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Abstract

László Balogh
“Model Fitting in Frequency Domain Imposing Stability of the Model”

PhD thesis

Most signal processing methods can be formulated equivalently in both time and fre-
quency domains. In this thesis we focus only on frequency domain algorithms. Parts of
two signal processing topics are investigated: approximation and identification problems.
Although they use very different tools and have different goals, still, there are similarities.

The two problems are in fact consecutive steps of an identification procedure. The first
step is the unconstrained estimation of the model parameters from noisy measurement
data. The result is a validated model with uncertainty bounds. If the validated model
is unstable, then the identification step is followed by an approximation step where the
validated model is approximated by a stable one. The final result is a stable model with
bias error and uncertainty bounds. The topics of this thesis are the stable approximation
and the identification method of linear dynamic systems.

The contribution to the first step is the following. To improve the numerical stability of
identification algorithms the parameter space is usually transformed. If any constraint of
the parameter space is imposed then it must be transformed, too. In the case of so-called
total least squares estimator a theoretical gap is filled by showing how the constraints can
be transformed. Variations of the method are also analyzed.

Next, contributions are made to the second step of the identification procedure. In
simulation and prediction applications unstable models are usually undesirable. To over-
come this problem the unstable transfer function must be approximated by a stable one.
Approximation theory has rich literature, nevertheless there are lots of open questions. A
natural solution to this problem is imposing constraints on the poles such that they are
guaranteed to lie in the stability region. Another possible solution consists in adding an
appropriate delay to the target function. Its main disadvantage is that it can be used for
open-loop configurations only. But a strong benefit is that the resulting parameter vector
of the minimization algorithm determines a stable model without imposing any constraint.

A practical and a theoretical contribution in the field of the stable approximation
are presented in the thesis. This dissertation presents a theorem which guarantees the
existence of a delay added to a target function for second order systems such that the
approximation is stable. Under some reasonable assumptions the theorem is extended to
systems of arbitrary order. Moreover, a new numerical algorithm which is capable to find
the appropriate stable approximation is proposed and analyzed. The thesis also compares
the results with those found in the literature.
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Kivonat (Abstract in Hungarian)

Balogh László
„Nem stabil átviteli függvények stabil approximációja”

PhD értekezés

A jelfeldolgozási módszerek idő vagy frekvencia tartományban működnek. A legtöbb
módszer mindkét tartományban felírható ekvivalens módon, esetünkben frekvencia tar-
tománybeli algoritmusokat tárgyalunk. A dolgozatban két témakörről találhatóak ered-
mények: stabil approximációs problémákról és egy identifikációs módszerről.

A két probléma az identifikációs folyamat egymás követő lépései. Először zajos mérési
adatokból a modell paraméter becslését végezzük el. Az eljárás eredménye egy validált
modell és a modell paramétereinek szórása. Lehetséges, hogy a modell nem stabil, ezért egy
stabil approximációs eljárást alkalmazunk. A végső eredménye egy stabil modell, valamint
a modell paramétereinek szórás, illetve a torzításának felső becslése.

Az identifikációs folyamat első lépéshez a dolgozat következő eredménye tartozik. Az
identifikációs módszerek alkalmazása során sokszor transzformáljuk a paraméter vektorok
terét, hogy a számítási pontosságot és a numerikus stabilitást növeljük. Amennyiben a
paraméter vektorra feltételekkel is megfogalmazunk, akkor azokat is transzformálni kell.
Az úgy nevezett total least squares becslő esetében megmutatjuk, hogyan kell a feltételeket
transzformálni. A dolgozat a módszer további változatait is elemzi.

Az identifikáció folyamat második lépéséhez tartozó eredmények a stabil approximá-
ció témakörébe tartoznak. A gyakorlati alkalmazásokban a nem stabil modellek általában
nem használhatóak. A probléma egyik megoldása, ha a nem stabil átviteli függvényt egy
stabillal approximáljuk. Az approximációs elméletnek gazdag irodalma van, mindemel-
lett sok nyitott kérdés van. Egy lehetséges megoldása a stabil approximációnak lineáris,
időinvariáns rendszerek esetén az, ha a célfüggvényhez késleltetést adunk. Ennek a leg-
nagyobb hátránya az, hogy csak nem visszacsatolt rendszerek esetén tudjuk az eredményt
használni. Ám egy nagy előnye a megközelítésnek, hogy a költségfüggvény minimuma
egy stabil rendszert határozhat meg anélkül, hogy bármilyen megkötést alkalmaznánk a
minimalizáló eljárás során.

A disszertációban bebizonyítunk egy tételt, amely kimondja, hogy ha elég nagy késlel-
tetést adunk bármilyen másodfokú átviteli függvényhez, akkor az approximáció négyzetes
költségfüggvényének minimuma egy stabil rendszert határoz meg. Az általános esetet be-
bizonyítjuk olan feltételek mellett, amelyeket gyakorlati tapasztalatok támasztanak alá.
Tovább bemutatunk és megvizsgálunk egy olyan eljárást, amely képes megtalálni az em-
lített stabil illesztést. A dolgozat összehasonlító elemzést is végez az irodalomban fellelhető
módszerekkel.
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Glossary of Symbols

Symbols

A Data matrix of the TLS problem.
Am Corrected data matrix of the TLS problem.
∠ Angle of a complex number.
C Complex plane.
C Covariance of A.
Cm Covariance of Am.
D(Ω, θ) Denominator of H(Ω, θ).
ejω Complex frequency in z-domain.
E Expected value operator.
F Number of frequencies.
H0(Ω) Real transfer function in estimation problems.
H(Ω, θ) Estimation or approximation of the transfer function.
Im{} Imaginary part of a complex number.
L2 Space of the square integrable functions.
µ Lebesgue measure.
nα Order of the denominator.
nβ Order of the numerator.
N(Ω, θ) Numerator of the transfer function H(Ω, θ).
jω Complex frequency in s-domain.
Ω Generalised frequency.
R Real line.
Re{} Real part of a complex number.
R(A) Range of the matrix A.
Res Residue of a complex function.
Rr(x) Fortshyte orthogonal polynomials.
T Unit circle.
τ Delay.
θ Parameter vector.
T (Ω) Target function in approximation problems.
z Complex variable.
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Chapter 1

Introduction

1.1 A Note of Clarification

The thesis presents results from two separate fields in system identification, which are
related by the fact that both were part of my doctoral work. They mirror the fact that
my involvement had changed along the way. The order of the topics is reversed compared
to the chronological order.

In this work a two-step identification procedure is presented. In the first step, an
unconstrained model is identified from measured data. The result of this step is a validated
model with uncertainty bounds. If the validated model is unstable, then an additional step
is performed. In the second step the unstable validated model is approximated by a stable
one and the result is a stable model with bias error bounds. The end result of both steps
is a stable model with bias error and uncertainty bounds. In this thesis problems from
both steps are investigated and solved. The correction of the total least square method
belongs to problems from the first step of the identification procedure. The contribution
to the second step is a special algorithm which solves the stable approximation problem
by adding a delay to the target function. A theoretical result and a practical algorithm
are presented.

1.2 Stable Approximation with Additional Delay

The increase of the computation speed and precision of computers allows to solve more
complex problems than before. However, without proper algorithms the computational
complexity cannot be decreased. For several digital signal processing problems it is easy to
formulate the problem but it is very hard to solve it. The stable approximation problem
in frequency domain is one of the examples.

Approximation and design are closely related. Designing a filter always means that a
parameter vector which is the best in some sense should be determined. And it is exactly
the same in approximation problems. Hence, we will use these terms interchangeably.
Filter designs can be done in time or in frequency domain. Filter specification is more
common in the frequency domain because design constraints can be directly formulated
by using simple functions of the frequency domain. Stable approximation is a design

1



2 1.3. CORRECTION OF THE TOTAL LEAST SQUARES METHOD

technique in which the ultimate goal of the approximation approach is to obtain a stable
model. The theory and the practise of approximation is very rich and there is no chance
to put everything in a thesis with limited size. The models or the systems in this work
are linear and time invariant, [Oppenheim et al., 1983]. In spite of the numerous theorems
about these systems there are many open questions.

Finite impulse response (FIR) filters are always stable. Stability problems may occur
during the design of an infinite impulse response (IIR) filter. To overcome this problem
several methods were proposed. The pole-constrained IIR filter design method is a modifi-
cation of the well-known Ellacott-Williams algorithm [Ellacott and Williams, 1976b] which
is based on [Deczky, 1972]. Unfortunately, in lots of cases imposing constraints leads to
bad approximation. Hence, in some cases other methods must be used. Practical examples
show that if a delay is added to the target function, then the final model which is the result
of the approximation might be stable. An intuitive description of this phenomenon was
presented in [Johnson, 1978]. However, a strict mathematical proof was not available.

[Vuerinckx, 1998] presents a new practical algorithm which can find a delay that must
be added to the target function such that the obtained parameter vector determines a
stable model. Although for all examples studied in [Vuerinckx, 1998] it was found that
adding a delay to the target function stabilizes the approximation, no exact mathematical
proof of this conjecture was given.

In this thesis a theorem is proved which guarantees for second order systems that if
enough delay is added to the target function, then the approximation is stable. The proof
is valid for a continuous frequency interval only, but there is a same consequence for a finite
frequency grid because arbitrary good approximations of the corresponding integrals can
be obtained by increasing the dense of the frequency grid. For higher order systems the
proof is extended using reasonable assumptions which are based on practical experience
with many approximation/filter design problems. Moreover, a new practical algorithm is
presented to find the optimal delay value.

1.3 Correction of the Total Least Squares Method

The so-called least squares (LS) method is very popular and used in lots of applications.
In the case of the LS method we assume that only the right hand side of the normal
equations is noisy. A possible extension is the total least squares (TLS) method in which it
is supposed that both the right hand side and the system matrices are corrupted by noise
[Van Huffel and Vandewalle, 1991]. The TLS method has several applications, too. This
thesis focuses on the TLS method in frequency domain system identification.

Identification is a statistical method to determine parametric or non-parametric vari-
ables of a system. Like everything from digital signal processing, there are methods which
are working in the time-domain and algorithms which are processing frequency domain
data. The time domain methods are summarized in [Ljung, 1999]. Methods of the fre-
quency domain system identification are described firstly in a book in 1991, [Schoukens
and Pintelon, 1991]. After more than 10 year long research a new book was published,
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[Pintelon and Schoukens, 2001]. The second book already contains the introduction and
the analysis of the TLS method in frequency domain system identification.

Through an identification approach, the space of the possible parameter values is usu-
ally transformed. The aim might be to increase the numerical stability. A subset of this
kind of transformations is the linear mapping which is nothing else than a basis trans-
formation. The TLS estimation is equivalent to solving of a set of linear equations and
imposing a constraint on the length of the parameter vector. The second part of the thesis
is about the transformation of the constraint.

1.4 Structure of the Thesis

Every chapter was written such that it can be read independently. Cross-relation between
chapters was unavoidable but endeavored to be minimized.

Chapter 2 introduces the frequency domain. The Fourier transformation is defined for
the L1 and L2 cases. Moreover, the so-called Hardy spaces are presented. After that, the
subset of models which are used in the thesis can be found. This chapter is the common
ground of the stable approximation and the identification in frequency domain.

Chapter 3 reviews the already existing and published method pertaining to stable
approximation and identification problems. It contains not only stabilization procedures
with additional delay but also methods in which no additional delay is allowed.

The complete chapter 4 is about an existence theorem and its consequences. The
theorem says roughly that if in the case of low order systems enough delay is added to
the target function, then the result of the optimization without imposing any constraint
determines a stable model.

After that, in chapter 5 a numerical algorithm is presented. Numerical tools of ordinary
differential equations are applied to develop a new search algorithm. Examples are shown
to present its effectiveness.

The topic of the chapter 6 is the exploration of the TLS method which is a very effective
tool in frequency domain system identification, and showing an extension which enables
us to discuss the transformations in a common framework.

Finally, chapter 7 presents conclusions and suggests possible directions for future re-
search.





Chapter 2

The Frequency Domain

The object of this chapter is to introduce the basic tools used in this thesis in which
an approximation problem and an identification problem are investigated deeply in the
frequency domain. In contrast to the time domain in this world representations of real
quantities, function, etc. are complex. The algorithms and the problems differ from
the ones in the time domain. Therefore the main aim of this chapter is to clarify the
mathematical background and to introduce some notations which are in the intersection
of studied identification and approximation problems.

First, the Fourier transformation is introduced. The importance of this tool is well
known. Here different versions are studied and the most important properties are described.
In the next section the so-called Hardy spaces are investigated and the origin and the basics
of approximation problems in the frequency domain are established. The third section
is about the models used throughout identification and approximation in the frequency
domain. After that, a short description about the similarities of and the differences between
identification and approximation is given.

2.1 Fourier Transform

The Fourier transform is a common concept in mathematics. This is a tool of complex
analysis, functional analysis, differential equations and so on.

Definition 2.1.1 (Fourier Transform, L1 case). Let f(x) : R 7→ C denote a function from

the space L1 then the Fourier transform F(f) = F (y) of this function is

F(f) = F (y) =

∫ ∞

−∞
f(x)e−j2πxydx, (2.1)

where y ∈ R, j =
√
−1 and F (y) ⊂ C.

Informally, a L1-function is a function f : R 7→ C that is absolute integrable, i.e.

∫ ∞

−∞
|f(x)|dx <∞, (2.2)

5
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where the integral is in Lebesgue sense. It can be seen that the function f(x) and the
image function F (y) have the same domain (R) and the same image (C).

However, sometimes functions are in the L2 space. The L2(I) with I ⊂ R denote the
space of all square integrable and Lebesgue measurable functions

L2(I) =

{
f(x) :

∫

I
|f(x)|2dx <∞

}
(2.3)

and the norm on this space is

‖ f ‖2=

√∫

I
f(x)f∗(x)dx, (2.4)

where star denotes the complex conjugation. This norm can be inherited from a scalar
product which is by definition

< f, g >:=

∫

I
f(x)g∗(x)dx (2.5)

for f, g ∈ L2(I). The definition of L2 is L2 = L2(−∞,∞).

The Fourier transformation can be extended to this case [Titchmarsh, 1937]. Without
going into details this extension is by definition the same with (2.1) if f(x) ∈ L1 ∩ L2.
One of the main advantages of the function space L2 is that it is a so called Hilbert space
[Rudin, 1991], so the norm can be inherited from a scalar product. In the background in
every engineering application the Fourier transform of the space L2 is used because of its
good properties. For example, the Parseval relation can be defined in the space L2 only.
Moreover, the image functions of the space L2 constitutes an L2 space again. In the case
of the L1 space the Fourier transform of a uniform impulse function can be defined but the
image which is a sinc function is not in L1. This is not a problem in the case of L2 space.

Summarizing the properties of the L2 Fourier transform:

• Its domain has more importance in the practical functions.

• It is a linear, unitary operation F : L2 7→ L2. (A unitary operator is a bounded
linear operator F on a Hilbert space satisfying FF∗ = F∗F = Identity where F∗ is
the adjoint of F.)

• The scalar product operation is preserved (Parseval relation):

< F(f),F(g) >=< f, g > . (2.6)

Definition 2.1.2 (Discrete Time Fourier transformation). If the measure in (2.1) is dis-

crete then the definition can be written replacing integral by sum

F(f) = F (y) =

∞∑

n=−∞

f(n)e−j2πny, (2.7)
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where f(n) : Z 7→ C.

In this case the image of a function, which is called the Fourier transform of a function,
is not the same kind of function than the original one. It results that in the discrete
case the Fourier spectrum is again a continuous function. Moreover, the discrete Fourier
spectrum is a periodic function.

In a digital device the continuous spectrum cannot be handled. Instead of using a
continuous frequency interval only some points of this domain are used. The spectrum
definition in (2.7) is evaluated at some frequency points, only. In a practical application
only finite many samples are available so the transformation becomes simpler. The name
of the resulting transformation is the discrete Fourier transform (DFT).

Definition 2.1.3 (Discrete Fourier transform).

F (fl) =

Nt∑

k=1

x(tk)e
−j2πtkfl , l = 1, . . . , Nf (2.8)

where Nt is the number of the samples in time domain, Nf is the number of elements in

the frequency grid, fl is an element from the finite frequency set and tk is an element from

the finite time grid.

The well known expression of DFT is a special case of (2.8). If x(k) denotes x(tk),
F (fl) is denoted by F (l), Nf = Nt, tk = kTs, fl = l fs

N , then

F (l) =

N∑

k=1

x(k)e−j2πkTsl fs
N =

N∑

k=1

x(k)e−j2π kl
N (2.9)

using the fact fs = 1
Ts

.
It is important that sometime only the spectral representation is considered and in this

case the Fourier transformation is needless.
In the case of DFT the scalar product is

< F,G >=

Nf∑

l=1

F (fl)G(fl) (2.10)

where Nf is the number of the frequency points. And the scalar product defines a norm
which can be used in the practical cases.

In this section the basic definitions of the Fourier transform were shown. The next
section introduces the Hardy spaces which completes the theory of the Fourier transform.
The connection between the time domain and the frequency domain is either the Laplace
transformation or the z-transformation. The presented definitions of the Fourier transform
are special cases of these two transformations but in this thesis only these special cases,
in which domains of the transformations (in z-domain the unit circle, in s-domain the
imaginary axes) are the stability bounds, are investigated. This is the reason why later s-
and z-domain are taken into account.
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Here, the bridge between the s-domain and z-domain is the well-known sampling the-
orem [Schnell, 1993]. The theorem assumes that s-domain signals have finite band width,
which means that signals contain no energy above a certain specified maximum frequency.
It is called band limited signal assumption which differs from, for example, using a zero-
order-hold (ZOH) reconstructor.

2.2 Hardy Spaces

In the previous section the basic Fourier transforms are investigated and elaborated. Now,
the results are extended and more properties are shown. The introduction of the so-called
Hardy spaces gives insight to classify the different algorithms in the topic of stable approx-
imation. This approach allows to study the space of functions obtained by appropriate
Fourier transform and to show the bridge between the s- and z-domain.

Unfortunately, the notations can be different in various articles, books and communities.
Here, mainly the notation introduced in [Baratchart et al., 1992], [Zhou et al., 1995] are
adopted because of extensive use in the next chapter.

Firstly, an important note from complex analysis is cited [Rudin, 1976].

Note 2.2.1. [About conformal mapping] Two regions in the complex plane are called con-

formally equivalent if they are analytically isomorphic, that is, if there exists a one-to-one

analytic mapping of the first domain onto the second (whose inverse is then automatically

analytic). Using conform functions we can construct a map between C → C where the

image set of a circle or a line is again a circle or a line. This property shows us that this

map f(z) has the following form:

f(z) =
az + b

cz + d
. (2.11)

Using this we can construct a conformal map between the s-domain and z-domain where

the stability bounds are equivalent (Möbius transform): (z − 1)/(z + 1).

This note says that the z-domain and s-domain are the same from this point of view.
Let D denote the open unit disc in the complex plane C. That is, D = {z ∈ C, |z| < 1}.
Let us denote U the complement of the closure of the unit disc in the closed complex plane
C. That is, U = {z ∈ C, |z| > 1}. If f is an analytic function on D, and r ∈ (0, 1), denote
f (r) a function on [0, 1], defined by f (r)(ϑ) = f(rej2πϑ). Clearly f (r) is continuous, and
periodic. Let

‖f (r)‖2 =

(∫ 1

0
|f (r)(ϑ)|2dϑ

) 1
2

=

(∫ 1

0
|f(rej2πϑ)|2dϑ

) 1
2

. (2.12)

Definition 2.2.1. H2(D) (called a Hardy space) denotes the set of all analytic functions f

on D for which

‖f‖ = sup
r

‖f (r)‖2 <∞. (2.13)
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H2(D) is nonempty, as it contains the polynomials. H2(D) is a Hilbert space, with the
inner product

< f, g >= lim
r→1

∫ 1

0
f(rej2πϑ)g∗(rej2πϑ)dϑ. (2.14)

If we write the power series (Taylor) expansion, converging for |z| < 1,

f(z) =
∑

k≥0

akz
k, (2.15)

if follows from Parseval’s equality that ‖f (r)‖2
2 is equal to

∑

k≥0

|ak|2r2k, (2.16)

so that f belongs to H2(D) if and only if

∑

k≥0

|ak|2 <∞. (2.17)

Therefore there exists a one-to-one map between the Hardy space H2(D) and the subspace
of L2(T) consisting of functions whose Fourier coefficients of negative rank are zero. This
correspondence associates with f defined by (2.15) the function F in L2(T) defined by

F (ej2πϑ) =
∑

k≥0

ake
jk2πϑ. (2.18)

Thus, by definition, the coefficients of the power series expansion of f at zero are the
Fourier coefficients of F . F is the natural extension of f to the boundary D, namely the
unit circle T. This allows us to consider H2(D) as a closed subspace of L2(T).

Like above, the Hardy space H2(U) can be defined.

Definition 2.2.2. The Hardy space H2(U) is the space of functions f , analytic on U, and

satisfying

sup
r>1

(∫ 1

0
|f(rej2πϑ)|2dϑ

) 1
2

<∞. (2.19)

If we write the power series (Laurent) expansion, converging for |z| > 1,

f(z) =
∑

k≥0

a−k

zk
, (2.20)

if follows that the integral in the left hand-side of equation (2.19) is equal to

∑

k≥0

|a−k|2
r2k

, (2.21)
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so that f belongs to H2(U) if and only if

∑

k≥0

|a−k|2 <∞. (2.22)

Therefore there exists a one-to-one map between the Hardy space H2(U) and the subspace
of L2(T) consisting of functions whose Fourier coefficients of positive rank are zero. This
correspondence associates with f defined by (2.20) the function F in L2(T) defined by

F (ej2πϑ) =
∑

k≥0

a−ke
−jk2πϑ. (2.23)

Thus, by definition, the coefficients of the power series expansion of f at infinity are the
Fourier coefficients of F . F is the natural extension of f to the boundary U, namely the
unit circle T. This allows us to consider H2(U) as a closed subspace of L2(T). This again
proves that H2(U) and H2(D) are Hilbert spaces.

In this thesis only the functions returning real values for real arguments are investigated.
They are real subspaces of Hardy spaces H2(D), H2(U). It means that they inherit a
structure of real Hilbert space. Let us denote the corresponding real subspace of H2(U) by
H+

2 and the corresponding real subspace of H2(D) byH−
2 . Moreover, let L2,R(T) denote

the real subspace of L2(T). Thus the following orthogonal decomposition is true:

L2,R(T) = H+
2 ⊕H−

2 (2.24)

where ⊕ denotes the direct sum. The scalar product on L2,R(T) is by definition

< f, g >=

∫ 1

0
f(ej2πt)g∗(ej2πt)dt =

1

2πj

∫

T

f(z)g∗(z)
dz

z
. (2.25)

And this induces the Hardy norm on H+
2 and H−

2 .

There is an another way to introduce the Hardy spaces as subspaces of L2,R(T). Instead
of investigating the Fourier coefficients the time domain representation of signals are used.
Without going into details we simply remark that in this case the following subspace
decomposition is applied:

l2 = l+2 ⊕ l−2 , (2.26)

where the space l2 is defined as

l2 =

{
{ak}k=−∞,...,∞

∣∣∣∣∣

∞∑

k=−∞

|ak|2 <∞
}
, (2.27)

the subspaces l+2 and l−2 are defined as

l+2 = {{ak}k=−∞,...,∞ ∈ l2 | ak = 0 if k < 0} , (2.28)

l−2 = {{ak}k=−∞,...,∞ ∈ l2 | ak = 0 if k ≥ 0} . (2.29)
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The subspace H+
2 can be identified with the subspace l+2 and the subspace H−

2 can be
identified with the subspace l−2 by using the z-transformation.

Between linear subspaces a linear transformation can be defined. If the image of the
whole space is a subspace then it is a projection. In Hardy spaces the projections P+ and
P− can be defined.

P+ : L2(T) 7→ H+
2 ,

P− : L2(T) 7→ H−
2 . (2.30)

For complete description the s-domain case is also introduced where the space L2 is
studied. The projection spaces are L+

2 := L2[0,∞) which is a subspace of L2 with function
zero on the negative real numbers. The projection spaces are L−

2 := L2(−∞, 0] which is a
subspace of L2 with function zero on the positive real numbers.

The Hardy space H+
2 is by definition a closed subspace of L2(jR) with functions F (s)

analytic in Re{s} > 0 (open right-half plane). The corresponding norm is defined as

‖F‖2 = sup
σ>0

(
1

2π

∫ ∞

−∞
F (σ + jω)F ∗(σ + jω)dω

)
. (2.31)

It can be shown that

‖F‖2 =
1

2π

∫ ∞

−∞
F (jω)F ∗(jω)dω. (2.32)

Similarly, the H−
2 is by definition the orthogonal complement of H+

2 , by name the functions
F (s) analytic in Re{s} < 0. Figure 2.1 and 2.2 show graphically the relation of different
Hardy spaces.

L2,R(jR)

P−

L2(−∞, 0)

L2(−∞,∞)

L2[0,∞) H+
2

H−

2

P−

Laplace Transform

Inverse Transform

Laplace Transform

Inverse Transform

P+ P+

Laplace Transform

Inverse Transform

Figure 2.1: Relationship among function spaces in s-domain.
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L2(T)

P− P−

H+
2l+2

P+ P+

l2

H−

2l−2

Inverse Transform

Inverse Transform

Inverse Transform

Z Transform

Z Transform

Z Transform

Figure 2.2: Relationship among function spaces in z-domain.

Another important Hardy space in s-domain is the space L∞(jR). This is a Banach
space, but has no identity element. The norm of the function F

‖F‖∞ = ess sup
ω∈R

{F (jω)} (2.33)

where ess sup is the essential supremum which is by definition

ess sup
f(x)

= inf{K : µ({x : |f(x)| > K})} (2.34)

where µ is the measure.

The rational subspace H+
∞ of L∞ consists of all rational proper transfer function with

no poles on the imaginary axis. H+
∞ is a closed, real subspace in L∞ with functions that

are analytic in the open right-half plane and bounded on the imaginary axes. The H+
∞

norm is defined as

‖F‖∞ = sup
Re{s}>0

{F (s)} = ess sup
ω∈R

{F (jω)}. (2.35)

The rational subspace H−
∞ of L∞ consists of all rational proper transfer function with no

poles on the imaginary axis. H−
∞ is a closed, real subspace in L∞ with functions that are

analytic in the open right-half plane and bounded on the imaginary axes. The H−
∞ norm

is defined as

‖F‖∞ = sup
Re{s}<0

{F (s)} = ess sup
ω∈R

{F (jω)}. (2.36)

In the case of discrete time the Hardy space L∞,R(T) can be defined similarly.
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2.3 Systems and models

In this thesis linear, time invariant systems are studied in continuous (t = R) and discrete
(t = Z) cases. Systems are analyzed in the well-known representation: in the frequency
domain. In the previous sections the Fourier transformation and the Hardy spaces are
investigated. Now, the applied systems are described. Since every linear, time invariant
system can be determined by its impulse response, a nice characterization in the frequency
domain can be given using tools from the previous subsections. The key of this representa-
tion is the Fourier transform which connects the systems represented in time domain with
the system represented in frequency domain [Söderström and Stoica, 1989].

The systems presented in this section are elements of the corresponding Hardy spaces.
We study functions from the real Hardy subspaces L2,R(T), H+

2 , H−
2 . The reason is that

in the nature only real quantities can be found.

Most of the system in real life is nonlinear and time variant. But in most cases they
can be approximated well by linear, time invariant models. Linear, time invariant and
continuous time systems can be described by differential equations

y(t) +

nβ∑

r=1

βr
dry(t)

dtr
=

nα∑

r=0

αr
dru(t)

dtr
(2.37)

where y(t) ∈ R is the output, u(t) ∈ R is the input function, βr ∈ R and αr ∈ R are
the model parameters. Linear time invariant, discrete time system can be described be
difference equations

y[t] +

nβ∑

k=1

βky[t− kTs] =

nα∑

k=0

αku[t− kTs], (2.38)

where Ts is the sampling time. In both cases system equations (2.37) and (2.38) can be
transformed into the following forms (if nα ≤ nβ):

dx(t)

dt
= Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (2.39)

or

x[t+ 1] = Ax[t] +Bu[t]

y[t] = Cx[t] +Du[t]. (2.40)

The name of these representations is state-space variables. A ∈ R
n×n is the state matrix,

B ∈ R
n×1 is the input matrix, C ∈ R

1×n is the output matrix, and D ∈ R
1×1 is the direct

term, giving the instantaneous input-output interaction. The state-space representation is
not unique. If T is a non-singular matrix, then T−1AT , T−1B, TC, D matrices describe
the same system.

The relationship between the transfer function and the state-space variables can be
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obtained by taking the Laplace transform or the z-transform. The transfer function is

H(Ω) = D + C(ΩI −A)−1B (2.41)

where Ω denotes the generalized frequency. In the discrete time case ω = [0, 2π], therefore
the function ejω maps this interval to the unit circle of the complex plane C. In the
continuous case ω = R hence the function jω maps the whole real axes to the imaginary
axes. As a matter of fact this transformation is a rotation on the complex plane. It is very
important to note that in both cases the frequency domain is continuous.

The poles of H(Ω) are the subset of poles of (ΩI−A)−1. The denominator polynomial
L(Ω) of (ΩI −A)−1 can be obtained by using the Cramer’s rule for the matrix inverse, i.e.

