally, parallel second-order filters are obtained
from high-order IIR filters by partial fraction expansion
[2]. However, in the methodology of designing parallel
filters directly, it is important that the poles are prede-
termined. Fixing the poles leads to a linear-in-parameter
problem since only the numerator coefficients need to be
optimized in Eq. (1), which can be obtained by a least
squares fit in closed form [1]. An advantage of fixing the
poles is that this way we obtain a direct control over the
frequency resolution of the filter design; setting the pole
frequencies according to a logarithmic scale results in a
logarithmic frequency resolution, but of course applying
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Fig. 1: Loudspeaker-room response equalization: (a) un-
equalized loudspeaker–room response, and (b) equalized
by a parallel filter having 25 second-order IIR sections.
The thick lines show the third-octave smoothed versions
of the transfer functions, and the target specification is
displayed by dashed lines. The transfer function of the
equalizer is displayed in (c) by a thick line, while the
magnitude responses of the second-order sections are
shown by thin lines. The pole frequencies are displayed
with crosses. The curves are offset for clarity.

different resolution in various regions of the frequency
range is also possible.

For example, in loudspeaker-room equalization we may
wish to equalize the low-frequency room modes at a finer
detail compared to the high-frequency response of the
system. This is displayed in Fig. 1 where we have higher
pole density in the problematic region of room modes
(below 500 Hz) compared to mid and high frequencies,
as shown by the crosses indicating the pole frequencies
of the second-order sections. It can be seen in Fig. 1
(c) that the parallel equalizer provides a smooth over-
all response, without attempting to counteract the sharp
notches of the transfer function.

Note that besides using a predetermined pole set it is also
possible to allocate the poles by automatic procedures,
see [3] for the comparison of available methods.

2. QUANTIZATION NOISE PERFORMANCE

Independently of the pole positioning method, the fine
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Fig. 2: Quantization noise levels in third-octave bands
for the transfer functions of Fig. 1 (c) implemented us-
ing DF1 structure in 24 bit fixed-point arithmetic. Thin
lines show the noise levelsPk(fn) of the second-order
sections, while the total noise powerP (fn) in the third-
octave bands is displayed by a thick line as a function of
band frequencyfn.

frequency resolution needed at low frequencies for a log-
arithmic scale can only be achieved by poles near the unit
circle. If the second-order sections are implemented as
traditional direct form filters, this means that their quan-
tization noise will be boosted by either the all-pole part
or the complete transfer function, depending on the type
of implementation [2].

Figure 2 shows the quantization noise levels in third-
octave bands for the above equalizer as a function of
the center frequency of the third-octave bands for Direct
Form 1 (DF1) implementation using 24 bit fixed-point
(fractional) arithmetic.

The noise levels are computed analytically by assuming
a typical DSP architecture (quantization at the accumu-
lator), and modeling the quantization effects as uncor-
related additive white noise having the standard devia-
tion σn = 2−b+1/

√
12, whereb is the number of bits

[2]. In DF1 implementation there is only one summa-
tion (and thus quantization) point, and the output noise
power spectral densityEk(ϑ) of the sections is simply
the quantization noise power spectral density multiplied
by the square of the all-pole transfer functions, as shown
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in Eq. (2):

Ek(f) =

∣

∣

∣

∣

1

1 + ak,1e−jϑ + ak,2z−j2ϑ

∣

∣

∣

∣

2
σ2

n

fs/2
, (2)

whereϑ is the angular frequencyϑ = 2πf/fs, with fs

being the sampling rate.

Power spectral densities are not easy to interpret; on the
contrary, third-octave noise analysis is common in as-
sessing the performance of audio systems. The noise
power in third-octave bands is obtained by (numerically)
integrating the power spectral densities as

Pk(fn) =

∫ fnc

fn/c

Ek(f)df, (3)

wherec = 21/6 corresponds to a sixth-octave distance
from the band centerfn. The total noise powerP (fn) in
the third-octave band centered atfn is simply the sum of
Pk(fn) for all K, displayed by thick line in Fig. 2.

As a reference, a full-scale sine wave has the power of
−3 dB, and the total noise power summed for all the
third-octave bands is−70.7 dB, leading to anSNR =
67.7 dB. This is on the edge of being audible, since a
large part of the noise power is coming from low frequen-
cies, where the audibility threshold is higher. Of course
it is practical to have some headroom so typical program
material will have less power than−3 dB, decreasing
the signal-to-noise ratio. Also, with lower bit-depths, the
corresponding curves of Fig. 2 are shifted: a 20 bit im-
plementation would mean all noise levels moved up by
24 dB.

On the other hand, when using 32 bit arithmetic, the
noise levels are moved by−48 dB, so it is unlikely that
quantization noise will cause any performance degrada-
tion.

3. WARPED IMPLEMENTATION

A common solution to fight against quantization noise is
to implement the second-order sections by special filter
structures (e.g., Kingsbury or Zölzer) instead of the usual
direct or transposed forms [4]. Of course this leads to an
increase of computational complexity; therefore it is sug-
gested to implement only the problematic low frequency
sections in a special form.