L(Ω) = det(ΩI −A). (2.42)

L(Ω) is the characteristic polynomial of the matrix A. In the case of Ω = jω the set of
eigenvalues of A, which are the roots of L(λ), can be separated into two parts:

• λ1, . . . , λu with real part larger than zero,

• λu+1, . . . , λn with real part smaller than zero.

In the case of Ω = ejω the following sets are constituted

• eigenvalues λ1, . . . , λu that are outside of the unit disk,

• λu+1, . . . , λn that are inside of the unit disk.

The sets may be empty.

Definition 2.3.1. If there is no eigenvalue with real part larger than zero or there is no

eigenvalue outside the unit disk then the corresponding system determined by G(Ω) is called

stable.

In the case of linear systems this stability coincides with the bounded input-bounded
output (BIBO) stability. In the case of BIBO stability we define a stable system to be one
for which every bounded input gives rise to an output that also is bounded [Schetzen, 1980].

It can be shown that there exists a non-singular matrix T which separates A in Au and
As, respectively the unstable and stable part of A

Anew =

[
Au,new 0

0 As,new

]
= T−1AT. (2.43)

Every eigenvalue of Au,new has positive real part or is outside of the closed unit disk and
every eigenvalue of As,new has negative real part or inside of the unit disk. Au,new is called
the unstable part of A and As,new is called the stable part of A. Similarly, Bnew = T−1B

and Cnew = CT can be obtained. It is known that the system (A,B,C,D) and the system
(Anew, Bnew, Cnew,D) are equivalent, therefore from here we shall drop the subscript “new”,
and simply write Au instead of Au,new, and so on.
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Using the matrix inversion lemma, it can be shown that G(Ω) can be decomposed as:

H(Ω) = Hs(Ω) +Hu(Ω) +D (2.44)

with

Hs(Ω) = Cs(ΩIs −As)
−1Bs

Hu(Ω) = Cu(ΩIu −Au)−1Bu. (2.45)

We call Hs(Ω) the stable part of H(Ω) and similarly Hu(Ω) the unstable part of H(Ω).

The parametric model that is used in this thesis is a rational form

H(Ω, θ) =
N(Ω, θ)

D(Ω, θ)
=

∑nβ

r=0 βrΩ
r

∑nα

r=0 αrΩr
(2.46)

where Ω denote the generalized frequency which equals ejω in the discrete time case and
jω in the continuous time case, and with θ ∈ R

nβ+nα+2 the vector of the parameters

θ =
[
α0 α1 . . . αnβ

β0 β1 . . . βnα

]
. (2.47)

In identification problems and approximation problems this parameter vector of the ap-
proximator system has to be determined.

It is important to note that all real rational strictly proper transfer functions with no
poles on the imaginary axis form a subspace (not closed) of L2,R.

2.3.0.1 Introducing the Delay

In order to extend the model a time delay can be introduced. The new model of the
transfer function is

Hτ (Ω, θ) =
N(Ω, θ)

D(Ω, θ)
e−jωτ (2.48)

where τ is the delay value. In the time domain delay is a shifting function along the time
axes. In the frequency domain an exponential factor appears in (2.48). Without this factor
H(Ω, θ) with finite dimension parameter vector in (2.46) can only model the shift along
the time axes.

If H(Ω, θ) is in L2,R then Hτ (Ω, θ) ∈ L2,R.

2.4 Approximation and Parametric Identification

In general, the approximation and the parametric identification are very similar to each
other [Boyd and Vandenberghe, 2004]. In both cases an abstract space is given and the
measurement data or the target function determines an abstract point from this space.
Moreover, a subset (usually a subspace) of points from the space is also given. This
subset can be many kinds. In the approximation theory this subset is defined by the
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approximator functions. In the identification problems it is defined by the possible models
which are parametrised by the so-called parameter vector. The aim is the determination
of the nearest point from the defined subset. In both cases the solution of the problem
is equivalent with minimization of the so-called cost function. In approximation theory
the cost function is usually the appropriate power of the norm. In estimation theory the
divergence of distribution functions behaves similarly to a norm.

However, there are differences between the identification and approximation problems.
The identification approach means that a parameter, which may be a vector, has to be
estimated from the noisy data. The noisy data means that there is a stochastic effect which
has influence on the input data. Therefore the estimation problem disregarding the trivial
cases results in a stochastic variable. The estimators are characterized by their properties,
like for example the variance or the bias of the estimator. In the approximation theory
there is no stochastic component. There is a given function on a given domain, and the aim
is to find the best approximator where the best means the nearest model in the abstract
space. The approximators are characterized by the properties of the error functions. It is
important that in identification problems in contrast with approximation problems there
are lots of situation where the parameter is a specific physical quantity.

In practise these problems do not arrive independently. There are lots of cases where
the results of estimations must be approximated [Vuerinckx, 1998]. For example, the stable
approximation, which is one of the topics of this thesis, belongs to this set of problems.
If the result of the estimation approach is an unstable model then the approximation of
this unstable model by a stable one is significant in some practical situations. An another
example is nonlinear system identification. In the nonlinear world the approximation error
has more importance than the errors due to the noise. Models which do not describe the
nonlinearity in the measurement might lead to unmanageable large errors.



Chapter 3

Stable Identification and/or

Approximation

In many cases the model resulting from an identification approach should obey some re-
strictions. A possible restriction investigated in this thesis is that the model must be a
stable one. This constraint can be imposed in an approximation problem, too. The meth-
ods in both cases are similar. The measurement data or the target function determines a
system and the problem is to find the nearest element to this system from a well defined
subset of the whole space.

It sounds as simple as hard to solve. In the case of lots of common problems we known
only that the nearest element mentioned above is exist and may be unique, but searching
methods are too general or have no effective implementation. Therefore the problems are
attacked not generally but individually. This means that there are lots of solved cases both
from theoretical and practical points of view. And this means also that there are lots of
unsolved cases.

The thesis is about one of the latter case. The stable approximation is a very important
question and there are many results with regard to this problem. In this work the problem
studied is the stable approximation with additional delay in z- and s-domain. So far the
existence of such kind of delay not been proven, for low order systems this thesis fills this
gap. Furthermore, in a later chapter, using the connection with the ordinary differential
equations, a new numerical method is proposed and analyzed.

This chapter is about earlier published results of the stable identification/approximation.
The following chapters contain the new results. In chapter 4 there is a theoretical result
and in chapter 5 a new practical algorithm is shown.

3.1 When is a Stable Approximation Needed?

3.1.1 Compensation

The first example for stable approximation is a compensation problem. A possible way
to improve the overall quality of mixed analog/digital systems is to introduce a digital
compensation for the analog part. In Figure 3.1 two different configurations can be seen.

17
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Digital Part

Digital

Compensation

Digital

Processing

Analog
A/D ConversionTransducer

Analog Part

Processing

Actuator
Digital

Processing

Digital

Processing

Analog

Digital Part Analog Part

D/A Conversion
Compensation

Figure 3.1: Possible configurations for the digital compensation of analog systems.

In the case of upper configuration the transducer must be compensated and the bottom
configuration is used when the actuator must be compensated.

The “Analog Processing” block is responsible to comply the Shannon criterion by low-
pass filtering. It causes that little aliasing will occur and consequently it is possible to
map unambiguously the analog frequency response into the digital world. A possible in-
terpretation of the digital compensation in the actuator case is feed-forward controlling.
Set of applications includes the compensation of anti-alias filter in acquisition channel,
the compensation of the reconstruction filter in arbitrary waveform generator, loudspeak-
ers compensation, correction of transmission lines, feed-forward control of a laser cutting
machine, etc.

There is no theory which guarantees that every function in the world can be approxi-
mate completely in the digital world. The definition of every approximation problem wants
some restrictions. Even if most analog real-life systems are not linear, nor time invariant,
a lot of them can be approximated quite accurately by a linear and time invariant system
in their normal operation range. Sometimes a non-linear or a time varying system can be
tuned into a linear, time invariant system by using an additional feedback controller. For
instance, a transistor is a highly non-linear and rather temperature sensitive device, yet
when used with an appropriate feedback circuit, it becomes a nice linear amplifier.

The linear, time invariant system can be described in time or frequency domain. In
time domain, it is far from obvious to describe what a good compensation means, in what
respect the perfect and the realized overall impulse response may differ, and how this
difference will affect the quality of the compensation. In the frequency domain it is quite
straightforward because the compensation is not calculated in the whole frequency band,
but in subset of all frequencies. Therefore, the digital compensation leads to a digital filter
design problem in the frequency domain.

In digital signal processing the linear, time invariant filters can be divided into two
sets: FIR filters and IIR filters. Both groups have advantages and disadvantages. The FIR
filters possess some good properties, among which are

• A perfect linear phase is possible.
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• They are always stable.

• The implementation is easy.

• There exist effective design algorithms.

A consequence of the Weierstrass theorem is that increasing the order of FIR filters can
achieve increased approximation accuracy. The advantage of IIR filters is that generally
they need less filter orders to achieve the same accuracy. If the purpose of the FIR filter is
to compensate an analog system, most of these advantages are irrelevant. In equalization
problems a non-linear phase has to be approximated and design of such non-linear phase
FIR filters is far from simple although it is still easier than design of corresponding IIR
filters.

The problem of a stable approximation is relevant only in the case of IIR filters. In
lots of compensation problems a little delay in the digital part can be tolerated, therefore
the stable approximation can be achieved by using the techniques presented in this thesis.

3.1.2 Approximation of an Unstable Model After Identification

In figure 3.2 a rough diagram of stable identification can be seen. The identification
is started from the noisy data. Even when the measured system is stable, due to the
measurement noise and/or nonlinear distortion the resulted model of the identification
process might be an unstable one. There are two possible solutions: one-step methods or
two-step algorithms. In this chapter existing methods from both sets are introduced.

In the one-step identification method usually the original identification algorithm is
modified in order to obtain a stable model. In lots of cases the possible model space is
tightened so that in every step the algorithm produces a parameter vector that corresponds
a stable model. Here no detail is presented because deeper introductions of some important
published methods are in the next sections. The main disadvantage of the classical one-
step identification method is that it cannot provide bias bounds, nor accurate uncertainty
bounds.

The error bounds can be calculated in the case of two-step procedures. In these methods
two independent steps are executed. The first step is a classical unconstrained identification
step in which the optimal noise weighting is applied. This step produces the noise error
bounds. If the result is a stable model then the identification process ends. If the resulted
model of this step is an unstable model then the identification procedure continues with
a stable approximation of the unstable model. In this case bias error bounds can be
calculated. So at the end of the identification the result is a stable model and the error
bounds are available.

The set of stable approximation algorithms can be divided into two subsets:

• No delay is added to the target function.

• Some delay is introduced to the target function.

Both cases are introduced here. This thesis covers the case of stable approximation with
additional delay.
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No Delay Added

(no error bounds)

Stable Approximation

(bias error bounds)

Unconstrained Identification

(noise error bounds)

Noisy Data

Delay Added

Constrained Identification

Figure 3.2: One-step vs. two-step stable identification.

The overview of existing methods is in the next two sections. First, the constrained
identification methods are investigated and then some of the published post-processing
algorithms are shown.

3.1.2.1 System Inversion

In control theory, system inversion approaches have been already investigated. In [Silverman,
1969] and [Sain and Massey, 1969] constructive methods for the inversion of multi-variable
systems are discussed. The idea behind the so-called structure algorithm is to incorporate
delayed measurements in the output equation. The system G̃(z) is an L-delay inverse for
G(z) if

G̃(z)G(z) =
1

zL
Im

where Im is the identity matrix and m is the number of inputs. The resulting inverse
system then consists of delay elements followed by the inverse of the transformed system.
Sain and Massey also considered inverses which consist of a bank of delay elements followed
by a dynamical system. In their approach, however, the number of differentiators needed
to realize the inverse can be higher than the order of the original system. An important
concept, introduced by Sain and Massey, is the inherent delay of a discrete-time system,
which is the minimal delay with which the input of the system can be reconstructed from
the system outputs. The inversion procedure of Sain and Massey allows to derive inverses
with arbitrary delay larger than or equal to the inherent delay. A disadvantage of the
inversion procedure described above is that it can yield unstable inverses.
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3.2 Constrained Stable Identification/Approximation

3.2.1 Subspace Methods

In subspace identification the system matrices are estimated based on estimated Kalman
filter state sequences and the observed inputs and outputs. For a finite number of data
points, the estimated system matrix is not guaranteed to be stable. The stability can
be imposed by for example data augmentation [Chui and Maciejowski, 1996] or using
regularization [Van Gestel et al., 2001].

The linear stochastic identification problem which contains the deterministic problems
as a subset is concerned with systems and models of the form

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk (3.1)

with

E

([
wp

vp

] [
wp vp

])
=

[
Q S

ST R

]
δpq ≥ 0 (3.2)

where E denotes the expected value operator. The subscript k is the discrete time and
vectors uk ∈ R

m and yk ∈ R
l denote the m inputs and l outputs of the system respectively.

The number of states is n and xk ∈ R is the state vector at the time index k of the system
with order n. The process noise wk ∈ R

n and the measurement noise vk ∈ R
l are assumed

to be zero mean, Gaussian with covariance matrix as given by (3.1). The model matrices
A, B, C, D and the covariance matrices Q, S, R have appropriate dimensions.

In the last decade, so-called subspace identification methods [Van Overschee and De
Moor, 1996], [Katayama, 2005] have been developed to determine the system order n̂ of the
unknown system (3.1) and the estimates Â, B̂, Ĉ, D̂ (up to a similarity transformation)
together with the estimated noise covariance matrix Q̂, Ŝ, R̂, from a large number of
observations of the input uk and the corresponding output yk generated by the unknown
system. The identification can be divided into two steps:

• Estimation of the state sequence X̂i, X̂i+1 ∈ R
n̂×j by Kalman filter using geometric

operations.

• Estimation of the model matrices Â, B̂, Ĉ, D̂ by minimizing the following cost
function

min
Â,B̂,Ĉ,D̂

∥∥∥∥∥

[
X̂i+1

Yi|i

]
−
[
Â B̂

Ĉ D̂

][
X̂i

Ui|i

]∥∥∥∥∥

2

F

(3.3)

where Ui|i = [ui, ui+1, . . . , ui+j−1] ∈ R
m×j and Yi|i = [yi, yi+1, . . . , yl+j−1] ∈ R

l×j.

It is known that the estimation in the subspace method is consistent as j → ∞.
Generally, if θ denotes the parameter vector then the regularization is obtained by

adding a so-called regularization term, which may be c‖θ‖2 or c‖θ‖2
2, to the cost function
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J(θ). Thus the new cost function is J(θ)+c‖θ‖2 or J(θ)+c‖θ‖2
2 [Boyd and Vandenberghe,

2004]. In the basic form of regularized approximation, the goal is to find a vector θ that is
small (if possible), and also makes the cost function J(θ) small. In this case a specific type
of the regularization term is used. Let W be positive-semidefinite matrix and W = W T .
Then the regularization term added to the cost function (3.3) is

trace{ÂWÂT }. (3.4)

Adding the regularization term to the cost function (3.3) a stable model may be obtained.

It is possible to include the minimum phase constraint in the subspace identification,
see details in [Tanaka and Katayama, 2005].

3.2.2 Stable Approximation in Hardy Spaces

There is an intensive research on the approximation theory in the different Hardy spaces
[Baratchart et al., 1992], [Baratchart et al., 1996], [Baratchart et al., 1997]. In these papers
the approximation problems are investigated in mathematical sense. Lots of theories on the
existence and uniqueness can be found there. It is important to note that the problems
described in these papers are finding the best rational approximation from the stable
subset of the rational functions. Hence, the stability is guaranteed in the formulation of
the problems. In this subsection some results with respecting these papers and properties
of described approximators are presented.

Minimization in Space H2

The question studied in [Baratchart et al., 1992] is the following one: given an integer n
and some f ∈ H−

2 , find a minimum of the squared norm

∥∥∥∥f − p

q

∥∥∥∥
2

, (3.5)

where p/q ranges over rational functions in H−
2 , subject to the constraint that degree of q

is less than n. The function Φ : (p, q) 7→ R is defined as

Φ : (p, q) 7→
∥∥∥∥f − p

q

∥∥∥∥
2

(3.6)

where p belongs to the set of polynomials of degree at most n−1, denoted by R[z]n−1, and
q belongs to the set of monic polynomials of degree n whose roots are inside the unit disk,
denoted by R[z]−n . It can be seen that Φ is not injective because the possible cancellation
of common factors of q and p. However, the following lemma says that this will happen
only in trivial case.

Lemma 3.2.1. If f ∈ H−
2 is not a rational function of degree strictly less than n, then the

argument of any local minimum of (3.5) is an irreducible fraction whose degree is exactly

n.
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It proves that the local minima of (3.5) coincide with local minima of Φ. Φ is a
differentiable function and its critical points (zeros of its gradient field) are investigated.
The set R[z]n−1 ×R[z]−n can be identified with an open set of R

2n in the following way:

p(z) = p0 + p1z + · · · pn−1z
n−1,

q(z) = q0 + q1z + · · · qn−1z
n−1 + zn. (3.7)

is identified with the points (pn−1, . . . , p0) ∈ R
n and (qn−1, . . . , q0) ∈ R

n. Let us denote Vq

the n dimensional subspace of H−
2 generated by

1

q
,
z

q
,
z2

q
· · · , z

n−1

q
. (3.8)

We have that p/q is the projection of f onto Vq. This means that the search for critical
points can be restricted to pairs (p, q). In this way, p becomes a function of q denoted by
L(q). Let us define ψN (q) as

ψn(q) : R[z]−n 7→ R = q 7→
∥∥∥∥f − L(q)

q

∥∥∥∥
2

. (3.9)

Lemma 3.2.2. The map ψn is a smooth function. Its critical points are the same as those

of Φ.

The existence of a minimum can be proven in a more general case. Another important
question is uniqueness. It has been proven that uniqueness of the best approximant is
strongly generic property, that is, true on an open dense subset of H−

2 . However, there
are situations where more than one absolute minima of the cost function exist. Therefore
additional conditions are required to ensure the uniqueness. In has turned out that a pos-
sible condition is if the function f is analytical in a wider domain. Such condition prevents
the function f having a sequence of zeros accumulating on the unit circle. Hereafter we
shall assume that f is holomorphic in an open disk Ur, of radius r, with r > 1.

Let ∆n be the closure in R
n of the set R[z]−n . ∆n is a compact set which consists of

monic polynomials of degree n whose roots are of modulus less or equal to 1. Denote Pr

the open neighborhood of ∆n consisting of monic polynomials whose roots are of modulus
strictly less than r.

Lemma 3.2.3. If f is holomorphic in Ur then Ψn extends to a smooth function

Ψn : Pr 7→ R. (3.10)

Lemma 3.2.4. The set ∆n is homeomorphic to the closed unit ball Bn of R
n.

Therefore the boundary ∂∆n of ∆n is homeomorphic to the (n−1) dimensional sphere
Sn−1. Example ∆2 which is a triangle shows that the it is not smooth. The smooth part
of ∂∆n is the polynomials having exactly one irreducible factor over R. The following
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functions are embeddings

φ1 : ∆̇n−1 7→ ∆n φ1(p) = (z − 1)p

φ−1 : ∆̇n−1 7→ ∆n φ−1(p) = (z + 1)p

φc : (−1,+1) × ∆̇n−2 7→ ∆n φc(α, p) = (z2 + 2αz + 1)p (3.11)

where ∆̇n is the interior ∆n. Thus the smooth part of ∂∆n is the union of the images φ1,
φ−1 and φc.

The following three lemmas give the basic of the minimum seeking algorithm published.
The proof of the lemmas and a detailed description of this algorithm can be found in
[Baratchart et al., 1992].

Lemma 3.2.5. Let q ∈ ∂∆n be such that q = χp., where all the roots of χ are of modulus

1, and p ∈ ∆̇k where the degree of the polynomial p is k. Then L(q) = χL(p) and φn(q) =

φk(p).

Lemma 3.2.6. Let p ∈ ∆̇n−1, and x = φ1(p), or φ−1(p). The projection of ∇φn(x)

on ∂∆n coincides with ∇φn−1(p). If x = φc(α, p), α ∈ (−1, 1), then the projection of

∇φn(x) on tangent space Tx∂∆n lies in the subspace φc(α,∆n−2), where it coincides with

∇φn−2(p).

Lemma 3.2.7. Let p be a minimum of φn−1, and x = φ1(p), or φ−1(p) or else φc(α, p)

with α ∈ (−1, 1), then ∇φn(x) is orthogonal to Tx∂δn and points outwards (if non zero).

And finally the algorithm is the following.

1. Choose an initial point q0.

2. Integrate the vector field −∆φn from the initial conditions (q0, φn(q0)).

• If a local minimum is reached, then end.

• If the boundary ∂∆n is reached, then goto 2.

3. You are at the point qb of ∂∆n:

qb = χqi, χ(α) = 0 ⇒ |α| = 1, qi ∈ ∆̇k. (3.12)

Integrate the vector field −∇φk from the initial conditions (qi, φk(qi)).

• If the minimum at order k < n is reached, the goto 3.

• If the boundary of ∆k is reached, replace n by k and goto 2.

4. You are at a minimum qm ∈ ∆̇k of φk. Integrate the vector field −∇φk+1 from the
initial conditions ((z + 1)qm, φk(qm)).

• The minimum at order k+ 1 is reached. If k+ 1 < n the replace k by k+ 1 and
goto 3. If k + 1 = n then end.

• ∂∆k+1 is reached. Replace n by k + 1 and goto 2.



CHAPTER 3. STABLE IDENTIFICATION AND/OR APPROXIMATION 25

The algorithm does not stop on a saddle point because it is an unstable critical point. Let
us define the function φ(q) = φk(p). At each step this function decreases hence the same
minimum cannot occur twice.

The result of this algorithm is not necessary a global minimum but a local one. Without
any more assumption we cannot guarantee that it is global.

Minimization in Space H∞

The presented results can be found in [Baratchart et al., 1996]. Let K be a subset of the
unit circle in the complex plane, i.e. K ⊂ T. In this article the following problems are
addressed.

Let us given f ∈ L∞(K), h ∈ L∞(T\K), and M > 0. We want to find g ∈ H∞ whose
distance to h in L∞(T\K) does not exceed M and which is as close as possible to f in the
L∞(K) metric under this constraint.

If K = T then the problem is equivalent with the standard Nehari problem (see [Zhou
et al., 1995]). The precise formulation of the problem addressed in the article [Baratchart
et al., 1996]:

Problem 3.2.1. Let K be a subset of T of positive measure. For f ∈ L∞(K) and h ∈
L∞(T\K), define a subset BM,h of H∞ by:

BM,h := {g ∈ H∞, ‖h− g‖L∞(T\K) ≤M}, (3.13)

where M is a positive real number. We seek g0 ∈ BM,h such that

‖f − g0‖L∞(K) = min
g∈BM,h

‖f − g‖L∞(K). (3.14)

Let H∞|K denote the restriction of H∞ onto K.

Theorem 3.2.1. Let K be a subset of T such that λ(K) > 0. Then:

• H∞|K is not dense in L∞(K).

• If K is open, the closure of H∞|K is contained in H∞|K + C(K).

• If K is a proper closed subset of T, then A|K is dense in C(K) and the closure of

H∞|K in L∞(K) contains (H∞ + C(T))|K .

In the sense of approximation an important proposition of this theorem is the following.

Proposition 3.2.1. Let K be a subset of T such that λ(K) > 0, and f be in L∞(K).

Suppose (gn) is a sequence of H∞ functions such that gn|K converges to f in L∞(K). If

f is not the trace of an H∞ function, then

lim
n→∞

‖gn‖L∞(T\K) = ∞. (3.15)
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3.2.3 Stable Identification with ELiS

In the Frequency Domain System Identification (fdident) toolbox an iterative, gradient-
type method is implemented to minimize a cost function [Pintelon and Schoukens, 2001],
[Kollár, 1994], [Kollár, 1993]. The result is the maximum likelihood estimation of the
parameter vector in the frequency domain. The name ELiS refers to the estimation of
linear systems. The estimated system is described in the §2.3.

Detailed description about the assumptions and methods in frequency domain identifi-
cation can be found in §6.2. In chapter 6 we do not care whether the results of estimators
are stable or not. But now, we concentrate only on the stability, therefore just a quick and
minimal overview is given.

This paragraph of the thesis covers an additional topic of the stable approximation in
frequency domain, too. As already mentioned in §2.4, approximation and identification are
closely related to each other. Because of the historical order results are introduced here
and not in §3.3. As it will be seen, via a little modification of the cost function of ELiS the
approximation can be formulated in the frequency domain. It was already mentioned in
[Pintelon and Schoukens, 1990] and in [D’haene et al., 2006] the methods are summarized
and extended.

We use an error-in-variables framework and, therefore, the direct division of the mea-
sured input and output is not used. The noise free inputs and outputs are U0(Ωk) and
Y0(Ωk), k = 1, . . . , F , where F is the number of frequencies. The input and output spectra
may be computed by DFT or may be measured directly.

Every input U0(Ωk) and every output Y0(Ωk) are distorted by additional noise processes
which are denoted by NU (Ωk) and NY (Ωk). The relationships between the measured and
the noiseless variables are

U(Ωk) = U0(Ωk) +NU (Ωk)

Y (Ωk) = Y0(Ωk) +NY (Ωk). (3.16)

The maximum likelihood cost function whose global minimum we seek is [Pintelon et
al., 1994], [Pintelon and Schoukens, 2001]

CML(θ) =

F∑

k=1

|N(Ωk, θ)U(Ωk) −D(Ωk, θ)Y (Ωk)|2
σ2

U,k|N(Ωk, θ)|2 + σ2
Y,k|D(Ωk, θ)|2 − 2Re{σY U,kD(Ωk, θ)N∗(Ωk, θ)}

(3.17)

where F is the number of the frequencies, σ2
U,k is the variance of the NU (Ωk), σ2

Y,k is the
variance of the NY (Ωk) and σ2

Y U,k is the covariance between NY (Ωk) and NU (Ωk). Because
of the whitening property of the DFT their distributions are assumed to be independent
Gaussian with zero mean and corresponding variances σU,k, σY,k.

It can be seen that this minimization is nonlinear in θ. Methods that minimize this
kind of cost functions are described in §5.5. The algorithms are sequences of points in
the parameter space. At every point calculation of the next step is based on the gradient
function. It is worth noting that the variance of the numerator coincides with the denomi-
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nator of (3.17). Due to the measurement noise and/or the nonlinear distortions the result
of the estimation may be an unstable model. To overcome this problem the steps of the
gradient-like minimization must be modified.

In approximation problems there are no variance/covariance variables and there are
no input and output. Now, if we impose for all k, U(Ωk) = 1, σU,k = 0, σY,k = 1 and
Y (Ωk) = T (Ωk) where T (Ωk) is desired transfer function, the minimization of (3.17) is
equivalent to solving the least squares approximation problem. It enables us to discuss the
two problems simultaneously.

We will use the notation introduced in §2.3. Let H(Ω, θ) denote the transfer function
in the frequency domain. H(Ω, θ) can be written as sum of the three terms (see (2.44)).

• Leaving out the unstable part Hu(Ω, θ). This is the optimal approximant in L2 norm
but results a lower order model. However, in bandpass approximation the optimality
is no longer true.

• Reflection: in this case stability is enforced by reflecting the unstable poles with
respect to the theoretical stability bound after each iteration step. The reflection
does not change the amplitude response, but it does change the phase response. By
this, the phase of the fitted model decreases, and so for a proper fit a negative delay
(non-causal system) would be adequate. This step is nothing else than replacing the

T

p

p∗

pnew = 1
p∗

pnew∗ = 1
p

pnew

p

p∗

T

pnew∗

Figure 3.3: An example of inverting the poles (left) and an example of contracting the
poles (right) in z-domain. T is the unit circle.

unstable matrix Au part by A−1
u . In the z-domain every pole outside the unit disk

is reflected with respect to the unit circle. In s-domain all the unstable poles are
reflected with respect to the imaginary axes. The positions of the zeros remain the
same.
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• Replacing Hu(s, θ) by Hu(−s, θ) in s-domain or replacing Hu(z, θ) by Hu(z−1, θ) in
z-domain result the following new transfer functions

Ĥ(s, θ) = Hu(−s, θ) +Hs(s, θ) +D

Ĥ(z, θ) = Hu(z−1, θ) +Hs(z, θ) +D. (3.18)

This changes the position of the poles and zeros of Hu(Ω, θ) instead of only the poles
of Hu(Ω, θ).

• Contraction: stability is enforced by contraction of the unstable poles to the stability
limit after each iteration step. Let p = rpe

jθp = xp + jyp denote an unstable pole
of H(Ω, θ). Contraction is replacing p by −ε + jyp in s-domain or replacing p by
(1 − ε)ejθp in z-domain, where ε is a given small number.

The methods above are used to generate initial values for the non-linear minimization
algorithm. A gradient-based algorithm can improve the model. In order to preserve the
stability the non-linear minimization must be modified. As in §5.5 one can see one step of
the gradient type algorithm is the update of the parameter vector:

θk+1 = θk + ∆θ. (3.19)

Knowing that θk corresponds with a stable model, there are two possible results. Either
θk+1 determines a stable model, and one can start with the next iteration, or θk+1 de-
termines an unstable model, and ∆θ is reduced, for example, a factor 2. This procedure
results a stable model at least as good as the initial values.

3.3 Stable Approximation as a Post-Processing Step

In this section two step identification procedures introduced in §3.1.2 are investigated. As
already mentioned, we distinguish two different approaches: adding delay to the target
function or not. Modification of the target function with additional delay cannot always
be allowed. In a closed-loop application it is not possible. But in an open-loop case where
an additional delay does not cause any problem, it is a very effective method in order to
obtain a stable model.

3.3.1 The Closest Stable Polynomial

The method described previously in this section defines the best stable approximation in
the space of poles and zeros. However, the approximation is usually done in the space
of coefficients. In [Moses and Liu, 1991] a method which uses the coefficient space is pre-
sented. The paper considers solutions to the stabilization problem that minimizes the error
between the polynomial coefficients of the original and the stabilized polynomial. Since
the polynomial coefficients are being estimated, it is natural to stabilize the polynomial by
perturbing these estimated coefficients as little as possible.
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The norm is an L2 norm. Let b = [b1, . . . , bn]T be a real vector and let B(z) denote the
associated monic polynomial in z-domain:

B(z) = zn + b1z
n−1 + · · · + bn−1z + bn. (3.20)

Our assumption is that B(z) is unstable, i.e. has at least one zero z0 satisfying |z0| > 1.
The problem is to find a vector a = [a1, . . . , an] such that the measure of distance J is
minimal and the polynomial associated to a is stable. Let the measure of distance be
defined as

J = ‖a− b‖2
W = (a− b)TW (a− b) (3.21)

for some given positive definite weighting matrix W . Let us define the following set

Sa = {a|A(z) = 0 ⇒ |z| < 1}. (3.22)

Using this definition the problem can be formulated as

Problem 3.3.1. Given a vector b /∈ Sa, find a vector ao ∈ Sa such that J is minimized

over all a ∈ Sa.

Using the Schur parameters (also known as reflection coefficients) the set Sa can be
completely parameterized by Sr which is a subset of the space of Schur parameters. The
main advantage of this parametrization is that Sr is a hypercube, thus a convex set.

The advantage of this method is that it is easy to implement. On the other hand, it
is not guaranteed that the optimal stable minimum of the original approximation problem
coincides with the result of this method. In some special cases the weighting matrix W

may be computed using the original cost function, but it is not necessary.

3.3.2 Stable Approximation with Addition Delay

In this section a new method to obtain a stable model is introduced. The investigation and
analysis are the main topics of the next two chapters of this thesis. The main difference
between this and the previous approach is that a new variable, the delay is introduced
in the cost function. The advantage is that the global minimum of the cost function at
an appropriate delay value determines a stable model. The main disadvantage is that the
result of this method can be used only in an open loop configuration.

For example, simply inverting the transfer function of an analog system without addi-
tional delay usually leads to a bad approximation. This is because most analog systems
that must be equalized have a non-minimum phase model in the z-plane, which implies
that they introduce some delay that cannot be compensated for with a causal filter.

3.3.2.1 Problem Formulation

Let Ω denote the generalized frequency (for s-domain Ω = jω and for z-domain Ω =

ejω). The so-called original stable approximation problem is the following. Minimize the
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following cost function:

∫

I
|T (Ω) −H(Ω, θ)|2dω w.r.t θ, (3.23)

where T (Ω) is the target system, H(Ω, θ) is the approximator

H(Ω, θ) =
β0 + β1Ω + . . .+ βnβ

Ωnβ

α0 + α1Ω + . . .+ αnαΩnα
(3.24)

with nβ and nα is the order of numerator and denominator of H(Ω, θ), respectively, θ is
the parameter vector

θ =
[
β0 . . . βnβ

α0 . . . αnα

]
. (3.25)

I denotes the domain of integration. It can be a full domain (for s-domain I = (−∞,∞)

and for z-domain I = (0, 2π)) or a subset of the whole frequency band.

This kind of problems were introduced and investigated already in this section. This
is an approximation problem in a Hardy space. Until this point only methods without
additional delay were considered. The main aim is to minimize this cost function so that
the parameter vector is stable. Now the cost function is rewritten in order that the global
minimum determines a stable model. The new cost function is

C(θ, τ) =

∫

I
|T (Ω)e−jωτ −H(Ω, θ)|2dω, (3.26)

where τ is the delay.

Since T (Ω)e−jωτ is still in L2,R(T) or in L2,R(jR), the extended approximation problem
can be formulated using Hardy spaces.

Increasing the delay value causes that the global minimum of the cost function (3.26)
determines a stable model. So the approximation without imposing any constraints results
a stable model H(Ω, θ).

Minimization of the cost function (3.26) is in the focus of the thesis, therefore detailed
introductions are in chapter 4 and in 5.

3.3.2.2 About Norms

The problem (3.26) is an optimization problem in an L2 space. In practise other norms
have importance, too. Since the distance between two elements in a normed space is defined
similarly, the cost function practically remains the same. Apart from the notation identity
the problems defined by different normed spaces can differ significantly from each other.
For example, applying the Chebyshev norm (namely L∞) causes that the cost function is
no more a continuous function with respect to the parameter vector. In [Vuerinckx, 1998]
some numerical experience shows that the minima of cost functions defined by the norm
L2 and L∞ are close to each other. Unfortunately, this experience has no theoretical
background. There is a result in [Ellacott and Williams, 1976b] that says that the global
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minimum of the cost function defined by L∞ norm can be computed by doing optimization
in the space L2 using iteratively modified weighting, [Ellacott and Williams, 1976a].

3.3.2.3 Results of the Thesis

Since the result of the thesis belongs to the topic of stable approximation with additional
delay in the target function, a quick overview is given here.

As mentioned in [Vuerinckx, 1998] adding a delay to the target function in (3.26) causes
that the global minimum yields a stable model. In the literature only intuitive proofs are
published. It is one of the main result of this thesis that a mathematically correct proof is
presented in the next chapter (chapter 4).

We will prove that for all T (Ω) (fixed during minimization) with nβ + nα ≤ 2 there
exists a delay τ such that the global minimum θ∗ of the cost function (3.26) yields a stable
model H(Ω, θ∗).

Furthermore, some consequences of this theorem are investigated.
Having studied theoretical results a new numerical method is presented. This method is

able to find a stable model which is the minimum of the cost function and the corresponding
delay value automatically.





Chapter 4

Existence Proof

4.1 Problem description

Let Ω denote the generalized frequency (for s-domain Ω = jω and for z-domain Ω = ejω).
Minimize the following cost function (τ is fixed):

∫

I
|T (Ω)e−jωτ −H(Ω, θ)|2dω w.r.t θ, (4.1)

where T is the target system

T (Ω) =
γ0 + γ1Ω + · · · + γnβT

ΩnβT

δ0 + δ1Ω + · · · + δnαT
ΩnαT

= cT
(Ω − zT,1) · · · (Ω − zT,nβT

)

(Ω − pT,1) · · · (Ω − pT,nαT
)

(4.2)

with nβT and nαT , respectively, the order of the numerator and the denominator of T (Ω);
H(Ω, θ) is the approximator

H(Ω, θ) =
β0 + β1Ω + . . .+ βnβ

Ωnβ

α0 + α1Ω + . . .+ αnαΩnα
= cH

(Ω − z1) · · · (Ω − znβ
)

(Ω − p1) · · · (Ω − pnα)
(4.3)

with nβ and nα, respectively the order of numerator and denominator of H(Ω, θ), θ is the
parameter vector

θ =
[
β0 . . . βnβ

α0 . . . αnα

]
(4.4)

and τ is the delay. I denotes the domain of integration. It can be a full domain (for
s-domain I = (−∞,∞) and for z-domain I = (0, 2π)) or a subset of the whole frequency
band.

We introduce notations for the numerator and the denominator of H(Ω, θ):

N(Ω, θ) = β0 + β1Ω + . . .+ βnβ
Ωnβ (4.5)

and

D(Ω, θ) = α0 + α1Ω + . . .+ αnαΩnα. (4.6)

33
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Hence, we can write that

H(Ω, θ) =
N(Ω, θ)

D(Ω, θ)
. (4.7)

The dimension of the parameter space is nβ + nα + 2. Unfortunately the map from
the parameter space to the space of transfer functions is onto but not one-to-one. To
overcome this problem the dimension of the parameter vector space must be decreased.
It can be done by fixing one coefficient of the numerator or the denominator (projection
onto a subspace) or by fixing the norm of the parameter vector θ (projection onto the
unit sphere). This reduction of dimension provides that the global minimums can be
characterized unambiguously [Pintelon et al., 1994].

We will prove that for all T (Ω) (fixed during minimization) and for nβ + nα ≤ 2 there
exists delay τ such that the global minimum θ∗ of the cost function (4.1) determines a stable
model H(Ω, θ∗). The generalized case for arbitrary order will be handled with presuming
two reasonable assumptions.

4.2 Notes

Before starting the proof some preliminary notes are shown in order to simplify the proof.

Note 4.2.1. X,Y ∈ C, X 6= 0, X + Y 6= 0:

1

X + Y
=

1

X

(
1 − Y

(X + Y )

)
=

1

X
− Y

X(X + Y )
(4.8)

The so-called Landau notations are introduced. In this thesis only infinite asymptotics
are used.

Definition 4.2.1. O(.) estimate: f(x) and g(x) are functions defined for all x sufficiently

large. f(x) ∈ O(g(x)) means that there exists constants x0 and c such that |f(x)| ≤ c|g(x)|
for all x ≥ x0.

Definition 4.2.2. o(.) estimate: f(x) and g(x) are functions defined for all x sufficiently

large. f(x) ∈ o(g(x)) means that g(x) 6= 0 for sufficiently large x and limx→∞ f(x)/g(x) =

0.

In both cases, i.e. f(x) ∈ O(g(x)) and f(x) ∈ o(g(x)) we will use the notations:

f(x) = O(g(x)), f(x) = o(g(x)). (4.9)

(This is a slight abuse of notation; equality of two functions is not asserted, and it cannot
be since the properties of being O(g(x)) and o(g(x)) are not symmetric.)

Definition 4.2.3. Asymptotic equivalence: f(x) ∼ g(x) means that g(x) 6= 0 for suffi-

ciently large x and limx→∞ f(x)/g(x) = 1.

Note 4.2.2. In order to simplify the calculation with the Landau notations their basic

properties are listed.
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1. If f1(x) ∈ O(g1(x)) and f2(x) ∈ O(g2(x)) then f1(x)f2(x) ∈ O(g1(x)g2(x)).

2. f(x) ·O(g(x)) ∈ O(f(x)g(x)).

3. If f1(x) ∈ O(g1(x)) and f2(x) ∈ O(g2(x)) then f1(x) + f2(x) ∈ O(g1(x) + g2(x)).

This implies that f1(x), f2(x) ∈ O(g(x)) ⇒ f1(x) + f2(x) ∈ O(g(x)).

4. f(x) +O(g(x)) ∈ O(f(x) + g(x)).

5. Multiplication by a constant: let k ∈ R and k > 0. O(k · g(x)) = O(g(x)). f(x) ∈
O(g(x)) ⇒ k · f(x) ∈ O(g(x)).

6. o(f(x)) + o(f(x)) ⊂ o(f(x)).

7. o(f(x))o(g(x)) ⊂ o(f(x)g(x)).

8. o(o(f(x))) ⊂ o(f(x)).

9. o(f(x)) ⊂ O(f(x)). And thus the last three properties apply with most combinations

of o(.) and O(.).

Note 4.2.3. In this note an and bn denote sequences as n→ ∞.

1. If an = o(1) then

1

1 − an
= 1 + an +O(a2

n) = 1 + an + o(an). (4.10)

Specially

1

1 +O(an)
= 1 +O(an). (4.11)

2. Using note 4.2.1 we have

1

an + o(an)
=

1

an(1 + o(1))
=

1

an
− 1

an

o(1)

(1 + o(1))
=

1

an
+ o

(
1

an

)
.

3. From the previous item

bn + o(bn)

an + o(an)
=
bn + o(bn)

an
+ (bn + o(bn))o

(
1

an

)
=
bn
an

+ o

(
bn
an

)

Note 4.2.4. T (z) is analytic in an neighborhood of P and an = o(1). Then

T (P + an) = T (P ) + T ′(P )an +O(a2
n) = T (P ) +O(an). (4.12)

Note 4.2.5. Let an and bn be series such that an > 0, bn > 0, an → 0, bn → 0 and

an

bn
→ ∞ (n→ ∞) (4.13)
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then

∀c > 0 : ∃N : n > N ⇒ an > cbn. (4.14)

Proof. It is a rewritten version of the definition of convergence to infinity.

Note 4.2.6.

(
1 − c

n

)n
→ e−c as n→ ∞ (4.15)

Proof. Elementary analysis.

Note 4.2.7. If hn → 0 then

(
1 +

hn

n

)n

→ 1 as n→ ∞ (4.16)

Proof. See analysis books.

Note 4.2.8. Let us assume that the sequence dτ > 0, ∀τ : dτ < τ , dτ
τ→∞→ ∞, dτ

τ
τ→∞→ 0.

Then for all sufficiently large τ

(
1 − dτ

τ

)τ

< Kdτ (4.17)

where 0 < K < 1 an appropriate constant.

Proof.

(
1 − dτ

τ

)τ

=

((
1 − dτ

τ

) τ
dτ

)dτ

=
(
e−1 + o(1)

)dτ
. (4.18)

By the definition of convergent sequences ∃D : ∀τ > D : e−1 + o(1) < e−1 + 10−3 < 1.
Therefore choosing K = e−1 + 10−3 proves the note.

Note 4.2.9. For each sequence dτ which converges to the positive infinity the following is

true. If |K| < 1 and L ∈ Z+ then

dL
τ K

dτ = o(1). (4.19)

Note 4.2.10. Let us assume that for all n: hn > 0 and gn > 0. Then

gn

h2
n

→ ∞ ⇒
√
gn

hn
→ ∞ (4.20)

or equivalently

h2
n = O(gn) ⇒ hn = O(

√
gn). (4.21)
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Definition 4.2.4. T (z) is analytic in an neighborhood of z0. [T (z)]
(m−1)
z=z0 is defined as the

(m− 1)th derivative of T (z) w.r.t. z at z = z0.

Note 4.2.11. ∀ε > 0∃τ > 0 : ∀p ∈ C(|p| ≤ 1)∃q ∈ C such that |p− q| < ε, |p| = |q| and

cos(τ∠q) = s1 cos(τ∠p)

sin(τ∠q) = s2 sin(τ∠p) (4.22)

where s1, s2 ∈ {−1, 1} are given.

Proof. It is enough to prove the statement for |p| = 1. Let p = ejα where α is the angle of
p. We have the following constraints

| sin(τα)| = | sin(τα+ ∆α)|,

| cos(τα)| = | cos(τα+ ∆α)|. (4.23)

∆α = kπ in order to fulfil (4.22). Therefore

∣∣∣∣
∆α

τ

∣∣∣∣ =
|k|π
τ

(4.24)

and

q = exp

(
jα+ j

∆α

τ

)
. (4.25)

Moreover,

|p− q| =
∣∣∣ejα − ejαej

∆α
τ

∣∣∣ =
∣∣∣1 − ej

∆α
τ

∣∣∣

= 2

∣∣∣∣sin
(

∆α

2τ

)∣∣∣∣ ≤
|∆α|
τ

. (4.26)

Hence for all τ sufficiently large
∣∣∣∣
∆α

τ

∣∣∣∣ < ε. (4.27)

In the proof of the previous note it can be noted that

|p| = |q| +O
(
τ−1

)
. (4.28)
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Intuitively this note says that if we increase τ then the function zτ changes the signs of its
real and imaginary parts more frequently. See figures 4.1 and 4.2.
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Figure 4.1: Illustration of the sign of Re{zτ} (left) and Im{zτ} (right) when τ = 4.
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Figure 4.2: Illustration of the sign of Re{zτ} (left) and Im{zτ} (right) when τ = 8.

A very important consequence is the following note:

Note 4.2.12. Let H(z) be a meromorphic function which has no pole on the unit circle T.

∀ε > 0,∃τ > 0 :

[
∀p ∈ γU ,∀s1, s2 ∈ {−1, 1}∃q ∈ T : |p− q| < 2π

τ
⇒

∣∣∣H(k)(p) −H(k)(q)
∣∣∣ < ε and cos(τ∠q) = s1 cos(τ∠p)
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and sin(τ∠q) = s2 sin(τ∠p)] (4.29)

where k ≤ nβ + nα + 2 and H(k)(z) is the kth order derivative of H(z) w.r.t. z.

Proof. While there is no pole on the unit circle and the number of poles are limited, there
exists a neighborhood of the unit circle such that on the closure of the neighborhood
∃M > 0∀k : |H(k)| < M , and all these functions are uniformly continuous. This fact and
the previous note proves the statement.

Definition 4.2.5 (Laurent expansion and residue). If f(z) is an analytic function on the

annulus R1 ≤ |z − z0| ≤ R2 with 0 ≤ R1 ≤ R2 ≤ ∞, then

f(z) =

∞∑

n=−∞

an(z − z0)
n (4.30)

for all z in the annulus. a−1 is called the residue of f at z0, denoted Resz=z0f(z)

Resz=z0f(z) =
1

(m− 1)!
[(z − z0)

mf(z)](m−1)
z=z0

(4.31)

where m is the order of the pole z0 (an = 0 for n < −m).

Definition 4.2.6 (Index of a closed curve). The index of a closed curve γ (s /∈ γ) is

n(γ, s) =
1

2πi

∫

γ

dz

z − s
. (4.32)

For example; let s be an arbitrary point inside the unit circle and let γ be the unit
circle (positive direction and one turn):

∫

|z|=1

dz

z
=

∫ 2π

0

z′(t)

z(t)
dt =

∫ 2π

0

ieit

eit
dt = 2πi (4.33)

Note 4.2.13. Residue theorem (simplified version): Let’s γ be a closed curve for which

n(γ, s) = 0 (s /∈ D) (like unit circle) and let f(z) regular in the domain D except the

isolated singularity. Then

1

2πi

∫

γ
f(z)dz =

∑

j

n(γ, zj)Resz=zj
f(z). (4.34)

Note 4.2.14. Complex mean-value theorem: Suppose Ω is an open convex set in C, suppose

f is a holomorphic function f : Ω → C, and suppose a, b are distinct points in Ω. Then

there exist points u, v on Lab (the straight line connecting a and b not containing the

endpoints), such that

Re

{
f(b) − f(a)

b− a

}
= Re

{
f ′(u)

}
,
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Im

{
f(b) − f(a)

b− a

}
= Im

{
f ′(v)

}
. (4.35)

Definition 4.2.7 (Divided difference). For distinct real numbers x1, x2, . . . , xn, the divided

difference of the function fR 7→ R is defined as

f [x1] = f(x1) (4.36)

and

f [x1, x2, . . . , xn] =
f [x1, x2, . . . , xn−1] − f [x2, x3, . . . , xn]

x1 − xn
(4.37)

for all n ≥ 2.

Note 4.2.15. The n-point divided difference of f can be expressed as

f [x0, x1, . . . , xn] =
n∑

k=1

f(xk)
n∏

l=1
l 6=k

(xl − xk)

(4.38)

Proof. See Theorem 2.10 in [Sahoo and Riedel, 1998].

Note 4.2.16. In [Sahoo and Riedel, 1998] it was shown that f [x0, x1, . . . , xn] is a con-

tinuous function of the variables x0, x1, . . . , xn. If f(x) has a continuous nth derivative,

then an unique continuous extension of f [x0, x1, . . . , xn] can be presented by an integral

representation. For example, if n = 1, then the continuous extension of f [x0, x1] is

f [x0, x1] =





f(x0) − f(x1)

x0 − x1
if x1 6= x0,

f ′(x0) if x1 = x0

(4.39)

provided f(x) has the first derivative. Because of this unique extension it can be allowed

that some of the nodes to coalesce if f is suitable differentiable.

Note 4.2.17. Mean value theorem for divided differences: Let f : [a, b] 7→ R be a real

valued function with continuous nth derivative and x0, x1, . . . , xn in [a, b]. Then there

exists a point η in the interval

[min{x0, x1, . . . , xn},max{x0, x1, . . . , xn}] (4.40)

such that

f [x0, x1, . . . , xn] =
f (n)(η)

n!
. (4.41)

Proof. See Theorem 2.10 in [Sahoo and Riedel, 1998].
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4.3 The Statement

The note 2.2.1 says that it is enough to prove the existence theorem only in either of the
z-domain or s-domain.

Theorem 4.3.1. For every meromorphic transfer function T (z) ∈ L2(T) and for nβ+nα ≤
2 there exists a delay τ such that the global minimum θ∗ of the cost function with fixed τ

below gives a stable system H(z, θ∗).

C(θ, τ) =‖ T (z)z−τ −H(z, θ) ‖2
2, (4.42)

where θ is the parameter vector that contains the coefficients of the numerator and denom-

inator, respectively.

4.4 The Proof

It is enough to prove the theorem for integer delay values, i.e. we can assume that τ ∈ Z.
We can write the cost function into the following form:

C(θ, τ) = T1 + T2(θ, τ) + T3(θ) (4.43)

where

T1 =

∫

I
|T (Ω)|2dω

T2(θ, τ) = −2Re ·
{∫

I
T ∗(Ω)eiτωH(Ω, θ)dω

}

T3(θ) =

∫

I
|H(Ω, θ)|2dω (4.44)

where star denotes the complex conjugate and I = [0, 2π].
The first term in the cost function is independent of θ, and hence we do not care about

it furthermore.
The second term in the cost function is responsible for decreasing the cost function.

Since the sign of this term can be chosen arbitrarily by the sign of cH in (4.3), it really
reduces the cost function if it is not zero. Let us denote the second term as T2(θ, τ).

The third term is independent of the delay and has always a non-negative value. During
the minimization of the cost function it should be reduced as much as possible. Let us
denote the third term as T3(Ω, θ).

Let us study the second term in more details. Using Ω = eiω we can write it in the
following form:

− T2(θ, τ)

2
= Re

{∫

I
T ∗(Ω)eiωτH(Ω, θ)dω

}
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= Re

{∫

[0,2π]
T (e−iω)eiτωH(eiω, θ)dω

}
(4.45)

It can easily be proved that the operation Re{} is unnecessary:

∫

[0,2π]
T (e−iω)eiτωH(eiω, θ)dω

=

∫

[0,π]
T (e−iω)eiτωH(eiω, θ)dω +

∫

[π,2π]
T (e−iω)eiτωH(eiω, θ)dω (4.46)

and using the substitution ω1 = −ω + 2π in the second term, we find

∫

[π,2π]
T (e−iω)eiτωH(eiω, θ)dω =

∫

[π,0]
T (eiω1)e−iτω1H(e=iω1 , θ)d(−ω1)

=

∫

[0,π]
T (eiω1)e−iτω1H(e−iω1 , θ)dω1. (4.47)

Therefore, (4.46) can be elaborated as

=

∫

[0,π]
T (e−iω)eiτωH(eiω, θ)dω +

∫

[0,π]
T (eiω1)e−iτω1H(e−iω1 , θ)dω1

= Re

{∫

[0,π]
T (e−iω)eiτωH(eiω, θ)dω

}
. (4.48)

Let τ be a positive integer value. (For non-integer values the power function is defined
by the complex logarithm function which is regular on the cut plane only. But if τ ∈ N

then the function zτ is regular on the whole C.) Substituting of eiω by z gives

z = eiω
dz

dω
= ieiω = iz (4.49)

∫

[0,2π]
T ∗(eiω)eiτωH(eiω, θ)dω = −i

∫

T

T (z−1)zτ−1H(z, θ)dz (4.50)

where T is the unit circle. And using note 4.2.13 we get

− T2(θ, τ)

2
= 2π

∑

k

Resz=pk
T (z−1)zτ−1H(z, θ). (4.51)

For τ > 1 the terms in the sum correspond to the poles of either the target or the approx-
imator function. Obviously we are talking about poles in the interior of the unit disk, i.e.
the stable poles of H(z, θ) and the unstable ones of T (z−1).
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Following the same lines for the third term T3(θ) of the cost function we find

T3(θ) =

∫

I
|H(Ω, θ)|2dω =

∫

[0,2π]
H∗(eiω, θ)H(eiω, θ)dω

= −i
∫

T

H
(
z−1, θ

)
z−1H(z, θ)dz

= 2π
∑

k

Resz=pk
H
(
z−1, θ

)
z−1H(z, θ). (4.52)

The poles of the system H(z−1, θ) are specified by inverting the poles of the system H(z, θ)

with respect to the unit circle. Using equation (4.3), equation (4.52) can be elaborated as:

= 2π
∑

k

Resz=pk
c2Hz

nα−nβ−1 (z − z1)(1 − zz1) · · · (z − znβ
)(1 − zznβ

)

(z − p1)(1 − zp1) · · · (z − pnα)(1 − zpnα)
. (4.53)

In equation (4.52) the number of terms is max{nβ − nα + 1, 0} + nα where the term
max{nβ − nα + 1, 0} stems from the term znα−nβ−1 in (4.53). Note that T3(θ) = 0 if and
only if cH = 0.

In the following let θ∗ or θ∗(τ) denote the series of the parameter vector which for every
τ minimize the cost function.

Note that if θ = θ∗ in (4.51) there is always at least one term. If this was not true, i.e.
every pole of T (z−1) and H(z, θ∗) is outside of the unit circle, then inverting a pole or a
pair of poles of H(z, θ∗) would increase |T2(θ∗, τ)| and leave T3(θ∗) unchanged and hence
would decrease the cost function. But this conflicts with θ∗ being a global minimum.

It is important to note that

|T2(θ∗, τ)| > |T3(θ∗)| (4.54)

and thus with an appropriate choice of cH

T2(θ∗, τ) + T3(θ∗) < 0. (4.55)

If this was not true then T2(θ∗, τ) + T3(θ∗) is always larger than zero and the parameter
vector with zero cH would give a smaller cost function (T2(θ, τ)+T3(θ) = 0) than C(θ∗, τ)

which is a contradiction. The practical consequence of (4.54) is that the larger |T2(θ, τ)|
the smaller the cost function (4.42).

In the remaining part of the proof we use the notation p(τ) for a pole and z(τ) for
a zero in order to emphasize the dependency on the delay τ . If we need more than one
pole or zero then indexing is used. For example p1(τ), zE(τ), etc. Later, the index is
used to distinguish between subsets of the poles and zeros. Simultaneously p1(τ) denotes
a particular sequence of a pole. Fortunately this does not cause any problem because in
every case the correct meaning is given. In the same way τ ′ denotes one integer value or
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a sub-sequence of the positive numbers N at the same time.

The next steps of the proof are:

1. T2(θ∗, τ) is bounded and therefore so is T3(θ∗).

2. There is at least one pole p(τ) of H(z, θ∗) which converges to the unit circle, i.e.
∃p(τ) : |p(τ)| → 1 as τ → ∞.

3. If θ∗ is a global minimum then |p(τ)| cannot converge to 1 faster than o
(

1
τ

)
. And

there is at least one pole p1(τ) for which |1 − p1(τ)| ∼ c1
τ where c1 > 0 is constant.

4. Proof for the case nβ = 1 and nα = 1.

5. Proof for the case nβ = 0, nα = 2 and both poles are complex.

6. Proof for the case nβ = 0, nα = 2 and both poles are real.

4.4.1 Evaluating the Term T2(θ, τ)

We prove this step by contradiction. Let us assume that there exists a sub-sequence τ ′ of
τ such that

T2(θ∗(τ
′), τ ′) → ∞ as τ ′ → ∞. (4.56)

First we prove that in this case ‖ H(Ω, θ∗(τ
′)) ‖2→ ∞ as τ ′ → ∞.

|T2(θ∗(τ
′), τ ′)| = 2

∣∣∣∣
∫

I
T ∗(Ω)eiτ

′ωH(Ω, θ∗(τ
′))dω

∣∣∣∣ (4.57)

Using the Cauchy-Schwarz inequality

∣∣∣
∫
I T

∗(Ω)eiτ
′ωH(Ω, θ∗(τ

′))dω
∣∣∣ ≤

√∫
I |T (Ω)|2dω

√∫
I |H(Ω, θ∗(τ ′))|2dω

=‖ T (Ω) ‖2 · ‖ H(Ω, θ∗(τ
′)) ‖2 (4.58)

Since ‖ T (Ω) ‖2 is constant as a function of τ ′, (4.56) and (4.58) prove the statement.

|T3(θ∗(τ
′))|

|T2(θ∗(τ ′), τ ′)|
=

∫
I |H(Ω, θ∗(τ

′))|2dω
2
∣∣∫

I T
∗(Ω)eiτ ′ωH(Ω, θ∗(τ ′))dω

∣∣ (4.59)

Using the same estimation

≥ C1

∫
I |H(Ω, θ∗(τ

′))|2dω√∫
I |T (Ω)|2dω

√∫
I |H(Ω, θ∗(τ ′))|2dω

≥ C2

√∫

I
|H(Ω, θ∗(τ ′))|2dω (4.60)
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where C1, C2 are constants, and where

√∫

I
|H(Ω, θ∗(τ ′))|2dω =‖ H(Ω, θ∗(τ

′)) ‖2→ ∞ (4.61)

Hence

|T3(θ∗(τ
′))|

|T2(θ∗(τ ′), τ ′)|
≥‖ H(Ω, θ∗(τ

′)) ‖2→ ∞ (4.62)

Since this is in contradiction with (4.54), and therefore |T2(θ∗(τ), τ)| <∞ and |T3(θ∗(τ))| <
∞.