This paper investigates the performance improvement
when the problematic second-order sections are imple-
mented as warped IIR filters. In warped IIR filters, the

Fig. 3: Second-order warped IIR structure based on [5].
The ei(n) are the independent noise sources modeling
quantization noise, andsi(n) are the impulse responses
that are used for computing the necessary scaling1/S.

unit delays of traditional IIR filters are replaced by the
all-pass filter

D(z) =
z−1 − λ

1 − λz−1
(4)

where the warping parameterλ allows the distortion of
the frequency axis [5]. Because of these additional all-
pass filters, warped IIR implementations require special
structures and thus around two times more computational
resources compared to direct from IIR filters [5]. There-
fore, warped IIR filters are often converted to direct-form
filters [5], or to series or parallel second-order sections
[6]. Here we make the opposite: we convert the direct
form second-order sections to warped implementations
using the equations of [6] with a negative warping para-
meter−λ. Now the question arises how this influences
the quantization noise performance.

Figure 4 shows the third-octave-band noise levels when
the second-order sections are implemented by warped
IIR structures displayed in Fig. 3 withλ = 0.9. The
noise levels were computed similarly to the DF1 case
with the difference that now an input scaling1/S is ap-
plied so that none of the summation pointssi(n) of the
warped IIR structure go to overload. This is because in
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Fig. 4: Quantization noise levels in third-octave bands
for the transfer functions of Fig. 1 (c) implemented using
second-order warped IIR sections in 24 bit fixed-point
arithmetic withλ = 0.9. Thin lines show the noise levels
Pk(fn) of the second-order sections, while the total noise
powerP (fn) in the third-octave bands is displayed by a
thick line as a function of band frequencyfn.

WIIR structures internal overflow can happen even if the
total transfer function of the section is below 0 dB at all
frequencies. In addition, since there are more quantiza-
tion points, the output noise powers of the sections are
computed as a sum of independent noise sourcesei(n)
all filtered by the square of the respective transfer func-
tions. The noise transfer functions are computed numer-
ically by taking the Fourier-transform of the impulse re-
sponses from the quantization noise sourceei(n) to the
output.

It can be seen in Fig. 4 that forλ = 0.9 noise per-
formance improves radically at low frequencies, while
worsens in the high frequency range. The total noise
power is−91.7 dB, leading to a20 dB improvement
compared to the DF1 case.

4. OPTIMIZING NOISE PERFORMANCE

There is no practical constraint forcing theλ values being
the same for all sections: next we investigate the effect
of having individualλk values. For this, an optimiza-
tion routine has been developed that searches for theλk

parameter for each second-order section so that the total
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Fig. 5: Quantization noise levels in third-octave bands
for the transfer functions of Fig. 1 (c) implemented by
second-order warped IIR sections in 24 bit fixed-point
arithmetic using optimizedλk for all sections. Thin lines
show the noise levelsPk(fn) of the second-order sec-
tions, while the total noise powerP (fn) in the bands is
displayed by a thick line as a function of band frequency
fn. The dashed line shows the total noise power when
the analytical̃λk parameters obtained from Eq. (5) are
used instead of the numerically optimizedλk values.

noise power (sum of all third-octave bands) is minimized
for that section. The obtained noise performance for the
same room equalizer is displayed in Fig. 5.

It can be observed that the noise levels are decreased rad-
ically due to the optimization, the total noise power be-
ing −113.5 dB. This means that even implementing the
equalizer using 20 bit arithmetic (curves shifted up by 24
dB) would give acceptable noise levels.

The λ values found by the optimizer are displayed in
Fig. 6 solid line. The question arises whether there is any
underlying reason that explains why a particular lambda
value produces the lowest noise for a specific pole fre-
quency. By observing the poles after frequency warping,
it turns out that the warped pole angle is almost 90 de-
grees for all cases. It can be shown that the warped pole
p̃k has exactly 90 degrees angle (zero real part) when the
following quadratic equation is satisfied:

λ̃2
kRe{pk} + λ̃k(−1 − |pk|2) + Re{pk} = 0. (5)
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Fig. 6: Optimizedλk values used for computing the
noise powers of Fig. 5 as a function of the analog pole
frequencies of the second-order sections. Solid line: nu-
merically optimized values, dashed line: analyticλ̃k pa-
rameters computed using Eq. (5).

From the resulting two roots, the one with|λ̃k| ≤ 1 has
to be chosen. Figure 6 dashed line displays the analytical
λ̃k values computed by solving Eq. (5), showing a good
match.

Even more convincing is the total noise level computed
using the analytical̃λk values, shown by dashed line in
Fig. 6, being almost indistinguishable from the numeri-
cally optimized noise performance (solid line). Similarly
accurate match has been observed for other design exam-
ples, justifying the use of Eq. (5) for computing the opti-
mal warping parameter of second-order sections instead
of a more complex noise optimization routine.

5. CONCULSION

This paper has shown that a significant improvement in
quantization noise performance of second-order IIR fil-
ters can be achieved when implementing them as warped
IIR structures. For the example showed in this paper,
more than40 dB improvement has been achieved, and
similar improvements have been observed for other de-
sign cases. This comes at a price of larger computational
complexity, however, this might be outweighed by the
fact that the need for larger bit-depth is eliminated. In
addition, it is suggested that only the problematic sec-

tions are implemented as warped IIR filters. In Fig. 2 the
crossover frequency would be at around 200-300 Hz.

In addition to showing the roundoff noise benefits using
warped implementations, an analytical formula for com-
puting the optimal lambda parameter as a function of the
original pole location has been given, showing negligible
performance loss compared to the numerically optimized
value.

We note that warped implementations can improve the
noise performance of parallel and series IIR filters in the
same way when they are computed by factoring high-
order transfer functions, not only for the fixed-pole de-
sign used as an example in this paper.

Future research includes performing the optimization by
using ITU-R 468 and A noise weighting that would bet-
ter reflect the audibility of quantization noise.
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