4.4.2 Evaluating the Factor cH

Let Ĥ(Ω, θ) be defined as

Ĥ(Ω, θ) =
H(Ω, θ)

cH
=

(z − z1) · · · (z − znβ
)

(z − p1) · · · (z − pnα)
. (4.63)

This is slight abuse of notation because Ĥ(Ω, θ) does not depend on the parameter cH .
However, as it is mentioned in the very first part of this chapter it is nothing else than
a non-linear map which reduces the dimension of the parameter space, which makes it
possible to determine the local minimums unambiguously. In the remaining part of the
existence proof it will be unambiguous when the notation Ĥ(z, θ) is used. Since

T2(θ, τ) = −2cH

∫

I
T ∗(Ω)eiτωĤ(Ω, θ)dω

T3(θ) = c2H

∫

I
|Ĥ(Ω, θ)|2dω (4.64)

the cost function (4.42) can be written as

C(θ, τ) = c2HQ(θ) − 2cHR(θ, τ) +W. (4.65)

The same abuse of notations is true for Q(θ) and R(θ, τ), like for Ĥ(Ω, θ): in the cases
of Q(θ) and R(θ, τ) θ is the parameter vector which does not contain cH . (4.65) can be
minimized w.r.t. cH :

= Q(θ)

(
c2H − 2cH

R(θ, τ)

Q(θ)

)
+W = Q(θ)

(
cH − R(θ, τ)

Q(θ)

)2

− R2(θ, τ)

Q(θ)
+W. (4.66)

The minimum can be reached if cH is chosen as

cH =
R(θ, τ)

Q(θ)
(4.67)
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and the corresponding value of the cost function is

C(θ, τ) = W − R2(θ, τ)

Q(θ)
=

∫

I
|T (Ω)|2dω −

(∫
I T

∗(Ω)eiτωĤ(Ω, θ)dω
)2

∫
I |Ĥ(Ω, θ)|2dω

. (4.68)

It is worth noting that minimization of the cost function (4.42) is equivalent to maxi-
mizing the following expression:

C(θ, τ) =

(∫
I T

∗(Ω)eiτωĤ(Ω, θ)dω
)2

∫
I |Ĥ(Ω, θ)|2dω

. (4.69)

4.4.3 Subsequences of Poles and Zeros

Throughout the proof, subsequences of poles and zeros will be examined. This part of
the thesis presents a tool which simplifies the forthcoming steps of the proof. The basic
idea is the following. Assuming that the optimal parameter vector has unstable poles,
a new parameter vector is constructed such that it defines only stable poles and gives
a lower cost function. Since the optimal parameter vector minimizes the cost function,
this is a contradiction and, hence, for all τ sufficiently large the optimal parameter vector
defines only stable poles. To apply this tool, in which unstable poles are replaced by
stable ones, it is necessary to exclude special cases in which the path of a pole or a zero
behaves irregularly. For example, a sequence can have more than one limit point. Here, the
correct mathematical background is given to avoid repeating always how the special cases
are handled. The presented tool enables us to consider a convergent sequence of poles or
zeros. It is worth noting that the applied topological space is the extended complex plane
C ∪ {∞} [Rudin, 1987].

The sequences of zeros are defined as the sequences of roots of the following polynomial
defined by θ(τ), τ ∈ Z, τ → ∞:

β0 + β1x+ . . .+ βnβ
xnβ , (4.70)

and the sequences of poles are the sequences of roots of the polynomial

α0 + α1x+ . . .+ αnαx
nα . (4.71)

The roots of (4.70), i.e. the zeros are denoted by z1(τ), . . . , znβ
(τ). The roots of (4.71),

i.e. the poles are denoted by p1(τ), . . . , pnα(τ).

One of the results of Galois theory is that there is no formula for the roots of a fifth
or higher degree polynomial equation in terms of the coefficients of the polynomial, using
only the usual algebraic operations and application of radicals [Jacobson, 1985]. Mapping
between the coefficient space and the space of roots is complicated, the roots behave very
irregularly and indexing is a challenging task. Let us denote the continuous delay by τR. τ
is nothing else than the sampled version of τR. θ∗(τR) denotes a global optimum of C(θ, τR).
Although θ∗(τR) is not a continuous function, it contains only a countable number of jump
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discontinuities. Even if no multiple poles occur and θ(τR) is a continuous function in an
appropriate interval of R+, the roots of polynomials cannot be extracted as a function of
τR from the sampled roots, i.e. from pk(τ), k = 1, . . . , nα, zl(τ), l = 1, . . . , nβ. Hence, it
is impossible to ensure that in the case k 6= l, pk(τ) and pl(τ) belong to the same pm(τR)

where k, l,m = 1, . . . , nα.
To avoid such problems, only well selected subsequences are considered. We know

from elementary analysis that every bounded sequence has a convergent subsequence.
In the complex plane which can be mapped into R

3 as a sphere (the Riemann sphere,
[Rudin, 1987]), there is only one infinity and the sphere is closed and bounded (Heine-
Borel theorem, [Rudin, 1991]), therefore it is true that every sequence contains a conver-
gent subsequence. Let the set of positive integer numbers be denoted by Z+. The possible
values of τ is the whole set, i.e. τ = Z+. If τ ′ ⊂ Z+ then θ(τ ′) defines a subsequence
of θ(τ). Therefore, we use τ ′ to denote not only the subset, but θ(τ ′) is used to denote
the corresponding subsequence of θ(τ). It is a little abuse of notation but will not cause
problems. Similarly, convergent subsequences z(τ ′) and p(τ ′) can be constructed from the
roots of the corresponding polynomials (4.70) and (4.71).

For a parameter vector sequence θ(τ) can be constructed a disjoint composition of Z+

Z+ = ∪Nk

k=1τk (4.72)

where Nk denotes the number of subsets and τk are the corresponding subset, such that

• for all l = 1, . . . , nβ, zl(τk) is convergent,

• for all l = 1, . . . , nα, pl(τk) is convergent,

• for all l = 1, . . . , nα, if τk,1, τk,2 ∈ τk, τk,1 6= τk,2 then either pl(τk,1) and pl(τk,2) are
stable, or pl(τk,1) and pl(τk,2) are unstable,

• for all l = 1, . . . , nβ, if τk,1, τk,2 ∈ τk, τk,1 6= τk,2 then either zl(τk,1) and zl(τk,2) are
inside the unit disk, or zl(τk,1) and zl(τk,2) are inside the complementary set of the
unit disk.

It is worth noting that Nk can be infinity and it is possible for the cardinality of τk to
be finite. If |τk| is finite, then by definition every pole sequence pk(τk) and every zero
sequence zl(τl) is convergent. The last condition says that in a subsequence defined by τk
the stability or the unstability of a pole cannot change.

In the rest of this chapter where the asymptotic value of a sequence of poles or zeros
is referred, one of the convergent subsequence defined above is considered. Since most of
the steps are examining the limits of the sequences or the limits of the function of the
sequences, it will not cause problems.

In the following steps θ(τ), pk(τ) and zl(τ) denote convergent sequences on the complex
plane. Therefore, in asymptotic discussions, divergent sequences whose limit sets contain
more than one point, will not occur in the rest of the chapter.

The functions, especially the transfer functions considered here are meromorphic on the
complex plane. Hence, calculating the residue at a convergent subsequence of p1(τ

′) leads
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to a convergent sequence Resz=p1(τ ′)H(θ(τ ′), z) where H(θ(τ ′), z) a meromorphic function
having pole at p1(τ

′).
The method used in the next subsection are based on the following. First, we assume

that θ∗(τ) is a parameter vector sequence which minimizes the cost function (4.1). Applying
the introduced composition of τ , it is possible that for a τk, θ(τk) defines an unstable
transfer function. It means that it exists an integer 1 ≤ l ≤ nα such that pl(τk) is unstable.
In every case a new pole sequence p̃l(τk) is constructed, which defines a new parameter
vector sequence θ̃(τk), such that

• for all τk, p̃l(τk) is stable,

• for all τk sufficiently large C(θ̃(τk), τk) < C(θ∗(τk), τk).

Hence, it is a contradiction: θ∗(τk) cannot be the subsequence of the solution of the
optimization problem. The ultimate conclusion will be that for all τ sufficiently large
θ∗(τ) defines stable systems.

4.4.4 Evaluating the Term T3(θ)

In this section extreme configurations of zeros and poles are examined. If the subset
containing the poles and zeros which are converging to the complex infinity is not empty
then contributions of the term T2(θ, τ) and T3(θ) in the original cost function (4.43) are
hard to analyst. This part of the proof is devoted to show that using C(θ, τ) it is possible
to calculate the effects of the extreme subset. It will be proved that, asymptotically, the
contributions of these poles and zeros to the numerator and the denominator of (4.69), are
respectively the same. Hence, during the investigation of C(θ, τ) they can be left out.

First, a sufficient but not necessary condition is presented. We will prove that if∫
I |Ĥ(Ω, θ)|2dω converges to 0 then at least one pole converges to the (complex) infinity.

Next, assuming that a group of poles and zeros are approaching infinity, the asymptotic
value of C(θ, τ) is calculated.

4.4.4.1 Necessary Condition for ‖ Ĥ(Ω, θ) ‖2 Converging to 0

We assume that ∃M such that |pk| < M for all k = 1, . . . , nα. Substituting the polynomials
into Ĥ(eiω, θ) and we get

∫

I

∣∣∣Ĥ(eiω, θ)
∣∣∣
2
dω =

∫

I

∣∣∣∣∣

∏nβ

k=1(e
iω − zk)∏nα

k=1(e
iω − pk)

∣∣∣∣∣

2

dω. (4.73)

From the assumption we have ω ∈ I :
∣∣eiω − pk

∣∣ ≤M + 1 and therefore we conclude that

∫

I

∣∣∣Ĥ(eiω, θ)
∣∣∣
2
dω ≥ 1

(M + 1)2nα

∫

I

∣∣∣∣∣

nβ∏

k=1

(eiω − zk)

∣∣∣∣∣

2

dω. (4.74)

The interval I = [0, 2π] is divided into 2nβ + 1 equal parts where the endpoints of the
subintervals are denoted by Il, l = 1, . . . , 2nβ + 1. Using the fact that the integral is
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additive the last equation leads to

=
1

(M + 1)2nα

2nβ+1∑

l=1

∫

Il

∣∣∣∣∣

nβ∏

k=1

(eiω − zk)

∣∣∣∣∣

2

dω. (4.75)

The pigeonhole principle ensures that there always exists an n such that none of the zeros
converges to the arc defined as the image set of In of the function ejω. Let us define the
constant KZ as

KZ = min
{
KZ,1, . . . ,KZ,nβ

}
(4.76)

where

KZ,m = arg min
ω∈In

|ejω − zm|. (4.77)

So, (4.75) can be continued

≥ 1

(M + 1)2nα

∫

Il

∣∣∣∣∣

nβ∏

k=1

(eiω − zk)

∣∣∣∣∣

2

dω ≥ 1

(M + 1)2nα
K2

Z

2π

2nβ + 1
(4.78)

which is independent of τ . Therefore we conclude that if the poles remains finite then
∫
I

∣∣∣Ĥ(ejω, θ)
∣∣∣
2
dω does not converge to zero.

A simple construction shows that the condition that a pole converges to ∞ is not

sufficient to have that
∫ ∣∣∣Ĥ(ejω, θ)

∣∣∣
2
dω → 0 . Let the orders of the polynomials be nβ = 1,

nα = 1 and

z1(τ) = τ + 1,

p1(τ) = τ. (4.79)

For all τ , the pole p1 and the zero z1 do not coincide, so the orders cannot be decreased.
Substituting (4.79) into the expression of the integrand of T3(θ) (4.64) leads to

Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)
=

1

z

(z − z1)

(
1

z
− z1

)

(z − p1)

(
1

z
− p1

)

=
z1
p1

1

z

(z − z1)

(
1

z1
− z

)

(p1 − z)

(
z − 1

p1

) (4.80)

This complex function has two poles inside the unit circle. Therefore, following the same
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lines of (4.52)

1

2π

∫

I

∣∣∣Ĥ(eiω , θ)
∣∣∣
2
dω = Resz=0Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)
+ Resz= 1

p1

Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)

=
z1
p1

+
z1
p1
p1

(
1

p1
− z1

)(
1

z1
− 1

p1

)

p1 −
1

p1

=
z1
p1

+
(1 − z1p1)(p1 − z1)

p1(p2
1 − 1)

=
τ + 1

τ
+

(1 − τ(τ + 1))(−1)

τ(τ2 − 1)
→ 1 as τ → ∞. (4.81)

4.4.4.2 Handling Poles and Zeros Converging to Infinity

Without any loss of generality we can index the poles and zeros as follows. The first LD

poles converge to infinity:

|pl| → ∞, if l = 1, . . . , LD and

∃MD <∞ such that |pl| < MD for l = LD + 1, . . . , nα

and the first LN zeros converge to the infinity:

|zl| → ∞, if l = 1, . . . , LN and

∃MN <∞ such that |zl| < MN for l = LN + 1, . . . , nβ.

The bounded sequences of the poles are divided into two subsets:

|pl| → 0, if l = LD + 1, . . . LD + LD,0 and

|pl| → KP,l where 0 < KP,l <∞ for l = LD + LD,0 + 1, . . . , nα

In order to simplify the notations we introduce the sets P0, P∞ and PD which contain only
stable poles:

P∞ =

{
1

p1
, . . . ,

1

pLD

}
, (4.82)

P0 =
{
pLD+1 . . . , pLD+LD,0

}
, (4.83)

PD =





pk if pk stable

1

pk
if pk unstable

k = LD + LD,0 + 1, . . . nα. (4.84)
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We define the following sequences: p̃l = 1
pl

where l = 1, . . . , LD. By definition p̃l → 0.
Using this definition, the term T3/c

2
H can be written as

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

∑

k

Resz=pk,pk∈PD
f(z)

+
∑

k

Resz=pk,pk∈P0f(z) +
∑

k

Resz=pk,pk∈P∞
f(z) (4.85)

where

f(z) = znα−nβ−1

LN∏

k=1

(z − zk)(1 − zzk)

nβ∏

k=LN+1

(z − zk)(1 − zzk)

LD∏

k=1

(
z − 1

p̃k

)
(p̃k − z)

nα∏

k=LD+1

(z − pk) (1 − pkz)

LD∏

k=1

p̃k

= znα−nβ−1

LN∏

k=1

(z − zk)(1 − zzk)

nβ∏

k=LN+1

(z − zk)(1 − zzk)

LD∏

k=1

(
1

p̃k
− z

)
(z − p̃k)

nα∏

k=LD+1

(z − pk) (1 − pkz)

LD∏

k=1

p̃k (4.86)

and the sum extends over the set of poles which are inside the unit circle. Ĥ1(z, θ) contains
the poles and zeros of Ĥ(z, θ) that do not converge to infinity:

Ĥ1(z, θ) = Ĥ(z, θ)

LD∏

k=1

(z − pk)

LN∏

k=1

(z − zk)

=

nβ∏

k=LN+1

(z − zk)

nα∏

k=LD+1

(z − pk)

. (4.87)

The order of the numerator is nβ − LN and the order of the denominator is nα − LD.

In the rest of this section we will prove that, asymptotically, in expression 1
2π ‖

Ĥ(Ω, θ) ‖2
2 the contribution of the factor Ĥ1(z, θ) and the contributions of the poles and

the zeros converging to infinity can be handled independently as

lim
τ→∞

1

2π

∫

I
|Ĥ(Ω, θ)|2dω

LN∏

k=1

z2
k

LD∏

k=1

p̃2
k

1

2π

∫

I
|Ĥ1(Ω, θ)|2dω

= 1. (4.88)

Using the previously proved necessary condition we know that
∫
I |Ĥ1(Ω, θ)|2dω has a

strictly positive lower bound and, therefore, the important terms in (4.85) are those which
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do not have the property o

(
LN∏

k=1

z2
k

LD∏

k=1

p̃2
k

)
as τ → ∞.

4.4.4.3 Contribution of the Residues of the Poles Converging to a Non-zero

Value

The residue at the poles from the set PD are studied, i.e. they are converging to a non-
zero value inside the unit circle. We assume that pl+LD+LD,0

, l = 1, . . . , J where J is the
number of poles which converge to the same point inside the unit circle. This set of poles
is denoted by PJ and each may have a multiplicity larger than one. Now the contribution
of the residues at poles from the PJ is studied. Using the mean value theorem for divided
difference there exists a pole qJ with multiplicity J such that

∑

pk∈PJ

Resz=pk
f(z) = Resz=qJ

fJ(z) (4.89)

where

fJ(z) =

znα−nβ−1
LN∏

k=1

(z − zk)(1 − zzk)

nβ∏

k=LN+1

(z − zk)(1 − zzk)

LD∏

k=1

(
1

p̃k
− z

)
(z − p̃k)

LD+LD,0∏

k=LD+1

(z − pk) (1 − pkz)

×

LD∏

k=1

p̃k

(z − qJ)J
LD+LD,0+J∏

k=LD+LD,0+1

(1 − pkz)
nα∏

k=LD+LD,0+J+1

(z − pk) (1 − pkz)

(4.90)

Applying the chain rule of differentiation to fJ(z) = f1(z)f2(z) gives

[fJ(z)(z − qJ)J ](J−1) = [f1(z)f2(z)]
(J−1) =

J−1∑

k=0

(J − 1)!

(J − 1 − k)!k!
[f1(z)]

(k)[f2(z)]
(J−1−k)

= f1(z)[f2(z)]
J−1 +

J−1∑

k=1

(J − 1)!

(J − 1 − k)!k!
[f1(z)]

(k)[f2(z)]
(J−1−k). (4.91)



CHAPTER 4. EXISTENCE PROOF 53

It will be proved that the sum in (4.91) has asymptotically no contribution. Substituting

f1(z) = zLD−LN

LN∏

k=1

(z − zk)(1 − zzk)

LD∏

k=1

(
1

p̃k
− z

)
(z − p̃k)

LD∏

k=1

p̃k =

LN∏

k=1

(z − zk)

(
1

z
− zk

)

LD∏

k=1

(
1

p̃k
− z

)(
1 − p̃k

z

)
LD∏

k=1

p̃k (4.92)

and

f2(z) = znα−nβ−1−LD+LN

nβ∏

k=LN+1

(z − zk)(1 − zzk)

∏

k,pk∈(P0∪PD\PJ )

(z − pk) (1 − pkz)
∏

k,pk∈PJ

(1 − pkz)
. (4.93)

Substituting z = qJ into f1(z) we have the following factors

(qJ − zl)

(
1

qJ
− zl

)
= z2

l +O(zl) l = 1, . . . , LN (4.94)

and
(

1

p̃l
− qJ

)(
1 − p̃l

qJ

)
=

1

p̃l
+O(1) l = 1, . . . , LD. (4.95)

Therefore, the overall asymptotic contribution of f1(qJ) is

f1(z)|z=qJ∏LN

k=1 z
2
k

∏LD

k=1 p̃
2
k

→ 1 as τ → ∞. (4.96)

Let us now study the factor [f2(z)]
(J−1) in (4.91). Using the facts that |P0 ∪ PD\PJ | =

nα − LD − J , |PJ | = J and rewriting (4.93) we have

f2(z) =
1

z

nβ∏

k=LN+1

(z − zk)

(
1

z
− zk

)

∏

k,pk∈(P0∪PD\PJ )

(z − pk)

(
1

z
− pk

) ∏

k,pk∈PJ

(
1

z
− pk

) (4.97)

and applying the residue theorem gives

1

(J − 1)!
[f2(z)]

(J−1)
∣∣∣
z=qJ

= Resz=qJ

f2(z)

(z − qJ)J
. (4.98)



54 4.4. THE PROOF

If [f2(z)]
(J−1)

∣∣∣
z=qJ

→ 0 as τ → ∞ then it follows from (4.89), (4.91) and (4.96) that

∑

k,pk∈PJ

Resz=pk
f(z)

LD∏

k=1

p̃2
k

Ln∏

k=1

z2
k

→ 0, (4.99)

so we do not need to examine this case deeper. Otherwise for all pk ∈ PJ

(
1

z
− pk

)∣∣∣∣
z=qJ

=

(
1

z
− qJ

)∣∣∣∣
z=qJ

+O (|qJ − pk|) . (4.100)

Our assumption is that pk converges a non-zero value and, hence, for all pk ∈ PJ , 1
qJ

− pk

does not converge to zero and so does 1
qJ

− qJ . Therefore

[f2(z)]
(J−1)

∣∣∣
z=qj

=




1

z

nβ∏

k=LN+1

(z − zk)

(
1

z
− zk

)

∏

k,pk∈(P0∪PD\PJ )

(z − pk)

(
1

z
− pk

)(
1

z
− qJ

)J




(J−1)
∣∣∣∣∣∣∣∣∣∣∣∣
z=qj

+O




∑

k,pk∈PJ

|qJ − pk|


 . (4.101)

We define f3(z) as

f3(z) =




1

z

nβ∏

k=LN+1

(z − zk)

(
1

z
− zk

)

∏

k,pk∈(P0∪PD\PJ)

(z − pk)

(
1

z
− pk

)(
1

z
− qJ

)J




(J−1)

(4.102)

Hence, asymptotically we can write

lim
τ→∞

Resz=qJ

f3(z)

(z − qJ)J
= lim

τ→∞

∑

k,pk∈PJ

Resz=pk
Ĥ1(z, θ)

1

z
Ĥ1

(
1

z
, θ

)
. (4.103)

Next, the analysis of the sum in (4.91) is presented. Using the identity
(

1
p̃k

− z
)

=
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1
p̃k

(1 − zp̃k), f1(z) can be written as

f1(z) =

LN∏

k=1

(z − zk)

(
1

z
− zk

)

LD∏

k=1

(1 − p̃kz)

(
1 − p̃k

z

)
LD∏

k=1

p̃2
k (4.104)

If m > 0 then

f1(z)
(m) =

[
f1,N(z)

f1,D(z)

](m)

=

m∑

k=0

m!

(m− k)!k!
(f1,N (z))(k)

(
1

f1,D(z)

)(m−k)

. (4.105)

In f1,N(z) differentiating the factors leads to

(z − zl)
(k) =

{
1, if k = 1

0, if k > 1
(4.106)

and

(
1

z
− zl

)(k)

=
1

zk+1
(−1)k. (4.107)

Our conclusion is

(z − zl)
(k)
∣∣∣
z=qJ

= o(1) and

(
1

z
− zl

)(k)
∣∣∣∣∣
z=qJ

= O(1). (4.108)

Similarly,

[
1

(1 − zp̃k)

](m)

=

[
1

(1 − zp̃k)
2

p̃k

z2

](m−1)

=
1

(1 − zp̃k)
m+1 p̃

m
k (m− 1)! (4.109)

and




1(
1 − p̃k

z

)




(m)

=
(−1)m−1p̃k

(z − p̃k)
m+1 (m− 1)! (4.110)

so

[
1

(1 − zp̃k)

](m)
∣∣∣∣∣
z=qJ

= O (p̃m
k ) (4.111)
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1(
1 − 1

p̃k

)




(m)
∣∣∣∣∣∣∣∣∣
z=qJ

= O (p̃k) . (4.112)

Therefore

m > 0 ⇒ f1(z)
(m) = o

(
LN∏

k=1

z2
k

LD∏

k=1

p̃2
k

)
. (4.113)

In the end the arguments leads to

lim
τ→∞

∑

k,pk∈PJ

Resz=pk
Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)

LD∏

k=1

p̃2
k

LN∏

k=1

z2
k

∑

k,pk∈PJ

Resz=pk
Ĥ1(z, θ)

1

z
Ĥ1

(
1

z
, θ

) = 1 (4.114)

4.4.4.4 Contributions of Residues calculated at Poles Converging to Zero

Now, the poles of (4.86) which are converging 0 or ∞ are examined. The number of poles
converging to 0 depends also on the number nα − nβ − 1. (4.86) can be written as

=

znα−nβ−1
LN∏

k=1

(z − zk)

(
1

zk
− z

) nβ∏

k=LN+1

(z − zk)(1 − zzk)

LD∏

k=1

p̃k

LN∏

k=1

zk

∏

k,pk∈P∞

(
1

p̃k
− z

)
(z − p̃k)

∏

k,pk∈P0

(z − pk) (1 − pkz)
∏

k,pk∈PD

(z − pk) (1 − pkz)

(4.115)

If nα −nβ −1 ≥ 0 then only the poles which are the inverse of pk ∈ P∞ and the poles form
P0 are converging to 0. The cardinality of these sets are LD and LD,0, respectively. In the
case where nα − nβ − 1 < 0 the number of poles in (4.115) which are converging to 0 are
nβ + 1 − nα + LD + LD,0.

The following case are considered:

• nα − nβ − 1 ≥ 0 and nα − nβ − 1 ≥ LD + LD,0 − LN ,

• nα − nβ − 1 ≥ 0 and nα − nβ − 1 − LD − LD,0 + LN < 0,

• nα − nβ − 1 < 0.

• In the first case our assumption is nα − nβ − 1 ≥ LD + LD,0 − LN . It means that
only poles from the set P0 and inverse of poles from the set P∞ converge to 0. The
complex mean value theorem implies that there exists a q0 for which

∑

k,pk∈P0

Resz=pk
f(z) +

∏

k,pk∈P∞

Resz= 1
pk

f(z) = Resz=q0f0(z) (4.116)
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and its multiplicity is LD + LD,0 > 0 where

f0(z) = f(z)

∏

k,pk∈P0

(z − pk)
∑

k,pk∈P∞

(
z − 1

pk

)

(z − q0)
LD+LD,0

. (4.117)

The function that has to be calculated at z = q0 is

f0(z)(z − q0)
LD+LD,0 =

znα−nβ−1

LN∏

k=1

(z − zk)

(
1

zk
− z

)

LD∏

k=1

(
1

p̃k
− z

) LD+LD,0+1∏

k=LD+1

(1 − pkz)

×
∏nβ

k=LN+1(z − zk)(1 − zzk)∏nα

k=LD+LD,0+1 (z − pk) (1 − pkz)

LD∏

k=1

p̃k

LN∏

k=1

zk. (4.118)

We define the following functions:

f1(z) = znα−nβ−1 (4.119)

and

f2(z) =
f(z)(z − q0)

LD+LD,0

f1(z)
. (4.120)

We known that

f1(z)
(m) =





(nα − nβ − 1) · · · (nα − nβ − 1 −m)znα−nβ−1−m, if m < nα − nβ − 1,

(nα − nβ − 1)!, if m = nα − nβ − 1,

0 otherwise.

Hence if m 6= nα − nβ − 1 then

q0 → 0 ⇒ f1(z)
(m)
∣∣∣
z=q0

→ 0 as τ → ∞. (4.121)

Since

Resz=q0f0(z) =
1

(LD + LD,0 − 1)!
[f1(z)f2(z)]

(LD+LD,0−1)
∣∣∣
z=q0

=
1

(LD + LD,0 − 1)!

LD+LD,0−1∑

k=0

(LD + LD,0 − 1)!

(LD + LD,0 − 1 − k)!k!
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×f1(z)
(k)f2(z)

(LD+LD,0−1−k)
∣∣∣
z=q0

=

LD+LD,0−1∑

k=0

1

(LD + LD,0 − 1 − k)!k!
f1(z)

(k)
∣∣∣
z=q0

f2(z)
(LD+LD,0−1−k)

∣∣∣
z=q0

(4.122)

Combining the assumption nα − nβ − 1 ≥ LD + LD,0 − LN , (4.121), and (4.106) to
(4.113), it can be seen that

Resz=q0f0(z) = o

(
LN∏

k=1

z2
k

LD∏

k=1

p̃2
k

)
. (4.123)

• The assumptions are nα − nβ − 1 ≥ 0 and nα − nβ − 1− LD − LD,0 +LN < 0. Like
in the previous case the mean value theorem for divided difference is used and f0 is
defined as

∑

k,pk∈P0

Resz=pk
f(z) +

∑

k,pk∈P∞

Resz= 1
pk

f(z) = Resz=q0f0(z) (4.124)

f0(z) = f(z)

∏

k,pk∈P0

(z − pk)
∑

k,pk∈P∞

(
z − 1

pk

)

(z − q0)
LD+LD,0

. (4.125)

Since

1(
1

p̃k
− z

) =
p̃k

(1 − zp̃k)
(4.126)

and

(z − zk) = zk

(
z

zk
− 1

)
(4.127)

we can write

Resz=q0f0(z) =
1

(LD + LD,0 − 1)!

[
(z − q0)

LD+LD,0f0(z)
](LD+LD,0−1)

∣∣∣
z=q0

=
1

(LD + LD,0 − 1)!




znα−nβ−1
LN∏

k=1

(
1 − z

zk

)(
z − 1

zk

)

LD∏

k=1

(1 − p̃kz)
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×

nβ∏

k=LN+1

(z − zk)(1 − zzk)

LD∏

k=1

p̃2
k

LN∏

k=1

z2
k

LD+LD,0∏

k=LD+1

(1 − pkz)

nα∏

k=LD+LD,0+1

(z − pk) (1 − pkz)




(LD+LD,0−1)
∣∣∣∣∣∣∣∣∣∣∣∣∣
z=q0

(4.128)

We define the following functions:

f1(z) = znα−nβ−1
LN∏

k=1

(
z − 1

zk

)
, (4.129)

f2(z) =

LN∏

k=1

(
1 − z

zk

)

LD∏

k=1

(1 − p̃kz)

LD+LD,0∏

k=LD+1

(1 − pkz)

(4.130)

and

f3(z) =

nβ∏

k=LN+1

(z − zk)(1 − zzk)

nα∏

k=LD+LD,0+1

(z − pk) (1 − pkz)

. (4.131)

Resz=q0f0(z)
LD∏

k=1

p̃2
k

LN∏

k=1

z2
k

=
1

(LD + LD,0 − 1)!
[f1(z)f2(z)f3(z)]

(LD+LD,0−1)
∣∣∣
z=q0

. (4.132)

Using the same arguments as in the previous case

f1(z)
(m)
∣∣∣
z=q0

=





o(1), if m < nα − nβ − 1 + LN ,

(nα − nβ − 1)!, if m = nα − nβ − 1 + LN ,

0, otherwise.

Now, the factors of f2(z) are studied. If m > 0 then

[(
1 − z

zk

)](m)

=

{
O

(
1

zk

)
, if m = 1, 0, if m > 1, (4.133)
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where |zk| → ∞ as τ → ∞, and if m = 0

(
1 − q0

zk

)
→ 1(τ → ∞). (4.134)

Contributions of the factors which belong to the set P∞ are

[
1

(1 − p̃kz)

](m)
∣∣∣∣∣
z=q0

= O(p̃m
k ) for k = 1, . . . , LD (4.135)

where p̃k → 0 as τ → ∞, and contributions of the factors which belong to the set P0

[
1

(1 − pkz)

](m)

= O(pm
k ) for k = LD + 1, . . . , LD + LD,0 (4.136)

where pk → 0 as τ → ∞. If m = 0 then

lim
τ→∞

(
1

1 − p̃kq0

)
= lim

τ→∞

(
1

1 − pkq0

)
= 1. (4.137)

So, we get

f2(z)
(m)
∣∣∣
z=q0

=

{
o(1), if m > 0,

1, otherwise.
(4.138)

Therefore, in (4.132)

=
1

(LD + LD,0 − 1)!

(
(LD + LD,0 − 1)!

(nα − nβ − 1 + LN )!(LD + LD,0 − nα + nβ + 1 − LN )!

× f1(z)
(nα−nβ−1+LN ) [f2(z)f3(z)]

(LD+LD,0−nα+nβ−LN )

+

LD+LD,0−1∑

k=0,k 6=nα−nβ−1+LN

(LD + LD,0 − 1)!

(LD + LD,0 − 1 − k)!k!

×f1(z)
(k) [f2(z)f3(z)]

(LD+LD,0−1−k)
)

(4.139)

the first term has asymptotically importance. Moreover, from (4.138) we conclude
that in the expression

[f2(z)f3(z)]
(LD+LD,0−nα+nβ−LN ) = f2(z)f3(z)

(LD+LD,0−nα+nβ−LN )
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+

(LD+LD,0−nα+nβ−LN )∑

k=1

(LD + LD,0 − nα + nβ − LN )!

((LD + LD,0 − nα + nβ − LN ) − k)!k!

× f2(z)
(k)f3(z)

(LD+LD,0−nα+nβ−LN−k) (4.140)

only the first term may converge to a non-zero value. The ultimate result of this case
that, asymptotically, only the following term counts

f1(z)
(nα−nβ−1+LN )f2(z)

1

(LD + LD,0 − nα + nβ − LN )!

× f3(z)
(LD+LD,0−nα+nβ−LN ). (4.141)

1

(LD + LD,0 − nα + nβ − LN )!

×
[ ∏nβ

k=LN+1(z − zk)(1 − zzk)∏nα

k=LD+LD,0+1 (z − pk) (1 − pkz)

](nβ−nα−LD−LD,0+LN )
∣∣∣∣∣∣
z=q0

= Resz=q0

∏nβ

k=LN+1(z − zk)
(

1
z − zk

)

z
∏nα

k=LD+1 (z − pk)
(

1
z − pk

) = Resz=q0Ĥ1(z, θ)
1

z
Ĥ1

(
1

z
, θ

)
(4.142)

Hence

lim
τ→∞




∑

k,pk∈P0

Resz=pk
Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)
+

∑

k,pk∈P∞

Resz= 1
pk

Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)


× 1
LD∏

k=1

p̃2
k

LN∏

l=1

z2
l Resz=q0Ĥ1(z, θ)

1

z
Ĥ1

(
1

z
, θ

) = 1 (4.143)

• The case nα−nβ−1 < 0. It follows from the assumptions that the factor znα−nβ−1 =
1

z
nβ+1−nα

has nβ + 1 − nα number of poles at 0, therefore the number of the poles
converging to 0 equals nβ −nα +1+LD,0 +LD. The divided difference theorem says
that there exists a sequence of q0(τ) such that

∑

k,pk∈P0

Resz=pk
f(z) +

∑

k,pk∈P∞

Resz= 1
pk

f(z) + Resz=0f(z) = Resz=q0f0(z) (4.144)
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where the multiplicity of q0 is nβ + 1 − nα + LD,0 + LD and |q0(τ)| → 0 as τ → ∞
and

f0(z) = f(z)

∏

k,pk∈P0

(z − pk)
∑

k,pk∈P∞

(
z − 1

pk

)
znβ−nα+1

(z − q0)
N+1

.

Resz=q0f0(z) = 1
N !




LN∏

k=1

(
1 − z

zk

)(
z − 1

zk

)

LD∏

j=1

(1 − p̃jz)

LD+LD,0∏

k=LD+1

(1 − pkz)

×

nβ∏

k=LN+1

(z − zk)(1 − zzk)

nα∏

k=LD+1+LD,0

(z − pk) (1 − pkz)

∏LD

j=1 p̃
2
j

∏LN

j=1 z
2
j




(N)
∣∣∣∣∣∣∣∣∣∣∣∣
z=q0

(4.145)

where N = LD + LD,0 − nα + nβ. We define the functions f1(z), f2(z), f3(z) and
f4(z) as

f1(z) =

∏LN

k=1

(
1 − z

zk

)

∏LD

k=1 (1 − p̃kz)
, (4.146)

f2(z) =

LN∏

k=1

(
z − 1

zk

)
, (4.147)

f3(z) =

∏nβ

k=LN+1(z − zk)(1 − zzk)∏nα

k=LD+1+LD,0
(z − pk) (1 − pkz)

, (4.148)

f4(z) =
1

∏LD+LD,0

k=LD+1 (1 − pkz)
. (4.149)

The chain rule of differentiation leads to

f(z)(N) = [f1(z)f2(z)f3(z)f4(z)]
(N) =
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= (f2(z)f3(z))
(N)f1(z)f4(z) +

N∑

k=1

N !

(N − k)!k!
(f2(z)f3(z))

(N−k)(f1(z)f4(z))
(k)

=

(
N !

(N − LN )!LN !
f2(z)

(LN )f3(z)
(N−LN )

+
N∑

l=0,l 6=LN

N !

(N − l)!l!
f2(z)

(l)f3(z)
(N−l)


 f1(z)f4(z)

+

N∑

k=1

N !

(N − k)!k!
(f2(z)f3(z))

(N−k)(f1(z)f4(z))
(k). (4.150)

If m > 0 is an integer then using the facts that
[

1
1 − pkz

]′
= pk

1
(1 − pkz)

2 and

pk → 0 for all pk ∈ P0 we have

f4(z)
(m)
∣∣∣
z=q0

→ 0 as τ → ∞. (4.151)

Otherwise because for all pk ∈ P0
1

1−pkq0
→ 1 as τ → ∞

f4(z)|z=q0
→ 1 as τ → ∞. (4.152)

Similarly, if m > 0 then using the facts that
[
1 − z

zk

]′
= − 1

zk
, zk → ∞ for k =

1, . . . , LN and
[

1
1−p̃kz

]′
= p̃k

1
(1−p̃kz)2 , p̃k → 0 for all k : pk ∈ P∞.

f1(z)
(m)
∣∣∣
z=q0

→ 0 as τ → ∞. (4.153)

and in case where m = 0

f1(z) |z=q0
→ 1 as τ → ∞. (4.154)

If m < LN then f2(z)
(m) contains at least one of the factors of (4.147). Since q0 → 0

and 1
zk

→ 0 for all k = 1, . . . , LN , so
(
q0 − 1

zk

)
→ 0 therefore

m < LN ⇒ f2(z)
(m)
∣∣∣
z=q0

→ 0 as τ → ∞. (4.155)

We know that

f2(z)
(LN ) = LN !, (4.156)
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and if m > LN then

f2(z)
(LN ) = 0. (4.157)

Our conclusion is that f2(z)
(LN )f3(z)

(N−LN )f1(z)f4(z)
∣∣
z=q0

is the only term which
may converge to non-zero as τ → ∞. The limit is non zero in the case where H(z)

does not contain any zero converging to 0. Since

f2(z)
(LN ) = LN !, f1(q0) → 1, f4(q0) → 1 (4.158)

the limit of the first term in (4.150) can be calculated as

1

(N − LN )!
f3(z)

(N−LN )

∣∣∣∣
z=q0

=
1

(N − LN )!
f3(z)

(LD−LN+LD,0−nα+nβ)

∣∣∣∣
z=q0

=
1

(N − LN )!

[ ∏nβ

k=LN+1(z − zk)(1 − zzk)∏nα

k=LD+1+LD,0
(z − pk) (1 − pkz)

](LD−LN+LD,0−nα+nβ)
∣∣∣∣∣∣
z=q0

= Resz=q0 z
−(N−LN +1)

∏nβ

k=LN+1(z − zk)(1 − zkz)∏nα

k=LD+1+LD,0
(z − pk) (1 − pkz)

= Resz=q0

1

z

∏nβ

k=LN+1(z − zk)
(

1
z − zk

)
∏nα

j=LD+1+LD,0
(z − pj)

(
1
z − pj

) (4.159)

It means that asymptotically the following equality holds

lim
τ→∞

1
∏LN

k=1 z
2
k∏LD

k=1 p
2
k

Resz=q0

1

z
Ĥ1(z, θ)Ĥ1

(
1

z
, θ

)

×




∑

k,pk∈P0

Resz=pk

1

z
Ĥ(z, θ)Ĥ

(
1

z
, θ

)
+

∑

k,pk∈P∞

Resz= 1
pk

1

z
Ĥ(z, θ)Ĥ

(
1

z
, θ

)

+Resz=0
1

z
Ĥ(z, θ)Ĥ

(
1

z
, θ

))
= 1. (4.160)

4.4.4.5 Contribution to T2(θ, τ)

In the term T2(θ, τ) the residues calculated at points inside the unit circle, see (4.51).
Therefore the inverses of the poles from P∞ play no role in the term T2(θ, τ). In the
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numerator of C(θ, τ) in (4.69) the residues at the poles from PD, P0 are evaluated.

Let us assume that the poles of Ĥ(z, θ) and T
(

1
z

)
which constitute a set denoted by

Pq converge to the same point inside unit circle. Applying the divided difference theorem
there exists a pole q with multiplicity J such that

∑

k,pk∈Pq

Resz=pk
Ĥ(z, θ)zτ−1T

(
1

z

)
= Resz=qf0(z) (4.161)

where

f0(z) = Ĥ(z, θ)zτ−1T

(
1

z

)
∏

k,pk∈Pq

(z − pk)

(z − q)J
. (4.162)

Substituting z = q it leads to

Resz=qf0(z) =
1

(J − 1)!
×

= ×




LN∏

k=1

(z − zk)

nβ∏

k=LN+1

(z − zk)z
τ−1

nβT∏

k=1

(
1

z
− zk,T

)

LD∏

k=1

(z − pk)
∏

k,pk /∈(Pq∪P∞)

(z − pk)
∏

k,pT,k /∈Pq

(
1

z
− pT,k

)




(J−1)
∣∣∣∣∣∣∣∣∣∣∣∣∣
z=q

. (4.163)

We define the following functions:

f1(z) =

∏LN

k=1(z − zk)∏LD

k=1(z − pk)
(4.164)

and

f2(z) =
1

(J − 1)!

LN∏

k=1

(z − zk)

nβ∏

k=LN+1

(z − zk)z
τ−1

nβT∏

k=1

(
1

z
− zk,T

)

∏

k,pk /∈(Pq∪P∞)

(z − pk)
∏

k,pT,k /∈Pq

(
1

z
− pT,k

) . (4.165)

The chain rule of differentiation gives

[f1(z)f2(z)]
(J−1) = f1(z)f2(z)

(J−1) +
J−1∑

k=1

(J − 1)!

(J − 1 − k)!k!
f1(z)

(k)f2(z)
(J−1−k). (4.166)

If m > 1 f1(q)
(m) contains less factors in the numerator or more factors in the denominator.

Since zk → ∞ and pk → ∞ it means that the convergence rate is decreased. |zk| → ∞
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(τ → ∞), |q| < 1 we have

lim
τ→∞

∣∣∣∣∣∣∣∣∣∣∣∣∣

[
LN∏

k=1

(z − zk)

](m1)
∣∣∣∣∣∣
z=q

LN∏

k=1

(q − zk)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

{
0, if m1 > 0,

1, if m1 = 0,

and because of the fact that |pk| → ∞ we have

lim
τ→∞

∣∣∣∣∣∣∣∣∣∣∣∣∣

[
LN∏

k=1

1

(z − pk)

](m2)
∣∣∣∣∣∣
z=q

LN∏

k=1

1

(q − zk)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

{
0, if m2 > 0,

1, if m2 = 0.

Therefore asymptotically the term f1(z)f2(z)
(J−1) is of importance. So

∏LN

k=1(q − zk)∏LD

k=1(q − pk)
=

∏LN

k=1 zk∏LD

k=1 pk

(−1)LN +LD




LN∏

k=1

(
1 − q

zk

)

LD∏

k=1

(
1 − q

pk

)




=

∏LN

k=1 zk∏LD

k=1 pk

(−1)LN+LD

(
1 +O

(
LN∑

k=1

1

zk
+

LD∑

k=1

1

pk

))

=

∏LN

k=1 zk∏LD

k=1 pk

(−1)LN +LD(1 + o(1)). (4.167)

Furthermore,

lim
τ→∞

f2(z)
(J−1)

∣∣∣
z=q∑

k,pk∈Pq
Resz=pk

Ĥ1(z, θ)zτ−1T
(

1
z

) = 1 (4.168)

and therefore

lim
τ→∞

∑

k,pk∈Pq

Resz=pk
Ĥ(z, θ)zτ−1T

(
1

τ

)

∏LN

k=1 zk

(−1)LN +LD
∏LD

k=1 pk

∑

k,pk∈Pq

Resz=pk
Ĥ1(z, θ)z

τ−1T

(
1

z

) = 1 (4.169)
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where Ĥ1(z, θ) contains only the poles and zeros of Ĥ(z, θ) that do not converge to the
infinity.

4.4.4.6 Conclusion for C(θ, τ)

Collecting the results of the previous subsections the term T2(θ, τ) can be written as

(∫

I
T ∗(Ω)eiτωĤ(Ω, θ)dω

)2

=

(∫

I
T ∗(Ω)eiτωĤ1(Ω, θ)dω

)2
(∏LN

k=1 zk∏LD

k=1 pk

(1 + o (1))

)2

and using the usual rules with respecting to the function o(.) (see 4.2.2) we continue

=

(∫

I
T ∗(Ω)eiτωĤ1(Ω, θ)dω

)2
(∏LN

k=1 z
2
k∏LD

k=1 p
2
k

(1 + o (1))

)
(4.170)

and the term T3(θ) can be expressed as a sequence of θ(τ):

∫

I
|Ĥ(Ω, θ)|2dω =

∫

I
|Ĥ1(Ω, θ)|2dω

(∏LN

k=1 z
2
k∏LD

k=1 p
2
k

(1 + o (1))

)
. (4.171)

Therefore

C(θ, τ) =

(∫

I
T ∗(Ω)eiτωĤ1(Ω, θ)dω

)2

∫

I
|Ĥ1(Ω, θ)|2dω

(1 + o(1)) (4.172)

The last expression shows that if we consider the parameter θ∗(τ) vector that determines
the global minimum of the cost function then the zeros and the poles which are converging
to ∞ play no role as τ → ∞. Therefore, from now on the transfer function is assumed to
have no poles nor zeros converging to infinity.

As a consequence of §4.4.1 every term in (4.172) is bounded. In the sequel we will
prove that in all cases C(θ∗, τ) converges to 0.

4.4.5 Existence of a Pole Converging to the Unit Circle

Now we prove that there exists at least one stable pole series whose absolute value converges
to 1. We prove it again by contradiction. If it is not true then every pole inside the unit
circle has a common bound K2.

∀τ,∀0 ≤ k ≤ nα : |pk| < K2 < 1 (4.173)
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Because of the factor zτ , T2(θ, τ) in (4.51) converges towards zero at least exponentially
for τ → ∞. The numerator of (4.69) can be estimated as

(
2π
∑

k

Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

)2

≤ C1K
2τ
2 (4.174)

where C1 is an appropriate constant. We apply the result of the previous section. Using
the fact that the denominator of (4.69) is bounded below and applying the estimation
(4.174) we get

C(θ, τ) ≤ C1K
2τ
2 KT3 (4.175)

where KT3 is the upper bound of the reciprocal of
∫
I |Ĥ(Ω, θ)|2dω. (4.68) and the last

equation shows that the whole cost function converges towards zero at least exponentially.

Let σT,W denote the number of zeros of T (z) which are equal to w, and let σT−1,W denote
the number of zeros of T

(
1
z

)
which are equal to w. Let us define σ = min{σT,1, σT,−1}.

We know that σT,1 = σT−1,1 and σT,−1 = σT−1,−1.

Now via another construction we are going to show that the function (4.69) converges
towards zero at the rate 1/τ2σ+1. Let us select a pole p1 (or of course we can select a
complex conjugate pair). Let the amplitude of this (these) be such that

p1 = P1

(
1 − 1

τ

)
(4.176)

where P1 = 1 if σ = σT−1,1 and P1 = −1 otherwise, and by construction there is no
sub-sequence of zeros z1 such that

|p1 − z1| = o(1). (4.177)

For a a complex conjugate pole pair the angle of P is neither zero nor π.

T
(

1
z

)
can be written as

T

(
1

z

)
= (z − 1)σT−1,1(z + 1)σT1,−1 T̃ (z) (4.178)

where T̃ (z) is the part of the target function for which T̃ (1) 6= 0 and T̃ (−1) 6= 0.
T2(θ, τ)/cH = O

(
1

τσ

)
and by construction for any sequence lτ → T the sequence T̃−1(lτ )

is bounded as τ → ∞ because of note 4.2.7. Let us denote the maximum of the possible
non-zero limit value KT̃−1 .

The third term T3(θ) (4.86) of the cost function contains a multiplicator c2H . If cH 6= 0

then

∀θ :
T3(θ(τ))

c2H
> 0. (4.179)
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According to result of the previous section T3(θ)/c
2
H has a positive lower bound which is

independent of τ .

Let us write the corresponding residue(s) of T3(θ) at p1 in the case of a real pole as

Resz=p1H(z−1, θ)z−1H(z, θ) = Resz=p1

1

(z − p1)

(
1

z
− p1

) 1

z
H1(z, θ) (4.180)

or in the case of conjugate pair of poles as

Resz=p1H(z−1, θ)z−1H(z, θ) + Resz=p∗1
H(z−1, θ)z−1H(z, θ)

= Resz=p1

1

(z − p1)

(
1

z
− p1

)
(z − p∗1)

(
1

z
− p∗1

) 1

z
H1(z, θ)

+ Resz=p∗1

1

(z − p1)

(
1

z
− p1

)
(z − p∗1)

(
1

z
− p∗1

) 1

z
H1(z, θ). (4.181)

Since by construction there is no sub-sequence of zeros such that equation (4.177) is true,
we have in both cases

H1(p1, θ) = H1(P1, θ) +O

(
1

τ

)
(4.182)

and H1(P1) 6= 0.

Elaborating (4.180) gives

=
−1

p1 −
1

p1

1

p1
H1(p1, θ). (4.183)

Using equation (4.176) it can be seen that

1
1

p1
− p1

=
1

1

P1

(
1 − 1

τ
) − P1

(
1 − 1

τ

) . (4.184)

Using the fact that P1 = 1
P1

for real poles and

1

1 − 1

τ

−
(

1 − 1

τ

)
= 1 +

1

τ

1

1 − 1

τ

− 1 +
1

τ
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=
1

τ


1 +

1

1 − 1

τ


 =

1

τ

(
2 +O

(
1

τ

))
(4.185)

the first factor of (4.183) is

−1

p1 −
1

p1

=
P1

2
τ +O(1). (4.186)

Since p1 → T as τ → ∞ and H1(z) has no pole in a neighborhood of P1

1

p1
H1(p1, θ) (4.187)

is bounded. Therefore, collecting the results leads to

Resz=p1H(z−1, θ)z−1H(z, θ) = τ

(
1

2
+O

(
1

τ

))
H1(p1, θ). (4.188)

Applying the notation KH1 = limτ→∞H1(p1, θ) (4.69) can be written as

C(θ, τ) =

(
1

τσ
KT2 + o

(
1

τσ

))2

τ
(

1
2 +O

(
1
τ

))
(KH1 + o(1))

=
1

τ

2
1

τ2σ
K2

T̃−1

KH1

+ o

(
1

τ

)
. (4.189)

We can conclude that the convergence rate of the corresponding C(θ, τ) is 1
τ2σ+1 .

In the case of conjugate pole pairs p1 can be written as

p1 = rp1e
jθ1 (4.190)

where rp1, θ1 ∈ R. The assumption states that rp1 = 1 − 1
τ . Elaborating (4.181) leads to

=




H1(p1, θ)(
1

p1
− p1

)
(p1 − p∗1)

(
1

p1
− p∗1

) 1

p1

+
H1(p

∗
1, θ)

(p∗1 − p1)

(
1

p∗1
− p1

)(
1

p∗1
− p∗1

) 1

p∗1




=
1

p1 − p∗1

1

1 − |p1|2



H1(p1, θ)
1

p1
− p1

− H1(p
∗
1, θ)

1

p∗1
− p∗1
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=
1

Im{p1}
1

1 − |p1|2
Im





H1(p1)
1

p1
− p1




. (4.191)

Let us discuss the factors of (4.191) separately. The first factor is

1

Im{p1}
=

1

rp sin θ1
=

1(
1 − 1

τ

)
sin θ1

=
1

sin θ1

(
1 +O

(
1

τ

))
. (4.192)

The second factor of (4.191) can be written as

1

1 − |p1|2
=

1

1 −
(

1 − 1

τ

)2 =
1

2

τ
− 1

τ2

=
τ

2

(
1 +O

(
1

τ

))
. (4.193)

The denominator of the third factor of (4.191) is

1

p1
− p1 =

1(
1 − 1

τ

)e−jθ1 −
(

1 − 1

τ

)
ejθ1

=

(
1 +

1

τ
+O

(
1

τ2

))
e−jθ1 − ejθ1 +

1

τ
ejθ1

= e−jθ1 − ejθ1 +
1

τ

(
e−jθ1 + ejθ1

)
+O

(
1

τ2

)
= 2j sin(−θ1) +O

(
1

τ

)
. (4.194)

Therefore

Im





H1(p1, θ)
1

p1
− p1





= Im

{
H1(e

jθ1 , θ)

2j sin(−θ1) +O
(

1
τ

)
}

= −Re{H1(e
jθ1 , θ)}

2 sin θ1
+O

(
1

τ

)
= −Re{H1(e

jθ1 , θ)}
2 sin θ1

+ o (1) . (4.195)

Collecting the results and using the same arguments like in the single pole case we can
conclude that the C(θ, τ) converges to zero at the rate 1/τ .

Here we used the fact that in the case of a complex conjugate pole pair there always
exists a point on T such that no zero converges to it. Using the fact that the larger |T2(θ, τ)|
the smaller is the cost function, and the first note 4.2.5 gives that there exists a τ where
the set of poles (4.176) gives a smaller cost function than the set of the poles (4.173). This
is a contradiction because we have assumed that the former series of poles gives for any τ
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the smallest cost function.

4.4.6 Calculating Integrals via the Residue Theorem

Up to this point the assumption nβ+nα ≤ 2 was not used. In this and the forthcoming sub-
sections this condition is covered. This assumption is applied when the terms T2(θ, τ) and
T3(θ) have to be calculated. (4.51) and (4.52) show that the integrals can be determined
by using the residue theorem.

4.4.6.1 Investigation of the Contribution of the Term T2(θ, τ)

We know that

(∫

I
T ∗(Ω)eiτωĤ(Ω, θ)dω

)2

=

(
2π
∑

k

Resz=pk
T (z−1)zτ−1Ĥ(z, θ) + 2π

∑

k

Resz=pT,k
T (z−1)zτ−1Ĥ(z, θ)

)2

(4.196)

where for τ > 1 the terms in the sum correspond to the poles pT,k and pk of the target
and the approximator function, respectively.

Let us introduce the constant KT as

KT = max {|qT,1|, . . . , |qT,nαT
|} (4.197)

where

qT,m =





pT,m, if pT,m ∈ D,

1

pT,m
otherwise.

(4.198)

By definition KT < 1. Using the definition from the previous subsection it follows that

=
(
Resz=p1T (z−1)zτ−1Ĥ(z, θ) +O

(
Kτ

T τ
nαT −1

))2
(4.199)

when nα = 1 or nα = 2, but only one of the poles is inside the unit circle; and

=
(
Resz=p1T (z−1)zτ−1Ĥ(z, θ) + Resz=p2T (z−1)zτ−1Ĥ(z, θ) +O

(
Kτ

T τ
nαT −1

))2
(4.200)

when nα = 2 and both poles are inside the unit circle. From the previous section we
know that the case where both p1 and p2 are outside the unit circle does not occur at
the minimizer θ∗. The presence of the factor τnαT−1 in (4.199) and (4.200) is motivated
because of the multiple poles of the target function T (z).
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According to the note 4.2.2 (4.199) can be continued as

=
(
Resz=p1T (z−1)zτ−1Ĥ(z, θ)

)2
+O

(
Kτ

T τ
nαT−1

)
(4.201)

and in the case of (4.200)

=
(
Resz=p1T (z−1)zτ−1Ĥ(z, θ) + Resz=p2T (z−1)zτ−1Ĥ(z, θ)

)2
+O (Kτ

T τ
nαT ) (4.202)

It is worth noting that in the last case τnαT −1 was replaced by τnαT . The reason for this
is that Ĥ(z, θ) may have a double pole whose contribution can be upper bounded by the
factor τ .

4.4.6.2 Investigation of the Contribution of the Term T3(θ)

This part of the chapter covers the analytic calculation of the integral
∫
I |Ĥ(Ω, θ)|2dω with

nβ + nα ≤ 2. The results will be used when the convergence rate of the fastest poles is
estimated for the minimizer θ∗ and when all the poles are investigated. In the sequel we
distinguish the three cases that satisfy nβ + nα ≤ 2: nα = 1 and nβ = 0; nα = nβ = 1;
and nα = 2 and nβ = 0.

First, we assume that nα = 1 and nβ = 0.

1

2π
Ĥ(z−1, θ)z−1Ĥ(z, θ) =

1

(z − p1)z

(
1

z
− p1

) =
−1

(z − p1)p1

(
z − 1

p1

) (4.203)

In this case Ĥ(z−1, θ)z−1Ĥ(z, θ) has only one pole inside the unit circle. Therefore

1

2π

∫

I
|Ĥ(Ω, θ)|2dω = Resz=p1Ĥ(z−1, θ)z−1Ĥ(z, θ) =

−1

p1

(
p1 − 1

p1

) . (4.204)

Next, if nα = nβ = 1 then Ĥ(z, θ) has also a zero z1. Evaluation of the expression
Ĥ(z−1)z−1Ĥ(z, θ) leads to

Ĥ(z−1, θ)z−1Ĥ(z, θ) =

(z − z1)

(
1

z
− z1

)

(z − p1)z

(
1

z
− p1

) =

(z − z1)z1

(
z − 1

z1

)

(z − p1)zp1

(
z − 1

p1

) (4.205)

This meromorphic function has two poles: z = 0 and z = p1. Hence

1

2π

∫

I
|Ĥ(Ω, θ)|2dω = Resz=0Ĥ(z−1, θ)z−1Ĥ(z, θ) + Resz=p1Ĥ(z−1, θ)z−1Ĥ(z, θ)

=
z1
p1

+
(p1 − z1)z1

(
p1 − 1

z1

)

p2
1

(
p1 − 1

p1

) . (4.206)
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or

=
z1
p1

+
(p1 − z1)

(
1
p1

− z1

)

p1

(
1
p1

− p1

) . (4.207)

Finally, the last case of this subsection is when we assume that nα = 2 and nβ = 0.
According to the previous section, the case where Ĥ(z, θ) has at least one stable pole has
to be covered. p1 will be assumed to be always stable. Depending on the situations if the
pole p2 is inside or outside the unit circle different formulations of Ĥ(z−1, θ)z−1Ĥ(z, θ)

may be possible.

Calculating Ĥ(z−1, θ)z−1Ĥ(z, θ) is divided into two cases. The first case if p1 6= 1
p2

or
p1 6= p2. In the second case we assume that p1 = p2 or p1 = 1

p2
.

Considering the first case:

Ĥ(z−1, θ)z−1Ĥ(z, θ) =
1

(z − p1)(z − p2)z

(
1

z
− p1

)(
1

z
− p2

)

=
z

(z − p1)(z − p2)p1p2

(
z − 1

p1

)(
z − 1

p2

) (4.208)

If p2 is unstable then the analytic function (4.208) has two poles (p1 and 1
p2

) inside the
unit circle. Therefore

1

2π

∫

I
|Ĥ(Ω, θ)|2dω = Resz=p1Ĥ(z−1, θ)z−1Ĥ(z, θ) + Resz= 1

p2

Ĥ(z−1, θ)z−1Ĥ(z, θ)

=
1

(p1 − p2)

(
p1 −

1

p1

)
(p1p2 − 1)

+
1

(1 − p1p2)

(
1

p2
− p2

)
(p1 − p2)

=
1

(p1 − p2)(p1p2 − 1)




1

p1 −
1

p1

+
1

p2 −
1

p2




=
1

(p1 − p2)(p1p2 − 1)

(
p1

p2
1 − 1

+
p2

p2
2 − 1

)

=
p1(p

2
2 − 1) + p2(p

2
1 − 1)

(p1 − p2)(p1p2 − 1)(p2
1 − 1)(p2

2 − 1)
=

p1p2(p1 + p2) − (p1 + p2)

(p1 − p2)(p1p2 − 1)(p2
1 − 1)(p2

2 − 1)
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=
(p1 + p2)

(p1 − p2)(p
2
1 − 1)(p2

2 − 1)
(4.209)

If p2 is stable and p1 6= p2 then the analytic function (4.208) has two poles (p1 and p2)
inside the unit circle. Therefore

1

2π

∫

I
|Ĥ(Ω, θ)|2dω = Resz=p1Ĥ(z−1, θ)z−1Ĥ(z, θ) + Resz=p2Ĥ(z−1, θ)z−1Ĥ(z, θ)

=
1

(p1 − p2)

(
p1 −

1

p1

)
(p1p2 − 1)

+
1

(p2 − p1)

(
p2 −

1

p2

)
(p1p2 − 1)

=
1

(p1 − p2)(p1p2 − 1)




1

p1 −
1

p1

− 1

p2 −
1

p2




=
1

(p1 − p2)(p1p2 − 1)

(
p1

p2
1 − 1

− p2

p2
2 − 1

)

=
p1(p

2
2 − 1) − p2(p

2
1 − 1)

(p1 − p2)(p1p2 − 1)(p2
1 − 1)(p2

2 − 1)
=

−p1p2(p1 − p2) − (p1 − p2)

(p1 − p2)(p1p2 − 1)(p2
1 − 1)(p2

2 − 1)

=
(1 + p1p2)

(1 − p1p2)(p
2
1 − 1)(p2

2 − 1)
(4.210)

Consider now the second case where p1 = 1
p2

. The analytic function (4.208) simplifies
to

=
z

(z − p1)2
(
z − 1

p1

)2 (4.211)

This meromorphic function has a double pole at p1 inside the unit circle. The residue is
determined after differentiation:




z
(
z − 1

p1

)2




′

=

(
z − 1

p1

)2

− 2z

(
z − 1

p1

)

(
z − 1

p1

)4 =
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=

z − 1

p1
− 2z

(
z − 1

p1

)3 = −
z +

1

p1(
z − 1

p1

)3 (4.212)

Hence the contribution of the term T3(θ) is

1

2π

∫

I
|Ĥ(Ω, θ)|2dω = Resz=p1Ĥ(z−1, θ)z−1Ĥ(z, θ) = −

p1 +
1

p1(
p1 −

1

p1

)3 (4.213)

Finally, the second case where p1 = p2 reduces equation (4.208) to

1

(z − p1)
2

(
1

z
− p1

)2

z

=
z

(z − p1)
2p2

1

(
z − 1

p1

)2 . (4.214)

The analytic function Ĥ(z−1, θ)z−1Ĥ(z, θ) has a double pole at p1 inside the unit circle.
The residue at the double pole is calculated by differentiation in the neighborhood of p1:




1
(

1

z
− p1

)2

z




′

= −
−2

(
1

z
− p1

)
1

z2
z +

(
1

z
− p1

)2

(
1

z
− p1

)4

z2

= −
−2

1

z
+

1

z
− p1

(
1

z
− p1

)3

z2

=

1

z
+ p1

(
1

z
− p1

)3

z2

. (4.215)

Substituting z = p1 it leads to

1

p1
+ p1

(
1

p1
− p1

)3

p2
1

=
1 + p2

1

(1 − p2
1)

3
(4.216)

The contribution of the term T3(θ) is

1

2π

∫

I
|Ĥ(Ω, θ)|2dω = Resz=p1Ĥ(z−1)z−1Ĥ(z, θ) =

1 + p2
1

(1 − p2
1)

3
. (4.217)

4.4.7 Convergence rate

Until now it has been shown that at least one pole converges to the unit circle. Now
the convergence rate of this pole or of these poles are studied. The upper and the lower
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bounds of the optimal convergence rate is determined. Since these bounds are equal to the
optimal converge rate in the sense that C(θ∗, τ) is asymptotically equivalent with c1

τσ+1 if
nα is odd and c1

τ if nα is even, where c1 is an appropriate, non-zero constant. The optimal
convergence rate is not only an interesting statement but it will be strongly used in §4.4.8.
In order to simplify the treatment, the notation σ is overloaded. In the case of real poles
of H(Ω, θ) the original definition is applied. If nα = 2 then nβ + nα ≤ 2 leads to σ = 0.
Therefore, in the following sections if not stated otherwise, σ = 0 is assumed.

In this part of the chapter the notation for the members of the set which contains all
the poles converging to the unit circle is

pk(τ) = Pk(1 ± ak,τ ) (4.218)

where Pk = ±1, ak,τ > 0, ak,τ → 0. According to note 4.2.3 and using the fact that
Pk = 1

Pk

1

pk(τ)
= Pk(1 + ak,τ +O(a2

k,τ )). (4.219)

Similarly, the zeros are denoted as zk = Zk(1 − bk,τ ), where bk,τ → 0. Defining Ca,k as

Ca,k = (1 − ak,τ )
τ , (4.220)

we will conclude after of the proof of the upper bound that the overall C(θ, τ) can be
written as

C(θ, τ) = O(aσ+1
k,τ )C2

a,k +O(Kτ
T τ

nαT −1). (4.221)

To prove this upper bound we suppose that ak,τ = O
(

1
τ

)
. If the optimal θ∗ contained a pole

which converges to T faster than 1
τ then Ca,k would be bounded and the overall convergence

rate would be determined by the factor O(aσ+1
k,τ + Kτ

T τ
nαT −1). Therefore C(θ, τ) would

decrease faster than 1
τσ+1 . Thus it is a contradiction showing that the optimal convergence

rate cannot be faster than 1
τ .

In the cases when the lower bound is determined we suppose that ak,τ =
dk,τ

τ where
dk,τ ≤ τ and dk,τ → ∞. C(θ, τ) can be formulated as

C(θ, τ) = O

((
dk,τ

τ

)σ+1
)
O
(
Kdk,τ

)
+O(Kτ

T τ
nαT −1) (4.222)

where |K| < 1 is non-zero constant. According to note 4.2.9 it follows that C(θ, τ) =

o
(

1
τσ+1

)
. Since in the last section construction of θ with convergence rate 1

τσ+1 was shown,
this case does not belong to the set of possible optimal parameter vectors.

Like in the previous subsection some sub-cases have to be taken into account. Depend-
ing on the orders of the polynomials and the position of the second pole, if it exists the
following configurations will be investigated:

• nβ = 0, nα = 1.
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• nβ = 1, nα = 1, Z1 6= P1.

• nβ = 1, nα = 1, Z1 = P1.

• nβ = 0, nα = 2, p1 stable, p2 unstable and p1 6= 1
p2

.

• nβ = 0, nα = 2, p1 stable, p2 unstable and p1 = 1
p2

.

• nβ = 0, nα = 2, p1 stable, p2 stable and p1 6= p2.

• nβ = 0, nα = 2, p1 stable, p2 stable and p1 = p2.

Assuming that T
(

1
z

)
has zero at z = P with multiplicity m. T̃P (z) is defined as

T̃P (z) =

T

(
1

z

)

(z − P )m
. (4.223)

4.4.7.1 Case nβ = 0 and nα = 1

The content of the parentheses in (4.199) can be written as

Resz=p1T (z−1)zτ−1Ĥ(z, θ) = (T̃P1(P
−1
1 )aσ

1,τ +O(aσ+1
1,τ ))Ca,1

= T̃P1(P
−1
1 )Ca,1a

σ
1,τ + Ca,1O(aσ+1

1,τ ) (4.224)

Using (4.204) and (4.218) the denominator in (4.69) can be expressed as

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

1

P1(1 − a1,τ )

(
P1

1 − a1,τ
− P1 + P1a1,τ

) (4.225)

Since
(

P1

1 − a1,τ
− P1 + P1a1,τ

)
= P1(2a1,τ +O(a2

1,τ )) = 2P1a1,τ (1 +O(a1,τ )) (4.226)

we have

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

1

(1 − a1,τ )2a1,τ (1 +O(a1,τ ))

=
1

2a1,τ
(1 +O(a1,τ )) =

1

2a1,τ
+O(1). (4.227)

Combining the results gives

C(θ, τ) =

(
T̃P1(P

−1
1 )Ca,1a

σ
1,τ + Ca,1O(aσ+1

1,τ ) +O
(
Kτ

T τ
nαT−1

))2

1

2a1,τ
+O(1)
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= C2
a,1O(a2σ+1

1,τ + aσ+1
1,τ Kτ

T τ
nαT−1). (4.228)

4.4.7.2 Case nβ = 1, nα = 1 and Z1 6= P1

Each zero can be represented like poles in the equation (4.218):

zk(τ) = Zk(1 + bk,τ ) (4.229)

where |Zk| = 1 and bk,τ → 0 as τ → ∞.

In the first case we assume that the zero does not converge to P1, z1(τ) → Z1 6= P1(τ →
∞). The content of the parentheses in (4.199) can be written as

Resz=p1T (z−1)zτ−1H1(z, θ)

= (T̃P1(P
−1
1 )aσ

1,τ +O(aσ+1
1,τ ))Ca,1((P1 − Z1) +O(a1,τ + b1,τ ))

= T̃P1(P
−1
1 )Ca,1(P1 − Z1)a

σ
1,τ + Ca,1O(aσ

1,τ (a1,τ + |b1,τ |)) (4.230)

Using (4.207), (4.218) and (4.229) the denominator in (4.69) can be written as

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

Z1(1 − b1,τ )

P1(1 − a1,τ )
+

(P1 − Z1 + Z1b1,τ − P1a1,τ )

(
P1

1

1 − a1,τ
− Z1 + Z1b1,τ

)

P1(1 − a1,τ )

(
P1

1 − a1,τ
− P1 + P1a1,τ

)

Since
(

P1

1 − a1,τ
− P1 + P1a1,τ

)
= P1(2a1,τ +O(a2

1,τ )) = 2P1a1,τ (1 +O(a1,τ )) (4.231)

and

(P1 − Z1 + Z1b1,τ − P1a1,τ )

(
P1

1

1 − a1,τ
− Z1 + Z1b1,τ

)

= (P1 − Z1)
2(1 +O(a1,τ + b1,τ )) (4.232)

we have

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

Z1

P1
+

(P1 − Z1)
2

2a1,τ
(1 +O(a1,τ + |b1,τ |))
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=
1

2a1,τ
(P1 − Z1)

2 +O(1). (4.233)

Combining the results gives

C(θ, τ) =

(
T̃P1(P

−1
1 )Ca,1(P1 − Z1)a

σ
1,τ + Ca,1O(aσ

1,τ (a1,τ + |b1,τ |)) +O(Kτ
T τ

nαT−1)
)2

1

2a1,τ
(P1 − Z1)

2 +O(1)

= C2
a,1O(a2σ+1

1,τ + aσ+1
1,τ Kτ

T τ
nαT −1) (4.234)

4.4.7.3 Case nβ = 1, nα = 1, and Z1 = P1

In this case the assumption Z1 = P1 means that the pole and the zero of H1(z, θ) converge
to the same point on the unit circle. According to (4.199) the following component has to
be studied:

Resz=p1T (z−1)zτ−1Ĥ(z, θ) = (T̃P1(P
−1
1 )aσ

1,τ +O(aσ+1
1,τ ))Ca,1P1(−a1,τ + b1,τ ) (4.235)

It is worth noting that it is not assumed that b1,τ > 0. Because of the irreducibility of the
θ it is true that ∀τ : a1,τ 6= b1,τ .

• First we assume that b1,τ

a1,τ
= O(1). It means that b1,τ converges to 0 at least as fast as

a1,τ . Because of the assumptions
(

b1,τ

a1,τ
− 1
)

is bounded and converges to a non-zero
constant.

lim
τ→∞

(
b1,τ

a1,τ
− 1

)
= Cb (4.236)

Using (4.236), (4.235) becomes

= aσ+1
1,τ CbT̃P1(P

−1
1 )P1Ca,1 + Ca,1CbO(aσ+2

1,τ ). (4.237)

Substituting p1 = P1(1 − a1,τ ) and z1 = P1(1 − b1,τ ) into (4.207) gives

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

1 − b1,τ

1 − a1,τ
+
P 2

1 (−a1,τ + b1,τ )(a1,τ + b1,τ +O(a2
1,τ ))

P 2
1 (1 − a1,τ )(2a1,τ +O(a2

1,τ ))
. (4.238)

Since the first term converges to 1 and

P 2
1 (−a1,τ + b1,τ )(a1,τ + b1,τ +O(a2

1,τ ))

P 2
1 (1 − a1,τ )(2a1,τ +O(a2

1,τ ))
=

a2
1,τ

(
−1 +

b1,τ

a1,τ

)(
1 +

b1,τ

a1,τ
+O(a2

1,τ )
)

2a1,τ (1 − a1,τ )(1 +O(a1,τ ))
= O(a1,τ ) (4.239)
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we conclude that 1
2π

∫
I |Ĥ(Ω, θ)|2dω = 1+O(a1,τ ). (4.238) converges to 1 as τ → ∞.

Together with (4.237) it leads to

C(θ, τ) =

(
aσ+1

1,τ CbT̃P1(P
−1
1 )P1Ca,1 + Ca,1CbO(aσ+2

1,τ ) +O
(
Kτ

T τ
nαT −1

))2

1 +O(a1,τ )

= a2σ+2
1,τ C2

a,1C
2
b (T̃P1(P

−1
1 ))2 + C2

a,1O(a2σ+3
1,τ ) +O

(
Kτ

T τ
nαT −1

)
. (4.240)

• Second
∣∣∣ b1,τ

a1,τ

∣∣∣ → ∞, i.e. a1,τ

b1,τ
= o(1) is supposed. It means that aτ converges to 0

faster than bτ . It follows that
a2
1,τ

b1,τ
→ 0.

Elaborating (4.235) gives a

= b1,τa
σ
1,τ

(
1 − a1,τ

b1,τ

)
T̃P1(P

−1
1 )P1Ca,1 + Ca,1O(aσ+1

1,τ b1,τ ). (4.241)

Expression (4.238) yields

=
1 − b1,τ

1 − a1,τ
+

b21,τ

(
1 − a1,τ

b1,τ

)(
1 +

a1,τ

b1,τ
+O

(
a2

1,τ

b1,τ

))

(1 − a1,τ )2a1,τ (1 +O(a1,τ ))
. (4.242)

Now, two sub-cases depending on that
b21,τ

a1,τ
→ 0 or not, have to be investigated.

First, we assume that a1,τ

b21,τ

= O(1).

=
b21,τ

a1,τ



a1,τ

b21,τ

1 − b1,τ

1 − a1,τ
+

(
1 − a1,τ

b1,τ

)(
1 +

a1,τ

b1,τ
+O

(
a2

1,τ

b1,τ

))

(1 − a1,τ )2(1 +O(a1,τ ))




(4.243)

Since the second term in the parenthesis converges to 1
2 and the first term is positive

for all τ sufficiently large, (4.243) is positive for all τ sufficiently large. It means that
the expression has a lower bound and hence C(θ, τ) (4.69) has an upper bound.

C(θ, τ) ≤

(
b1,τa

σ
1,τ

(
1 − a1,τ

b1,τ

)
T̃P1(P

−1
1 )P1Ca,1 +Ca,1O(aσ+1

1,τ b1,τ ) +O
(
Kτ

T τ
nαT−1

))2

b21,τ

2a1,τ

= 2a2σ+1
1,τ C2

a,1

((
1 − a1,τ

b1,τ

)
T̃P1(P

−1
1 )P1

)2
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+C2
a,1O(a2σ+2

1,τ ) +
a1,τ

b21,τ

O
(
Kτ

T τ
nαT −1

)
= C2

a,1O(a2σ+1
1,τ ) +O

(
Kτ

T τ
nαT −1

)
. (4.244)

In the second case we suppose that
b21,τ

a1,τ
→ 0. It means that the limit of (4.242)

is determined by the first term, and therefore, (4.242) converges to 1. The basic

assumption
b21,τ

a1,τ
→ 0 is equivalent with b21,τ = o(a1,τ ). Collecting the numerator and

the denominator of C(θ, τ) leads to

C(θ, τ) =

(
b1,τa

σ
1,τ

(
1 − a1,τ

b1,τ

)
T̃P1(P

−1
1 )P1Ca,1 +Ca,1O(aσ+1

1,τ b1,τ ) +O
(
Kτ

T τ
nαT−1

))2

1 + o(1)

= C2
a,1O(b21,τa

2σ
1,τ ) +O

(
K2τ

T τ2nαT −2
)

= C2
a,1o(a

2σ+1
1,τ ) +O

(
K2τ

T τ2nαT −2
)
. (4.245)

4.4.7.4 Case nβ = 0, nα = 2, p1 stable, p2 unstable and p1 6= 1

p2

Substituting Ĥ(z, θ) = 1
(z−p1)(z−p2)

into (4.199) the corresponding term in the parentheses
is

Resz=p1T (z−1)zτ−1Ĥ(z, θ) = T (p−1
1 )pτ−1

1

1

p1 − p2
+O

(
Kτ

T τ
nαT −1

)
. (4.246)

Expression (4.209) shows that

Resz=p1Ĥ(z−1, θ)z−1Ĥ(z, θ) + Resz= 1
p2

Ĥ(z−1, θ)z−1Ĥ(z, θ)

=
(p1 + p2)

(p1 − p2)(p
2
1 − 1)(p2

2 − 1)
(4.247)

Combining the last two equations we get

C(θ, τ) =

(
T (p−1

1 )pτ−1
1

1

p1 − p2
+O(Kτ

T τ
nαT −1)

)2

(p1 + p2)

(p1 − p2)(p
2
1 − 1)(p2

2 − 1)

=

(
T (p−1

1 )pτ−1
1

)2
(p2

1 − 1)(p2
2 − 1)

(p1 + p2)(p1 − p2)
+O

(
Kτ

T τ
nαT −1

) (p2
1 − 1)(p2

2 − 1)

(p1 + p2)
T (p−1

1 )pτ−1
1

+O
(
K2τ

T τ2nαT −2
) (p1 − p2)(p

2
1 − 1)(p2

2 − 1)

(p1 + p2)
(4.248)
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Now, we investigate the factors in the last expression. Substituting p1 = P1(1 − a1,τ )

(where P1 = ±1) into (1 − p2
1) leads to

(1 − p2
1) = (1 − P1 + P1a1,τ )(1 + P1 − P1a1,τ )

= (2 +O(a1,τ ))a1,τ = 2a1,τ +O(a2
1,τ ). (4.249)

If p2 does not converge to T then P1 6= P2 and (p2
2−1)

(p1+p2)(p1−p2)
, (p1−p2)(p2

2−1)
(p1+p2)

and (p2
2−1)

(p1+p2)

are bounded as τ → ∞:

(p2
2 − 1)

(p1 + p2)(p1 − p2)
=

(P 2
2 − 1)

(P1 + P2)(P1 − P2)
+O(a1,τ + a2,τ ), (4.250)

(p1 − p2)(p
2
2 − 1)

(p1 + p2)
=

(P1 − P2)(P
2
2 − 1)

(P1 + P2)
+O(a1,τ + a2,τ ), (4.251)

and

(p2
2 − 1)

(p1 + p2)
=

(P 2
2 − 1)

(P1 + P2)
+O(a1,τ + a2,τ ). (4.252)

Therefore, (4.248) can be written as

C(θ, τ) = −
2a1,τ

(
(T (p−1

1 ))2(P 2
2 − 1)

)
C2

a,1

(P 2
1 − P 2

2 )

+ C2
a,1O((a1,τ + a2,τ )a

2σ+1
1,τ ) +O

(
Kτ

T τ
nαT −1

) P 2
1 =1
= 2a2σ+1

1,τ

(
T̃P1(P

−1
1 )
)2
C2

a,1

+ C2
a,1O((a1,τ + a2,τ )a

2σ+1
1,τ ) +O

(
Kτ

T τ
nαT −1

)
. (4.253)

If p2 converges to T (p1 = P1(1 − a1,τ ) and p2 = P2(1 + a2,τ ) with a1,τ > 0, a1,τ > 0

for τ sufficiently large) then the effect of the factor (1− p2
2) has to be studied. Depending

on whether P1 = P2 or P1 6= P2 the factor 1
(p1+p2)

or the factor 1
(p1−p2)

is bounded.

1 − p2
2 = 1 − (1 + a2,τ )

2 = −2a2,τ +O(a2
2,τ ). (4.254)

If P1 = P2 then using the definitions p1 = P1(1 − a1,τ ) and p2 = P2(1 − a2,τ ) leads to

p1 + p2 = P1(1 − a1,τ + 1 + a2,τ ) = 2P1 +O (a1,τ + a2,τ ) (4.255)

and

p1 − p2 = P1(−a1,τ − a2,τ ) = −P1(a1,τ + a2,τ ). (4.256)
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In this case the second and third terms in (4.248) remains bounded as τ → ∞:

O
(
Kτ

T τ
nαT−1

) (p2
1 − 1)(p2

2 − 1)

(p1 + p2)
and O

(
Kτ

T τ
nαT −1

) (p1 − p2)(p
2
1 − 1)(p2

2 − 1)

(p1 + p2)
(4.257)

and the first term in (4.248) can be written as

(
T (p−1

1 )
)2
C2

a,1

(p2
1 − 1)(p2

2 − 1)

(p1 + p2)(p1 − p2)

=
(
T (p−1

1 )
)2
C2

a,1

(2a1,τ +O(a2
1,τ ))(−2a2,τ +O(a2

2,τ ))

(2P1 +O (a1,τ + a2,τ ))(−P1(a1,τ + a2,τ ))

= 2
a1,τa2,τ

(a1,τ + a2,τ )

(
T (p−1

1 )
)2
C2

a,1 +O((a1,τ + a2,τ )
2). (4.258)

Assuming that, for example, a1,τ converges to 0 not faster than a2,τ , i.e. a2,τ

a1,τ
= O(1)

a1,τa2,τ

(a1,τ + a2,τ )
=

a2,τ

1 +
a2,τ

a1,τ

∼ a2,τ (4.259)

Consequently

C(θ, τ) = C2
a,1O(a2,τa

2σ
1,τ ) +O

(
Kτ

T τ
nαT −1

)
. (4.260)

If P1 6= P2 then, P1 = −P2 and

p1 + p2 = P1(1 − a1,τ − 1 − a2,τ ) = −P1(a1,τ + a2,τ ) (4.261)

and

p1 − p2 = P1(2 − a1,τ − a2,τ ) = 2P1 +O (a1,τ + a2,τ ) (4.262)

The first term in (4.248) is the same like in the previous case and, hence, only the second
and third terms has to be investigated:

(p1 − p2)(p
2
1 − 1)(p2

2 − 1)

(p1 + p2)
O
(
Kτ

T τ
nαT −1

)

=
(2P1 +O (a1,τ + a2,τ ))(2a1,τ +O(a2

1,τ ))(−2a2,τ +O(a2
2,τ ))

(−P1(a1,τ + a2,τ ))
O
(
Kτ

T τ
nαT −1

)

=

(
8
a1,τa2,τ

a1,τ + a2,τ
+O((a1,τ + a2,τ )

2)

)
O
(
Kτ

T τ
nαT −1

)
(4.263)
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and

(p2
1 − 1)(p2

2 − 1)

(p1 + p2)
O
(
Kτ

T τ
nαT −1

)

=
(2a1,τ +O(a2

1,τ ))(−2a2,τ +O(a2
2,τ ))

(−P1(a1,τ + a2,τ ))
O
(
Kτ

T τ
nαT −1

)

=

(
4P1

a1,τa2,τ

a1,τ + a2,τ
+O((a1,τ + a2,τ )

2)

)
O
(
Kτ

T τ
nαT −1

)
(4.264)

Following the same lines as in the previous case it can be calculated that this sequence is
bounded. Let us assume again that a1,τ converges to 0 not faster than a2,τ . Consequently

C(θ, τ) = C2
a,1O(a2,τa

2σ
1,τ ) +O

(
Kτ

T τ
nαT −1

)
. (4.265)

4.4.7.5 Case nα = 2, p1 stable, p2 unstable, and p1 =
1

p2

This case is similar to the previous case. Here, we do not need to consider sub-cases because
the assumption implicitly contains that p2 converges to the same point of T. Substituting
p1 = 1

p2
into the first term in the parentheses in equation (4.199)

Resz=p1T (z−1)zτ−1Ĥ(z, θ) = T (p−1
1 )pτ−1

1

1

p1 −
1

p1

+O
(
Kτ

T τ
nαT −1

)
. (4.266)

The contribution of the term T3(θ) in C(θ, τ) leads to (4.213):

Resz=p1Ĥ(z−1, θ)z−1Ĥ(z, θ) = −
p1 + 1

p1(
p1 −

1

p1

)3 (4.267)

Therefore, the sequence C(θ, τ) (4.69) can be written as

C(θ, τ) = −
(T (p−1

1 )2)C2
a,1

(
p1 − 1

p1

)

p1 + 1
p1

+O
(
Kτ

T τ
nαT−1

)
(
p1 − 1

p1

)2

p1 + 1
p1

= (T (p−1
1 )2)C2

a,1

1 − p2
1

1 + p2
1

+
(p2

1 − 1)2

p1(p
2
1 + 1)

O
(
Kτ

T τ
nαT−1

)
. (4.268)

Substituting p1 = P1(1 − a1,τ ) the last expression can be elaborated as

= (T (p−1
1 )2)C2

a,1

2a1,τ +O(a2
1,τ )

2 +O(a1,τ )
+O

(
Kτ

T τ
nαT−1a2

1,τ

)
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= (T (p−1
1 )2)C2

a,1a1,τ + (T (p−1
1 )2)C2

a,1O(a2
1,τ ) +O

(
Kτ

T τ
nαT −1a2

1,τ

)

= C2
a,1O(a2σ+1

1,τ ) +O(a2σ+2
1,τ ) +O

(
Kτ

T τ
nαT −1a2

1,τ

)
. (4.269)

4.4.7.6 Case nα = 2, p1 stable, p2 stable and p1 6= p2

Without loss of generality we can suppose that the pole p1 converges to T at least as fast
as the pole p2, i.e. a1,τ

a2,τ
→ 0 as τ → ∞. Two main sub-cases are considered: P1 6= P2 or

P1 = P2.
First, the case P1 6= P2 is studied. The contribution of the term T2(θ, τ) is

1

2π

∫

I
T ∗(Ω)eiτωĤ(Ω, θ)dω =

T (p−1
1 )pτ−1

1 − T (p−1
2 )pτ−1

2

p1 − p2
+O

(
Kτ

T τ
nαT−1

)
(4.270)

The assumptions imply that

p1 − p2 = P1 − P2 +O(a1,τ + a2,τ ). (4.271)

If |P2| < 1 then for all τ sufficiently large |T (p−1
2 )pτ−1

2 | < Kτ
2 where K2 = |P2| + ε. If

p2 → T (i.e. p2 → −P1) then θ∗(τ
′) contains only the even (∀x ∈ τ ′ : ∃k ∈ Z such that

x = 2k) or the odd (∀x ∈ τ ′ : ∃k ∈ Z such that x = 2k + 1) sub-sequence depending on
the sign of T (−P1). Hence if θ∗ represents an optimal parameter vector then

∣∣∣∣
1

2π
Re

{∫

I
T ∗(Ω)eiτωĤ(Ω, θ)dω

}∣∣∣∣ =
|T (p−1

1 )pτ−1
1 | + |T (p−1

2 )pτ−1
2 |

2

+ (|T (p−1
1 )pτ−1

1 | + |T (p−1
2 )pτ−1

2 |)O(a1,τ + a2,τ ) +O
(
Kτ

T τ
nαT−1

)
. (4.272)

According to (4.210) the contribution of the term T3(θ) is

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

(1 + p1p2)

(1 − p1p2)(p
2
1 − 1)(p2

2 − 1)
. (4.273)

This case has to be split into three sub-cases:

• |P2| < 1, i.e. the stable pole p2 does not converge to the unit circle.

• |P2| = 1, but P2 6= P1, i.e. the contribution of the residue at the point p2 is “inde-
pendent” from the contribution of the residue at the point p1.

• P1 = P2, i.e. the contribution of the poles is similar to the contribution of a double
pole.

If |P2| < K2 < 1 then only the pole p1 converges to the unit circle. Therefore, only the
convergence rate of the contribution of the sequence p1(τ) has to be studied. The factors
of (4.273) are

1 + p1p2 = (1 + P1P2) +O(a1,τ + a2,τ )
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1 − p1p2 = (1 − P1P2) +O(a1,τ + a2,τ ) (4.274)

and

p2
2 − 1 = P 2

2 − 1 +O(a2,τ ). (4.275)

• The assumption |P2| < 1 implies that 1 + P1P2 6= 0, 1 − P1P2 6= 0 and P 2
2 − 1 6= 0.

The contribution of the factor p2
1 − 1 is

p2
1 − 1 = (1 − a1,τ )

2 − 1 = −2a1,τ +O(a2
1,τ ). (4.276)

Therefore,

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

1

a1,τ

(1 + P1P2)

2(1 − P1P2)(1 − P2)
+O(1). (4.277)

It is worth noting that 1 + P1P2 > 0, 1 − P1P2 > 0 and 1 − P2 > 0. Hence C(θ, τ)

(4.69) can be written as

C(θ, τ) =
(T (p−1

1 ))2C2
a,1

(P1 − P2)2
a1,τ

2(1 − P1P2)(1 − P2)

(1 + P1P2)

+O(a2
1,τ + a1,τK

τ
2 ) + |T (p−1

1 )pτ−1
1 |O

(
a1,τK

τ
T τ

nαT −1
)

= C2
a,1O(a2σ+1

1,τ ) +O(a2σ+2
1,τ ). (4.278)

• If |P2| = 1, but P1 6= P2 then the factors in (4.273) are

p2
1 − 1 = (1 − a1,τ )

2 − 1 = −2a1,τ +O(a2
1,τ ),

p2
2 − 1 = (1 − a2,τ )

2 − 1 = −2a2,τ +O(a2
2,τ ), (4.279)

and using the fact that P1P2 = −1 we get

1 + p1p2 = a1,τ + a2,τ − a1,τa2,τ ,

1 − p1p2 = 2 +O(a1,τ + a2,τ ). (4.280)

Hence, (4.273) can be written as

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

1

8

a1,τ + a2,τ − a1,τa2,τ

a1,τa2,τ
+O(a1,τ + a2,τ )
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=
1

8

(
1

a1,τ
+

1

a2,τ
− 1

)
+O(a1,τ + a2,τ ). (4.281)

Combining (4.281) and (4.272) yields

C(θ, τ) = 2
a1,τa2,τ

a1,τ + a2,τ

(
|T (p−1

1 )pτ−1
1 | + |T (p−1

2 )pτ−1
2 |

)2

+
(
|T (p−1

1 )pτ−1
1 | + |T (p−1

2 )pτ−1
2 |

)2
O((a1,τ + a2,τ )a1,τa2,τ )

+O
(
Kτ

T τ
nαT −1

)
. (4.282)

• In the last case we assume that P2 = P1, i.e. the stable poles p1 and p2 converge to
the same point on the unit circle. According to note 4.2.14 the term T2(θ, τ) can be
formulated as

1

2π
Re

{∫

I
T ∗(Ω)eiτωĤ(Ω, θ)dω

}

=
T (p−1

1 )pτ−1
1 − T (p−1

2 )pτ−1
2

p1 − p2
+O

(
Kτ

T τ
nαT −1

)

= (τ − 1)T (p−1
∗ )pτ−2

∗ +O(1) = τT (p−1
∗ )pτ−2

∗ +O(1) (4.283)

for some p∗ ∈ (p1, p2) and where in the last step we used the fact that [T (p−1
∗ )]′pτ−1

∗

and O
(
Kτ

T τ
nαT−1

)
are bounded (see note 4.2.8). The contribution of the term T3(θ)

is (4.273). Subset of the factors were already computed in (4.279). In this case the
following ones have to be calculated:

1 + p1p2 = 2 +O(a1,τ + a2,τ ),

1 − p1p2 = a1,τ + a2,τ − a1,τa2,τ . (4.284)

Therefore,

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

1

2

1

(a1,τ + a2,τ − a1,τa2,τ )a1,τa2,τ
+O

(
1

a1,τ
+

1

a2,τ

)
(4.285)

Collecting the results gives

C(θ, τ) = 2(a1,τ + a2,τ − a1,τa2,τ )a1,τa2,τ

(
T (p−1

1 )pτ−1
1 − T (p−1

2 )pτ−1
2

p1 − p2

)2
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+O
(
(a1,τ + a2,τ + a1,τa2,τ )

(
Kτ

T τ
nαT −1

))
. (4.286)

Without loss of generality we can suppose that a1,τ converges to zero not slower than
a2,τ , i.e. a1,τ

a2,τ
= O(1). This case has to be split into two sub-cases:

– The difference between convergence rates of a1,τ and a2,τ is only a constant
factor, i.e. a2,τ

a1,τ
= O(1). We can conclude that a1,τ

a2,τ
converges to a nonzero

constant. Since in (4.283) p∗ is calculated via linear combination of p1 and p2,
it can be written as p∗ = 1−a∗,τ where a∗,τ → 0 and its convergence rate equals
to the convergence rate of a1,τ or a2,τ .

C(θ, τ) = 2(a1,τ + a2,τ + a1,τa2,τ )a1,τa2,τa
2σ
∗,τ

(
T̃P1(P

−1
1 )
)2
C2
∗τ

2

O
(
(a1,τ + a2,τ + a1,τa2,τ )

(
Kτ

T τ
nαT−1

))
. (4.287)

– The sequence a2,τ decreases slower than a1,τ , i.e. a1,τ

a2,τ
= o(1). From the as-

sumptions it follows that

∣∣pτ−1
1

∣∣ ≥
∣∣pτ−1

2

∣∣ ⇒ |pτ−1
1 − pτ−1

2 | ≤
∣∣∣∣pτ−1

1

∣∣+
∣∣pτ−1

2

∣∣∣∣ ≤ 2
∣∣pτ−1

1

∣∣ .(4.288)

Using the last estimation the contribution of the term T2 can be upper-bounded
as

∣∣∣∣
T (p−1

1 )pτ−1
1 − T (p−1

2 )pτ−1
2

p1 − p2

∣∣∣∣ =

∣∣∣∣
T (p−1

1 )pτ−1
1 − T (p−1

2 )pτ−1
2

−a1,τ + a2,τ

∣∣∣∣

≤ 2
∣∣pτ−1

1

∣∣

a2,τ

(
1 − a1,τ

a2,τ

) ≤ 2
∣∣pτ−1

1

∣∣
a2,τ

(4.289)

Finally, the estimation w.r.t. C(θ, τ)

C(θ, τ) ≤ 2(a1,τ + a2,τ + a1,τa2,τ )a1,τa2,τ

(
2
∣∣pτ−1

1

∣∣
a2,τ

)2

= C2
a,1O(a2σ+1

1,τ ). (4.290)

4.4.7.7 Case nα = 2, p1 stable, p2 stable and p1 = p2

Now, we assume that H(z, θ) has a double pole at p1. The contribution of the term T2(θ, τ)

is the residue at the point p1 which can be written as

(τ − 1)pτ−2
1 T (p−1

1 ) + [T (p−1
1 )]′pτ−1

1 +O
(
Kτ

T τ
nαT−1

)
= τpτ−2

1 T (p−1
1 ) +O(1). (4.291)
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Using the result (4.217) we get

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

1 + p2
1

(1 − p2
1)

3
. (4.292)

As we already have seen

1 + p2
1 = 1 + (1 − a1,τ )

2 = 2 +O(a1,τ ) (4.293)

and

1 − p2
1 = 2a1,τ +O(a2

1,τ ). (4.294)

The overall contribution of the factors to C(θ, τ) (4.69) is

C(θ, τ) =

(
2a1,τ +O(a2

1,τ )
)3 (

τpτ−2
1 T (p−1

1 ) +O(1)
)2

2 +O(a1,τ )

= 4a3+2σ
1,τ τ2C2

a,1(T̃P1(P
−1
1 ))2 + C2

a,1O
(
a3+σ

1,τ τ
)

(4.295)

q.e.d.

4.4.8 Investigation of All the Poles

In this subsection the basic assumption is that there is at least one stable pole which
converges to the unit circle. In the previous subsection it is proved that the maximal
convergence rate of the poles converging to T is 1

τ and that θ∗ contains at least one such
pole. The usual notation is applied:

p1(τ) = P1 (1 − a1,τ ) (4.296)

where |P1| = 1, a1,τ > 0. According to the results of the previous subsection a1,τ = c1
τ

is supposed where c1 > 0 does not depend on τ . Since the polynomials of the numerator
and denominator of H(z, θ) are real, if P1 ∈ C\R then there exists a P2 ∈ C\R, P1 = P ∗

2

and p2(τ) = p∗1(τ). Note that the cases where complex conjugate poles occur are already
covered in 4.4.5. Here the cases where p1 is stable and p2 is unstable are investigated.
In the previous subsection the maximal convergence rate of C(θ, τ) is determined. Let us
assume that nα = 2 and the poles of Ĥ(z, θ) are real. In this subsection it will be proven
that for all τ large enough θ∗(τ) does not contain any unstable pole.

First, the case when σ 6= 0 is covered. Assuming that σ > 0 and Ĥ(z, θ∗) real poles the
computation of the previous subsection shows that C(θ, τ) ∼ 1

τσ+1 . Since T (z) has only
finite number of poles, there always exists a Q ∈ T such that T (Q) 6= 0 and T (Q∗) 6= 0.
The parameter vector θ which is constructed by using the following poles

p1 =

(
1 − 1

τ

)
Q and p1 =

(
1 − 1

τ

)
Q∗, (4.297)
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results in C(θ, τ) ∼ 1
τ . It is a contradiction with θ∗(τ) being global extreme value, therefore

we conclude that in the case θ∗ has at least two real poles, σ > 0 never occurs.

It will be proved that if p2(τ) is an unstable pole sequence corresponds to θ, then a
new θ2 can be constructed such that C(θ2, τ) < C(θ, τ), or equivalently C(θ2, τ) > C(θ, τ),
where θ2 determines a stable system. It means that p1(τ) = P1

(
1 − c1

τ

)
where P1 = ±1

and that p2(τ) cannot converge faster to T. If the convergence rate of p2(τ) attains its
maximum then

p2(τ) = P2

(
1 +

c2
τ

)
. (4.298)

Further in this subsection we assume that p1(τ) and hence p2(τ) are real poles. The
investigation can be split into four different cases:

• p2(τ) converges to T, but P1 6= P2.

• p2(τ) converges to T and p1(τ) = 1
p2(τ) .

• p2(τ) converges to T and P1 = P2, but p1(τ) 6= 1
p2(τ) .

• p2(τ) does not approach to T, i.e. ∃ε > 0 : ∀τ : |p2(τ)| ≤ 1 − ε < 1.

The technique used in this section is the following. Assuming that we have a θ that
contains an unstable p2(τ) then a θ2 that has only stable poles is constructed such that it
gives asymptotically (τ → ∞) a smaller cost function. In every case C(θ, τ) and C(θ2, τ)

are expressed as

C(θ, τ) =
1

τ
K1(c1, c2) + o

(
1

τ

)

C(θ2, τ) =
1

τ
K2(c1, c2) + o

(
1

τ

)
, (4.299)

where K1(c1, c2) > 0 and K2(c1, c2) > 0. The construction of θ2 is such that

max
c1,c2

K1(c1, c2) < max
c1,c2

K2(c1, c2). (4.300)

It proves that for every target system T (z), and for every parameter vector sequence θ(τ)
representing an unstable system, a parameter vector sequence θ2(τ) representing a stable
system can be asymptotically constructed. It means nothing else than with nβ +nα ≤ 2 for
all target system T (z) there exists a τ such that the global minimum of the cost function
(4.1) determines a stable system.

4.4.8.1 Case |p2(τ)| → 1, with P1 6= P2

First the denominator of (4.69) is studied. Let a2,τ be a positive sequence which converges
to 0.
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First, we assume that p2(τ) = P2(1 − a2,τ ), i.e. p2 is stable for τ . This is compared
with the case where p2 is unstable. According to (4.210), the contribution to T3(θ) can be
written as

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

(1 + p1p2)

(1 − p1p2)(1 − p2
1)(1 − p2

2)
(4.301)

Since P1 6= P2, |P1| = 1, and |P2| = 1, P1, P2 ∈ R, and P1P2 = −1 it can be easily verified
that

1 − p1p2 = 2 − a1,τ − a2,τ + a1,τa2,τ = 2 +O(a1,τ + a2,τ ). (4.302)

1 + p1p2 = a1,τ + a2,τ − a1,τa2,τ (4.303)

Assuming that a2,τ = c2
τ we get

1 + p1p2 =
c1
τ

+
c2
τ

+O

(
1

τ2

)
. (4.304)

And if a2,τ converges slower than a1,τ , i.e. a1,τ

a2,τ
= o(1), then

1 + p1p2 = a2,τ + o(a2,τ ). (4.305)

(1 − p2
1) = 1 − (1 − a1,τ )

2 = 2a1,τ − a2
1,τ

= a1,τ (2 +O(a1,τ )) = c1
τ

(
2 +O

(
1
τ

))
(4.306)

Similarly

(1 − p2
2) = 1 − (1 − a2,τ )

2 = 2a2,τ − a2
2,τ

= a2,τ (2 +O(a2,τ ))
if a2,τ =c2/τ

=
c2
τ

(
2 +O

(
1

τ

))
. (4.307)

Collecting the results if a2,τ = c2
τ (4.301) can be written as

= τ

c1 + c2 +O

(
1

τ

)

(
2 +O

(
1

τ

))
c1

(
2 +O

(
1

τ

))
c2

(
2 +O

(
1

τ

)) = τ
c1 + c2
8c1c2

+O(1). (4.308)
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and, if a2,τ is slower than a1,τ , then (4.301) yields

= τ
(a2,τ + o(a2,τ ))

(2 +O(a2,τ ))c1

(
2 +O

(
1

τ

))
a2,τ (2 +O(a2,τ ))

= τ
1

8c1
+ o(τ). (4.309)

Second, we assume that p2 is unstable: p2(τ) = P2

(
1

1−a2,τ

)
with

1

1 − a2,τ
= 1 + a2,τ +O(a2

2,τ ) = 1 +
c2
τ

+O

(
1

τ2

)
. (4.310)

From the (4.209), the contribution of the term T3(θ) yields

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

(p1 + p2)

(p1 − p2)(1 − p2
1)(1 − p2

2)
(4.311)

Since P1 6= P2, |P1| = 1, |P2| = 1, P1, P2 ∈ R and P1 + P2 = 0 it follows that

p1 + p2 = P1(1 − a1,τ ) + P2

(
1

1 − a2,τ

)
=

− P1a1,τ + P2a2,τ +O(a2
2,τ )

P1P2=−1
= −P1(a1,τ + a2,τ ) +O(a2

2,τ )

If a2,τ = c2
τ then

= −P1

τ
(c1 + c2) +O

(
1

τ2

)
(4.312)

and if a2,τ converges slower to the unit circle than a1,τ then it leads

= −P1a2,τ +O(a2
2,τ ). (4.313)

The first factor of the denominator in (4.311) is

p1 − p2 = P1(1 − a1,τ ) + P2

(
1

1 − a2,τ

)
=

2P1 − P1a1,τ + P2a2,τ +O(a2,τ ) = P1(2 +O(a1,τ + a2,τ )) (4.314)

and the third factor is

(1 − p2
2) = 1 −

(
1 + a2,τ +O(a2

2,τ )
)2

= −2a2,τ − a2
2,τ +O(a2

2,τ ) = a2,τ (−2 +O(a2,τ )) (4.315)
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which we can elaborate if a2,τ = c2
τ

1 − p2
2 =

c2
τ

(
−2 +O

(
1

τ

))
. (4.316)

Assuming that a2,τ = c2
τ we collect the results

1

2π

∫

I
|Ĥ(Ω, θ)|2dω = τ

−P1(c1 + c2) +O
(

1
τ

)
(
2P1 +O

(
1
τ

))
c1
(
2 +O

(
1
τ

))
c2
(
−2 +O

(
1
τ

))

= τ
c1 + c2
8c1c2

+O(1). (4.317)

and supposing that a2,τ converges slower to the unit circle than a1,τ the contribution of
the term T3(θ) can be written as

1

2π

∫

I
|Ĥ(Ω, θ)|2dω = τ

(−P1a2,τ +O(a2
2,τ ))

P1(2 +O(a2,τ ))c1
(
2 +O

(
1
τ

))
a2,τ (−2 +O(a2,τ ))

= τ
1

8c1
+O(τa2,τ ). (4.318)

Comparing (4.308) to (4.317) and (4.309) to (4.318) we see that asymptotically the
denominators in (4.69) are the same. However, the numerators are different. If p2 is
unstable then

1

2π
Re

{∫

I
T ∗(Ω)eiτωĤ(Ω, θ)dω

}
= T (p−1

1 )pτ−1
1

1

p1 − p2
+O(Kτ

T τ
nαT ). (4.319)

However, if p2 is stable then

1

2π
Re

{∫

I
T ∗(Ω)eiτωĤ(Ω, θ)dω

}
= T (p−1

1 )pτ−1
1

1

p1 − p2

+ T (p−1
2 )pτ−1

2

1

p2 − p1
+O(Kτ

T τ
nαT )

=
1

p1 − p2

(
T (p−1

1 )pτ−1
1 − T (p−1

2 )pτ−1
2

)
+O(Kτ

T τ
nαT ). (4.320)

For sufficiently large τ the signs of T (p−1
1 ) and T (p−1

2 ) do not change:

T (p−1
1 ) = T (P−1

1 ) +O(a1,τ ),

T (p−1
2 ) = T (P−1

2 ) +O(a2,τ ). (4.321)
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If the signs are the same then for all even τ , P τ−1
1 = −P τ−1

2 , or if the signs are different,
then for all odd τ , P τ−1

1 = P τ−1
2 , and hence

∣∣T (p−1
1 )pτ−1

1 − T (p−1
2 )pτ−1

2

∣∣ =
∣∣T (p−1

1 )pτ−1
1

∣∣+
∣∣T (p−1

2 )pτ−1
2

∣∣ (4.322)

(4.319) and (4.322) prove that inverting the unstable pole p2 results asymptotically in a
smaller cost function.

4.4.8.2 Case p1(τ) =
1

p2(τ)

In this case the expression (4.69) is evaluated if p2 is unstable. Then the result will be
compared to the case when Ĥ(z, θ) has a double pole at the p1. First, the unstable case is
considered.

The assumption says that p2(τ) = 1
p1(τ) . The term T3(θ) can be written as (see (4.213))

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

p1 +
1

p1(
1

p1
− p1

)3 . (4.323)

Substituting p1 = 1 − a1,τ the numerator and the denominator can be studied separately:

p1 +
1

p1
= 1 − a1,τ +

1

1 − a1,τ
= 2 +

a2
1,τ

1 − a1,τ
= 2 +O(a2

τ ) (4.324)

(
1

p1
− p1

)3

=

(
a1,τ

1 − a1,τ
+ a1,τ

)3

= a3
1,τ

(
1

1 − a1,τ
+ 1

)3

= a3
1,τ (2 +O(a1,τ ))

3 = a3
1,τ (8 +O(a1,τ )) (4.325)

Hence the contribution of T3(θ) in (4.69) is

2 +O(a2
1,τ )

a3
1,τ (8 +O(a1,τ ))

=
1

a3
1,τ

(
1

4
+O(a1,τ )

)
=

1

4a3
1,τ

+O

(
1

a2
1,τ

)
(4.326)

The residue in T2(θ, τ) at p1 can be calculated as

T (p−1
1 )pτ−1

1

1

p1 − 1
p1

= T (p−1
1 )pτ−1

1

−1

a1,τ (2 +O(a1,τ ))
. (4.327)
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Using the fact that T (p−1
1 ) = T (P−1

1 ) +O(a1,τ ) the overall convergence rate of (4.69) is

C(θ, τ) =

(
T (P−1

1 )pτ−1
1

1

a1,τ

1

2
+O(1) +O(Kτ

T τ
nαT )

)2

1

4a3
1,τ

+O

(
1

a2
1,τ

) (4.328)

Since aτ = c1
τ and O(1) +O(Kτ

T τ
nαT ) = O(1) it leads to

C(θ, τ) = (T (P−1
1 )pτ−1

1 )2a1,τ +O(a2
1,τ ) = (T (P−1

1 ))2e−2c1c1
1

τ
+O

(
1

τ2

)
(4.329)

The first term in (4.329) should be maximized w.r.t. c1:

∂(T (P−1
1 ))2e−2c1c1
∂c1

= (T (P−1
1 ))2(−2e−2c1c1 + e−2c1) (4.330)

− 2e−2c1c1 + e−2c1 = 0. (4.331)

The maximum can be achieved if c1 = 1
2 . The maximal asymptotic value is

1

τ
(T (P−1

1 ))2
e−1

2
(4.332)

Now we examine the case where p1(τ) = p2(τ). The
∑2

k=1 Resz=pk
Ĥ(z, θ)z−1Ĥ(z−1, θ)

can be written as (see (4.217))

2∑

i=k

Resz=pk
Ĥ(z, θ)z−1Ĥ(z−1, θ) =

p2
1 + 1

(1 − p2
1)

3
. (4.333)

The numerator and the denominator are elaborated as

1 + p2
1 = 1 + (1 − a1,τ )

2 = 2 +O(a1,τ ) (4.334)

and

(1 − p2
1) = 1 − (1 − a1,τ )

2 = 2a1,τ − a2
1,τ = a1,τ (2 +O(a1,τ )). (4.335)

In the term T2(θ, τ) the residue at the z = p1 can be calculated by differentiation:

[
T (z−1)zτ−1

]′
=

[
T

(
1

z

)]′
zτ−1 + T

(
1

z

)
(τ − 1)zτ−2 (4.336)

We know that

[
T

(
1

p1

)]′
pτ−1
1 (4.337)
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is bounded because T (z) and T (z−1) are analytic in an appropriate neighborhood of T.
Since O(Kτ

T τ
nαT ) is bounded as τ → ∞ the contribution of T2(θ, τ) is

= (τ − 1)pτ−2
1 T

(
1

P1

)
+O(1) = τpτ−2

1 T

(
1

P1

)
+O(1). (4.338)

Substituting p1 = 1 − a1,τ , a1,τ = c1
τ , and using (4.69), C(θ, τ) can be expressed as

C(θ, τ) = 4e−2c1
(
T (P−1

1 )
)2 1

τ
c31 + o

(
1

τ

)
. (4.339)

∂(T (P−1
1 ))24e−2c1c31
∂c1

= 4(T (P−1
1 ))2(−2e−2c1c31 + 3c21e

−2c1) (4.340)

− 2e−2c1c31 + 3c21e
−2c1 = 0. (4.341)

The maximum can be achieved if c1 = 3
2 . The maximal asymptotic value is

1

τ
(T (P−1

1 ))2
27e−3

2
(4.342)

Comparing (4.342) and (4.332) shows that the case of the stable double pole gives a higher
cost function.

It means that the former case in which θ contains an unstable pole, cannot represent
an optimal parameter vector θ∗.

4.4.8.3 Case P1 = P2 but p1(τ) 6=
1

p2(τ)

This case is split again into two sub-cases:

• a2,τ converges to the unit circle at the rate 1
τ , i.e. a2,τ = c2

τ ,

• a2,τ converges slower to the unit circle than a1,τ , hence a1,τ

a2,τ
= o(1).

In both cases it will be proved that asymptotically the cost function is the same. Moreover,
it will be shown that this value cannot be optimal since in the case where p1(τ) = p2(τ) =

1 − c1
τ asymptotically a lower cost function is achieved. The term T3(θ) is the same as in

(4.311). But in this case if a2,τ = c2
τ

p1 + p2 = P1(1 − a1,τ + 1 + a2,τ +O(a2
2,τ ))

= P1

(
2 +

−c1 + c2
τ

+O

(
1

τ2

))
= 2P1 +O

(
1

τ

)
(4.343)
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and

p1 − p2 = P1(1 − a1,τ − 1 − a2,τ +O(a2
2,τ )) =

= −P1

(
c1 + c2
τ

+O

(
1

τ2

))
= −P1

c1 + c2
τ

(
1 +O

(
1

τ

))
. (4.344)

Collecting the results the term T3(θ) (4.311) can be written as

= τ3 2

(c1 + c2)c1c24
+O(τ2) (4.345)

The contribution of the term T2(θ, τ) at the z = p1 is

T (p−1
1 )pτ−1

1

1

p1 − p2
= T (P−1

1 )e−c1τ
−1

c1 + c2

(
1 +O

(
1

τ

))
. (4.346)

Finally, C(θ, τ) can be expressed as

1

τ
(T (P−1

1 ))2e−2c1 2c1c2
c1 + c2

+O

(
1

τ2

)
+O(Kτ

T τ
nαT ). (4.347)

Since c1 > 0, and c2 > 0 the following upper bound is valid

c1c2
c1 + c2

=
c1

1 + c1
c2

≤ c1. (4.348)

The upper bound of e−2c1c1 is 1
2e

−1. Therefore, using the fact that O
(

1
τ2

)
+O(Kτ

T τ
nαT ) =

O
(

1
τ2

)
the asymptotic upper bound of C(θ, τ) can be written as

1

τ
(T (P−1

1 ))2e−1 +O

(
1

τ2

)
. (4.349)

Since e−1 < 27
2 e

−3, the previous case where p1 = p2 gives highest value of C(θ, τ). There-
fore Ĥ(θ, z) which has a double pole at the point p1 gives asymptotically lower cost function
C(θ, τ) (4.68).

Now we suppose that a2,τ tends slower to 0 than a1,τ . The contribution of the factor
p1 + p2 and p1 − p2 can be written as

p1 + p2 = 2P1 +O(a2,τ ) (4.350)

and

p1 − p2 = −P1a2,τ (1 + o(1)). (4.351)
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The overall contribution of the term T3 is

=
2P1 +O(a2,τ )

−P1a2,τ (1 + o(1))P1a2,τ (−2 +O(a2,τ ))
c1
τ
P1

(
2 +O

(
1

τ

))

=
τ

2c1a2
2,τ

+ o

(
τ

a2
2,τ

)
. (4.352)

In the term T2(θ, τ), the residue at p1 yields

T (p−1
1 )pτ−1

1

1

p1 − p2
= T (P−1

1 )e−c1(1 + o(1))
1

a2,τ (1 + o(1))

=
T (P−1

1 )e−c1

a2,τ
+ o

(
1

a2,τ

)
. (4.353)

So C(θ, τ) can be written as

C(θ, τ) =
2c1
(
T (P−1

1 )e−c1
)2

τ
+ o

(
1

τ

)
+O

(
a2

2,τ

τ
Kτ

T τ
nαT

)

=
(T (P−1

1 ))2

τ
2c1e

−2c1 + o

(
1

τ

)
. (4.354)

Hence, the same argument like in the previous case can be applied.

4.4.8.4 Case p2(τ) does not approach T

In this step the proof starts again from (4.311). We assume that p2(τ) → Q where |Q| > 1.
It will turn out that the result and, hence, the conclusion of this subsection are the same
like in the previous case. Now

p1 + p2 = P1 +Q+O

(
1

τ
+ a2,τ

)
,

p1 − p2 = P1 −Q+O

(
1

τ
+ a2,τ

)
,

1 − p2
2 = 1 −Q2 +O(a2,τ ). (4.355)
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Collecting the results the term T3(θ) (4.311) can be written as

(
P1 +Q+O

(
1
τ + a2,τ

))
(
P1 −Q+O

(
1
τ + a2,τ

))
c1
τ

(
2 +O

(
1
τ

))
(1 −Q2 +O(a2,τ ))

=
τ

2c1

(P1 +Q)

(P1 −Q)(1 −Q2)
+O

(
1

τ
+ a2,τ

)
. (4.356)

The residue of T2(θ, τ) at the z = p1 is

T (p−1
1 )pτ−1

1

1

p1 − p2
= T (P−1

1 )e−c1 1

P1 −Q
+ o(1). (4.357)

Finally, the cost function can be expressed as

2c1
τ

(T (P−1
1 ))2e−2c1 1 −Q2

(P1 −Q)(P1 +Q)

+ o

(
1

τ

)
+O (Kτ

T τ
nαT ) +O

(
a2

2,τ

τ
Kτ

T τ
nαT

)
. (4.358)

Using the facts that (P1 −Q)(P1 +Q) = P 2
1 −Q2 = 1 −Q2 and

o

(
1

τ

)
+O (Kτ

T τ
nαT ) +O

(
a2

2,τ

τ
Kτ

T τ
nαT

)
= o

(
1

τ

)
(4.359)

(4.358) becomes

=
2c1
τ

(T (P−1
1 ))2e−2c1 + o

(
1

τ

)
. (4.360)

Therefore, the same argument as in the previous cases can be applied.

4.5 Generalization

In the proof presented in the previous section, the cases of different orders are treated
separately. This method obviously does not work for further nβ’s and nα’s. For the
general case the same approach cannot be applied because of the increasing complexity of
higher orders. Instead, the general proof will be carried out for a somewhat restricted set
of cases. The results presented in this section are based on the following assumptions:

Assumption 4.5.1. If a pole p(τ) of D(Ω, θ∗) converges to the point P on T as τ → ∞
then θ∗(τ) does not define another pole q(τ) such that the limit set of the sequence q(τ)

contains P .
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Assumption 4.5.2. Every pole q of D(Ω, θ∗) converges to T so that their contributions

T (z−1)zτ−1H(z, θ)
∣∣
z=q

in the numerator have the same convergence rate.

In this section we will show theorem 4.3.1 for arbitrary nβ and nα under the above
assumptions. As illustrations of the reasonability of the assumptions, many examples
are shown in the thesis [Vuerinckx, 1998], which confirms the asymptotic behavior of the
poles. In figure 4.3 such an example is presented. The optimization is based on methods
to be described in the next chapter. The specifications of this particular example are: the
frequency band is [0.05 : 0.005 : 0.5] and the target transfer function is T (ω) = 1. In the
given band the transfer function was approximated by a 10th-order model with τ = 30.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.3: Demonstration of asymptotic behavior of the poles. Marks ’x’ denote the poles,
marks ’o’ denote the zeros.

In the previous sections the following statements have been proved without using the
assumption nβ + nα ≤ 2, thus here we will only refer to them:

• T2(θ, τ) and T3(θ) are bounded.

• The zeros and poles of the optimal parameter vector sequence θ∗(τ), which converge
to infinity, can be disregarded.

• There exists at least one pole converging to the unit circle.

• We can construct a θ(τ) such that C(θ, τ) ∼ 1
τ . Hence, for an optimal parameter

vector sequence θ∗(τ), τC(θ∗, τ) does not converge to 0.

These statements are valid for the general case. The remaining steps presented here are
very similar to those in the proof for the case nβ + nα ≤ 2. Roughly, the following
statements will be discussed and proved:

• The maximal convergence rate of an optimal parameter vector sequence is O
(

1
τ

)
.
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• Inverting an unstable subsequence of a pole converging to T does not change the
asymptotic value of T3(θ).

• Inverting an unstable subsequence of a pole converging to T increases the asymptotic
value of the numerator of C(θ, τ).

The last two steps can be applied repeatedly. Then, assuming that θ∗ defines an unstable
pole sequence pk(τ), a new p̃k(τ) can be constructed such that C(θ̃, τ) > C(θ∗, τ), i.e.
C(θ̃, τ) < C(θ∗, τ). This is a contradiction with global minimization of C(θ∗, τ), therefore
we can conclude that an optimal parameter vector sequence θ∗(τ) does not define any
unstable pole subsequence.

4.5.1 Maximum Convergence Rate

As mentioned above, in the previous section a construction of parameter vector sequence
θ(τ) was shown such that C(θ, τ) ∼ 1

τ . Hence, it is also an upper bound for all the optimal
parameter vector sequence θ∗(τ). This part of the thesis is devoted to prove that this bound
is exact, i.e. for every parameter vector sequence θ∗(τ) which minimize the cost function,
C(θ∗, τ) ∼ 1

τ . A practical consequence is that an optimal parameter vector sequence θ∗(τ)
cannot determine a pole sequence which converges to the unit circle at rate faster than 1

τ .

The statements about the maximal convergence rate can be proved without the as-
sumption 4.5.2. Therefore, during the steps of the proof of maximal convergence rate
following subsets of poles have to be distinguished. Let us assume that the first N poles
converge to T and this subset of P is denoted by PT. P can be written as disjoint union of
the sets Ps and Pu, i.e. P = Ps∪Pu with Ps∩Pu = ∅, where Ps contains the poles that are
inside the unit circle and Pu contains the unstable poles. Moreover, without losing gener-
ality, we can assume that all the sequences pk(τ), k = 1, . . . , nα and zl(τ), l = 1, . . . , nβ,
constitute convergent sequences. Their limits are denoted Pk, k = 1, . . . , nα for poles, and
Zl, l = 1, . . . , nβ for zeros. It is worth noting that for all pk ∈ PT, |Pk| = 1 because Pk ∈ T.
Like in the previous cases, we assume that the zeros and poles can be written as

zk = Zk(1 − bk,τ ) and pk = Pk(1 − ak,τ ). (4.361)

4.5.1.1 Investigation of the Numerator of C(θ, τ)

The numerator of C(θ, τ) (4.69) can be written as

∫

I
T ∗(Ω)eiτωĤ(Ω, θ)dω = 2π




∑

k,pk∈(Ps∩PT)

Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

+
∑

k,pk∈(Ps\PT)

Resz=pk
T (z−1)zτ−1Ĥ(z, θ)


 (4.362)
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where Ĥ(z, θ) is defined in (4.63). Since T (z−1) does not change as τ → ∞, it has no pole
converging to T or to ∞. It means that for all pk ∈ Ps, and for all l = 0, . . . , nα − 1, the
expression

[
T (z−1)

](l)∣∣∣
z=pk

(4.363)

is bounded. If pk ∈ Ps\PT then applying note 4.2.8 to pτ−l−1
k for l = 0, . . . , nα − 1 shows

that

[
zτ−1

](l)∣∣∣
z=pk

= (τ − 1) · · · (τ − l)pτ−l−1
k (4.364)

converges to 0 at least at exponential rate.

Using the results of §4.4.4 we know that ∀k, pk ∈ P\PT and for all l = 1, . . . , nα

[
Ĥ(z, θ)(z − pk)

l
](l−1)

∣∣∣∣
z=pk

(4.365)

is lower bounded. The upper bound is

( nβ∏

m=1

max (1, Pk − Zm)

)l




∏

m6=k,pm∈P

min (1, Pk − Pm)




l
. (4.366)

for all τ sufficiently large.

So, if pk ∈ P\PT then

∣∣∣Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

∣∣∣ (4.367)

converges to 0 at least at exponential rate.

If pk ∈ PT, then, according to notes 4.2.6 and 4.2.7, the factor |pk|τ−1 converges to a

non-zero finite value. Since
∣∣∣ 1
Pk

∣∣∣ = 1 and T (z−1) has no pole on T, T (z−1) is analytic in

the neighborhood of
1

Pk
. Therefore,

T

(
1

pk

)
→ T

(
1

Pk

)
, i.e. T

(
1

pk

)
= T

(
1

Pk

)
(1 + o(1)). (4.368)

Using the assumption 4.5.1, we have that

[
T (z−1)zτ−1Ĥ(z, θ)(z − pk)

]∣∣∣
z=pk

=
N(pk, θ)p

τ−1
k

nα∏

l=1,l 6=k

(pk − pl)

T

(
1

pk

)
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=

∏

l,Zl=Pk

(−ak,τ + bl,τ )p
τ−1
k

∏

l,Zl 6=Pk

(Pk − Zl)(1 + o(1))

nα∏

l=1,l 6=k

(Pk − Pl)

T

(
1

Pk

)
(4.369)

If pk(τ) is a real sequence, then

pτ−1
k = (1 − ak,τ )

τ−1 (4.370)

and
∏

l,Zl 6=Pk

(Pk − Zl)

nα∏

l=1,l 6=k

(Pk − Pl)

T

(
1

PK

)
(4.371)

is a finite and real number.

If it pk(τ) is a complex sequence then

pτ−1
k = (1 − |ak,τ |)τ−1eiφk,τ (τ−1) (4.372)

with φk,τ = arg(pk(τ)), and

[
Ĥ(z, θ)T

(
1

z

)
zτ−1(z − pk)

]∣∣∣∣
z=pk

+

[
Ĥ(z, θ)zτ−1T

(
1

z

)
(z − p∗k)

]∣∣∣∣
z=p∗

k

= Re





∏

l,Zl=Pk

(−ak,τ + bl,τ )e
iφk,τ (τ−1)

nα∏

l=1,l 6=k

(Pk − Pl)

∏

l,Zl 6=Pk

(Pk − Zl)T

(
1

Pk

)





× 2(1 − |ak,τ |)τ−1(1 + o(1)). (4.373)

Applying the usual estimation |Re{z}| ≤ |z|, we have

∣∣∣∣∣

[
Ĥ(z, θ)T

(
1

z

)
zτ−1(z − pk)

]∣∣∣∣
z=pk

+

[
Ĥ(z, θ)T

(
1

z

)
zτ−1(z − p∗k)

]∣∣∣∣
z=p∗

k

∣∣∣∣∣

≤ (1 − |ak,τ |)τ−12

∏

l,Zl=Pk

(|ak,τ | + |bl,τ |)
∏

l,Zl 6=Pk

|Pk − Zl|

nα∏

l=1,l 6=k

|Pk − Pl|

∣∣∣∣T
(

1

Pk

)∣∣∣∣ (1 + o(1)). (4.374)
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The overall estimation of the numerator of C(θ, τ) is bounded as

∣∣∣∣∣

nα∑

k=1

Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

∣∣∣∣∣

2

≤

∣∣∣∣∣∣

∑

k,pk∈PT

Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∑

k,pk∈P\PT

Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

∣∣∣∣∣∣

2

+

+ 2

∣∣∣∣∣∣

∑

k,pk∈PT

Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

k,pk∈P\PT

Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

∣∣∣∣∣∣
(4.375)

The second and the third terms converge to 0 at least at exponential rate. The first one
can be upper bounded as

∣∣∣∣∣∣

∑

k,pk∈PT

Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

∣∣∣∣∣∣

2

≤
∑

k,pk∈PT

∑

m,pm∈PT

∣∣∣Resz=pk
T (z−1)zτ−1Ĥ(z, θ)

∣∣∣
∣∣∣Resz=pmT (z−1)zτ−1Ĥ(z, θ)

∣∣∣

≤
∑

k,pk∈PT

∑

m,pm∈PT

4(1 − |ak,τ |)τ−1(1 − |am,τ |)τ−1
∏

l,Zl=Pk

(|ak,τ | + |bl,τ |)

×
∏

l,Zl=Pm

(|am,τ | + |bl,τ |)

∏

l,Zl 6=Pk

|Pk − Zl|
∏

l,Zl 6=Pm

|Pm − Zl|

nα∏

l=1,l 6=k

|Pk − Pl|
nα∏

l=1,l 6=m

|Pm − Pl|
(1 + o(1)) (4.376)

The upper bound can be used to determine the convergence rate of the numerator of
C(θ, τ). The convergence rate is determined by the factors (1− |ak,τ |)τ−1, (1− |am,τ |)τ−1,
(|ak,τ | + |bl,τ |) and (|am,τ | + |bl,τ |). It is worth noting that if at least in one factor (1 −
|ak,τ |)τ−1 the convergence rate of ak,τ is slower than 1

τ , then according to note 4.2.8 the
overall convergence rate is exponential. Otherwise, the factors (1−|ak,τ |)τ−1 converge to a
positive number, and the overall convergence rate is determined by product of the factors
(|ak,τ | + |bl,τ |).
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4.5.1.2 Investigation of the Denominator of C(θ, τ)

The dominator of C(θ, τ) equals to ‖ Ĥ(Ω, θ) ‖2
2=
∫
I |Ĥ(Ω, θ)|2dω. As we seen in (4.52)

the integral can be written as sum of residues calculated at the poles inside the unit circle:
∫

I
|Ĥ(Ω, θ)|2dω = 2π

∑

k,pk∈PD

Resz=pk
Ĥ
(
z−1, θ

)
z−1Ĥ(z, θ). (4.377)

In this section the asymptotic properties of ‖ Ĥ(Ω, θ) ‖2
2 are studied. We need to consider

two different cases:

•
∫
I |Ĥ(Ω, θ)|2dω remains bounded as τ → ∞, or

•
∫
I |Ĥ(Ω, θ)|2dω → ∞ as τ → ∞.

In both cases our aim is calculating an appropriate lower-bound. The trivial lower bound
is 0, but it cannot be used to determine a useful upper-bound of C(θ, τ).

In the first cases, a short calculation shows that ‖ Ĥ(Ω, θ) ‖2
2≥ C1 > 0 where C1 is

a constant depends on the asymptotic poles and zeros configuration. Th calculation was
described in §4.4.4.1. The result is

∫

I

∣∣∣Ĥ(eiω, θ)
∣∣∣
2
dω ≥ 1

(M + 1)2nα
K2

Z

2π

2nβ + 1
. (4.378)

Since Ĥ(Ω, θ) has only bounded poles and zeros, in the second case, the limit value
shows that at least one pole converges to T. The presence of the poles k = 1, . . . , N implies
that T3(θ) converges to infinity. Now, we will show that the contributions of these kinds of
poles can be summarized and the convergence rate of a contribution depends only on the
pole at which the residue are calculated. It is worth noting that

∫
I |Ĥ(Ω, θ)|2dω is always

positive, hence if it converges to infinity then there exists at least one pole or a complex
pole pair such that

Resz=p1Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)
→ ∞ (4.379)

or

Resz=p1Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)
+ Resz=p2Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)
→ ∞, (4.380)

where p2 = p∗1.

As we already seen ‖ Ĥ(Ω, θ) ‖2
2→ ∞ is possible only if at least one pole converges

to the unit circle. Residues calculated at the poles which converge to T can converge to
infinity. Because of assumption 4.5.1 for all τ sufficiently large the poles converging to T
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are single. Using (4.5) residue at p1, which converge to T, can be written as

Resz=p1Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)
=

N(p1, θ)N

(
1

p1
, θ

)

(
1

p1
− p1

)
p1

∏

pk,pk 6=p1

(p1 − pk)

(
1

p1
− pk

) , (4.381)

or

Resz=p1Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)

=

N(p1, θ)N

(
1

p1
, θ

)

(
1

p1
− p∗1

)
p1(p1 − p∗1)

(
1

p1
− p1

) ∏

pk,pk 6=p1,pk 6=p∗1

(p1 − pk)

(
1

p1
− pk

) , (4.382)

In the real case the factor
(

1
p1

− p1

)
converges to infinity. In the case of complex

conjugate pole pairs
(

1
p1

− p∗1

)
converges to infinity.

In the numerator N(p1, θ)N
(

1
p1
, θ
)

it is possible to be zeros which converge to the
same point like p1. Therefore, it is examined separately. After this, the remaining factors
in (4.381) and in (4.382) are studied.

4.5.1.3 Analysis of N(p1, θ)N

(
1

p1
, θ

)

First, it is noted that the factor N(p1, θ)N
(

1
p1
, θ
)

is invariant when replacing p1 by 1
p1

.

In the case of a complex conjugate pole pair we are using the fact that the numerator
polynomial N(z) has real coefficients, hence N(p∗1) = N∗(p1). Since

pk → Pk ⇒ 1

pk
→ P ∗

k , (4.383)

we have

N(p1, θ)N

(
1

p1
, θ

)
=

∏

l,Zl=P1

Zl (bl,τ − a1,τ )
∏

l,Zl 6=P1

(P1 − Zl +O(a1,τ − bl,τ ))

∏

l,Z∗

l
=P1

Z∗
l

(
1

1 − a1,τ
− (1 − bl,τ )

) ∏

l,Z∗

l
6=P1

(
1

P1(1 − a1,τ )
− Z∗

l (1 − bl,τ )

)
. (4.384)
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The factor
(

1
1−a1,τ

− (1 − bl,τ )
)

can be written as

1

1 − a1,τ
− (1 − bl,τ ) = 1 + a1,τ +O(a2

1,τ ) − (1 − bl,τ ) = a1,τ + bl,τ +O(a2
1,τ ). (4.385)

The set of zeros can be divided into the following disjoint subsets:

• Zo,k: zl ∈ Zo,k if and only if Zl 6= Pk. This subset contains the zeros that do not
converge to Pk.

• Zs,k: zl ∈ Zs,k if and only if Zl = Pk and ak,τ = o(bl,τ ). The zeros belonging to this
set converge to Pk but at a slower rate than pk does.

• Ze,k: zl ∈ Ze,k if and only if Zl = Pk and bl,τ ∼ ak,τ , i.e. the corresponding zeros
converge to Pk at exactly the same rate as pk does.

• Zf,k: zl ∈ Zf,k if and only if Zl = Pk and bl,τ = o(ak,τ ). In this subset are the zeros
which converge to Pk faster than pk does.

The convergence rate defines an equivalence relation and this ensures that the defined
subsets are disjoint.

Supposing that zl ∈ Zs,k we have

bl,τ ± a1,τ = bl,τ (1 + o(1)), (4.386)

and if zl ∈ Zo,k

1

P1(1 − a1,τ )
− Z∗

l (1 − bl,τ ) = P ∗
1 − Z∗

l +O(a1,τ + b1,τ ). (4.387)

In the case where zl ∈ Zf,k,

bl,τ ± a1,τ = ±a1,τ (1 + o(1)). (4.388)

If zl ∈ Ze,k, then it is possible that

bl,τ ± a1,τ = o(a1,τ ) = o(bl,τ ), (4.389)

and only the following upper bound can be constructed

(p1 − zl)

(
p1 −

1

zl

)
= (bl,τ − a1,τ )(−bl,τ − a1,τ )(1 + o(1)) = O(a2

1,τ ). (4.390)

We conclude that (4.384) can be approximated as

=
∏

l,zl∈Zs,k

b2l,τ
∏

l,zl∈Ze,k

(bl,τ − ak,τ )(−bl,τ − ak,τ )
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×
∏

l,zl∈Zf,k

a2
k,τ

∏

l,zl∈Zo,k

|Pk − Zl|2(1 + o(1)). (4.391)

It is worth noting that if at least one of the sets Ze,k and Zf,k is not empty, then

N(pk, θ)N

(
1

pk
, θ

)
= o(ak,τ ). (4.392)

4.5.1.4 Real Pole

In the case of a real pole p1 = P1(1 − a1,τ ) with |P1| = 1,

Resz=p1Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)
=

N(p1)N

(
1

p1

)

p1

(
1

p1
− p1

) nα∏

k=2

(p1 − pk)

(
1

p1
− pk

) . (4.393)

Since P1 is real, and |P1| = 1, it follows that P1 = 1 or P1 = −1. Assumption 4.5.1 implies
that for k = 2, . . . , nα:

(p1 − pk) = P1 − Pk + o(1) (4.394)

and
(

1

p1
− pk

)
= P1 − Pk + o(1). (4.395)

If Pk is complex then there exists an l, 2 ≤ l ≤ nα, l 6= k such that Pl = P ∗
k . Hence

(p1 − pk) (p1 − pl) = (P1 − Pk + o(1))(P1 − P ∗
k + o(1)) = |P1 − Pk|2 + o(1) (4.396)

and
(

1

p1
− pk

)(
1

p1
− pl

)
= (P1 − Pk + o(1))(P1 − P ∗

k + o(1)) = |P1 − Pk|2 + o(1).(4.397)

The first factor in the denominator of (4.393)

p1

(
1

p1
− p1

)
= 1 − p2

1 = 1 − P 2
1 (1 − a1,τ )

2

(4.398)

= 2a1,τ +O(a2
1,τ ) = 2a1,τ (1 + o(1)) = 2Re{a1,τ}(1 + o(1)) (4.399)

where in the last step we used the assumption that a1,τ is real.
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Therefore the overall contribution of the residue calculated at p1 is

Resz=p1Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)
=

N(p1, θ)N

(
1

p1
, θ

)

2Re{a1,τ}
1∏nα

k=2(|P1 − Pk|2)
(1 + o(1)). (4.400)

The convergence rate of the contribution is determined by the factor

N(p1, θ)N

(
1

p1
, θ

)

2Re{a1,τ}
. (4.401)

4.5.1.5 Complex Conjugate Pole Pair

In the case of a complex conjugate pole pair, the sum of the following terms have to be
studied:

Resz=p1Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)
+ Resz=p2Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)
. (4.402)

Evaluating the residues,

=

N(p1, θ)N

(
1

p1
, θ

)

p1

(
1

p1
− p1

)
(p1 − p∗1)

(
1

p1
− p∗1

) nα∏

k=3

(p1 − pk)

(
1

p1
− pk

)

+

N(p∗1, θ)N

(
1

p∗1
, θ

)

p∗1

(
1

p∗1
− p∗1

)
(p∗1 − p1)

(
1

p∗1
− p1

) nα∏

k=3

(p∗1 − pk)

(
1

p∗1
− pk

) . (4.403)

We will prove that the residue at p1 is a real number and therefore equals to the residue
calculated at p∗1.

In the denominator we can use the fact that for all factors (pk − pl), there exists a

factor in the product which equals to
(

1
pk

− p∗l

)
. Therefore,

nα∏

k=3

(p1 − pk)

(
1

p1
− pk

)
=

∏

k,pk∈Pk,R

(p1 − pk)

(
1

p1
− pk

)

×
∏

k,pk∈Pk,C

(p1 − pk)

(
1

p1
− p∗k

)
(p1 − p∗k)

(
1

p1
− pk

)
(4.404)
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where Pk,R and Pk,C are subsets of P and are defined as

pk ∈ Pk,R if lim
τ→∞

pk = Pk and ∀τ : Im{pk} = 0, (4.405)

pk ∈ Pk,C if lim
τ→∞

pk = Pk and ∀τ : Im{pk} 6= 0. (4.406)

It is worth noting that in both cases we need not assume that the poles are stable.

In the case of pk ∈ Pk,R

(p1 − pk)

(
1

p1
− pk

)
= (P1 − Pk +O(−a1,τ + ak,τ )) (P ∗

1 − Pk +O(a1,τ + ak,τ ))

= |P1 − Pk|2(1 + o(1)) (4.407)

and similarly for k, pk ∈ Pk,C we have

(p1 − pk)

(
1

p1
− p∗k

)
= |P1 − Pk|2(1 + o(1)) (4.408)

and

(p1 − p∗k)

(
1

p1
− pk

)
= |P ∗

1 − Pk|2(1 + o(1)). (4.409)

By collecting the results,

N(p1, θ)N

(
1

p1
, θ

)

nα∏

k=3

(p1 − pk)

(
1

p1
− pk

)

=

N(p1, θ)N

(
1

p1
, θ

)

∏

k,pk∈Pk,R

|P1 − Pk|2
∏

k,pk∈Pk,C

|P1 − Pk|2|P ∗
1 − Pk|2

(1 + o(1)). (4.410)

It is worth noting that the last expression is positive for all τ sufficiently large and that if
we replace p1 by p∗1 then the last expression remains the same. The asymptotic behavior
of 1

p1
is

1

p1
=

1

P1(1 − a1,τ )
= P ∗

1

(
1 + a1,τ +

a2
1,τ

1 − a1,τ

)
= P ∗

1

(
1 + a1,τ +O(a2

1,τ )
)
, (4.411)
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and substituting the results into
(

1
p1

− p∗1

)
leads to

(
1

p1
− p∗1

)
= P ∗

1

(
1 + a1,τ +O(a2

1,τ )
)
− P ∗

1 (1 − a∗1,τ ) = P ∗
1 2Re{a1,τ} (1 + o(1)) .(4.412)

The first four factors in the denominator of the first term in (4.403) can be written as

p1

(
1

p1
− p1

)
(p1 − p∗1)

(
1

p1
− p∗1

)

= P1(1 + o(1))(P ∗
1 − P1 +O(a1,τ ))(P1 − P ∗

1 +O(a1,τ ))P
∗
1 (2Re{a1,τ} + o(1))

= |P1|2|P1 − P ∗
1 |22Re{a1,τ}(1 + o(1)) (4.413)

Hence

Resz=p1Ĥ(z, θ)
1

z
Ĥ

(
1

z
, θ

)
+ Resz=p2Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)

=

N(p1, θ)N

(
1

p1
, θ

)

Re{a1,τ}
1

|P1|2|P1 − P ∗
1 |2

∏

k,pk∈Pk,R

|P1 − Pk|2

× (1 + o(1))∏
k,pk∈Pk,C

|P1 − Pk|2|P ∗
1 − Pk|2

. (4.414)

The convergence rate of the contribution is determined by the factor

N(p1, θ)N

(
1

p1
, θ

)

2Re{a1,τ}
. (4.415)

4.5.1.6 Upper Estimation of C(θ, τ)

Asymptotic behaviors of the numerator and the denominator of C(θ, τ) are presented in
the previous subsections. Using the results, this subsection is devoted to treat an upper
estimation of C(θ, τ). Equations (4.400) and (4.414) describe the asymptotic behavior of
the denominator of C(θ, τ). Equation (4.376) gives an upper bound for the absolute value
of the numerator of C(θ, τ).

|C(θ, τ)| ≤
∑

k,pk∈PT

∑

m,pm∈PT

Ca,kCa,m

∏

l,Zl=Pk

(|ak,τ | + |bl,τ |)
∏

l,Zl=Pm

(|am,τ | + |bl,τ |)
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× 1

∑

k,pk∈PT

N(pk, θ)N

(
1

pk
, θ

)

Re{ak,τ}
+ 1

KN,k,m

KD
(1 + o(1)) (4.416)

where

KN,k,m = 4

∏

l,Zl 6=Pk

|Pk − Zl|
∏

l,Zl 6=Pm

|Pm − Zl|

nα∏

l=1,l 6=k

|Pk − Pl|
nα∏

l=1,l 6=m

|Pm − Pl|
(4.417)

and if P1 is real,

KD =
1

2
∏

k,pk∈Pk,R

|P1 − Pk|2
∏

k,pk∈Pk,C

|P1 − Pk|2|P1 − P ∗
k |2

(4.418)

if P1 is not real,

KD =
1

2 (Im{P1})2
∏

k,pk∈Pk,R

|P1 − Pk|2
∏

k,pk∈Pk,C

|P1 − Pk|2|P ∗
1 − Pk|2

. (4.419)

In order to construct an upper estimation of C(θ, τ), the following cases have to be
discussed.

• If ‖ Ĥ(z, θ) ‖2
2→ ∞ as τ → ∞, then the residue at pk calculated in (4.400) or (4.414)

converges to infinity. We assume that

k > 1 ⇒ ak,τ∏
zl∈Zs,k

|bl,τ |2
= O

(
a1,τ∏

zl∈Zs,1
|bl,τ |2

)
, (4.420)

i.e. p1 is has one of the fastest contribution in ‖ Ĥ(z, θ) ‖2
2 from the set PT. Therefore,

assumption ‖ Ĥ(z, θ) ‖2
2→ ∞ yields

∏
zl∈Zs,1

|bl,τ |
2

a1,τ
→ ∞. As we concluded during the

investigation of the factor N(p1, θ)N
(

1
p1
, θ
)

in §4.5.1.3, Ze,1 and Zf,1 are empty sets
which are defined at the beginning of §4.5.1.3. Moreover, we known that

a1,τ = o



∏

zl∈Zs,1

|bl,τ |2

 . (4.421)

Therefore

N(p1, θ)N

(
1

p1
, θ

)
=

∏

zl∈Zs,1

|bl,τ |2
∏

zl∈Zo,1

|P1 − Zl|2(1 + o(1)) (4.422)
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and substituting in the corresponding factor of (4.376)

∏

l,Zl=P1

(|a1,τ | + |bl,τ |) =
∏

l,Zl=P1

|bl,τ |(1 + o(1)). (4.423)

Therefore

C(θ, τ) = O




(∏
l,Zl=P1

|bl,τ |
)2

∏
zl∈Zs,1

|bl,τ |2
1

Re{a1,τ}


 = O (Re{a1,τ}) . (4.424)

• ‖ Ĥ(z, θ) ‖2
2 is bounded as τ → ∞. It means that only the numerator of C(θ, τ)

determines the convergence rate. An equivalent assumption is that for all pk ∈ PT

the corresponding factors of N(pk, θ)N
(

1
pk
, θ
)

are bounded

∀pk ∈ PT :

∏

l,Zl=Pk

(bl,τ − ak,τ )(bl,τ + ak,τ )

ak,τ
= O(1). (4.425)

If Ze,k and Zf,k are empty sets then using (4.386) we have

∏

l,Zl=Pk

(bl,τ − ak,τ )(bl,τ + ak,τ ) =
∏

l,Zl=Pk

b2l,τ (1 + o(1)). (4.426)

From note (4.2.10) we conclude that

∏

l,Zl=Pk

bl,τ = O(
√

|ak,τ |) or N(p1) = O(
√

|ak,τ |). (4.427)

If zl ∈ Ze,1 ∪ Zf,1, then |a1,τ | + |bl,τ | = O(a1,τ ). Therefore

∏

l,Zl=Pk

(|ak,τ | + |bl,τ |) = O(|a1,τ |) = O(
√

|ak,τ |) (4.428)

where in the last equation we used the fact that ak,τ → 0. Factors from (4.376) can
be estimated as




∏

l,Zl=Pk

(|ak,τ | + |bl,τ |)






∏

l,Zl=Pm

(|am,τ | + |bl,τ |)


 = O(a1,τ ) (4.429)

First, let us assume that θ∗ determines a pole for which a1,τ converges to 0 at a rate
faster than 1

τ , i.e. a1,τ = o
(

1
τ

)
. In this case in (4.376) the limit of (1 − |a1,τ |)τ−1 is a

positive number. In both cases above C(θ∗, τ) = O(a1,τ ) = o
(

1
τ

)
. This is a contradiction

because in §4.4.5 an example was presented in which the convergence rate of C(θ∗, τ) was
1
τ .
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Second, |a1,τ |τ → ∞ is supposed. The convergence rate of C(θ∗, τ) is determined by

(1 − |a1,τ |)2(τ−1)o(|a1,τ |). (4.430)

Note 4.2.8 shows that in this case C(θ∗, τ) converges to zero at exponential rate. This is a
contradiction because of the same reason as in the previous case.

In both cases the overall convergence rate of C(θ∗, τ) is less than 1
τ . An example

construction of §4.4.5 results 1
τ as convergence rate of C(θ, τ). This is a contradiction

because θ∗ was supposed to be an optimal parameter vector for all τ .

The ultimate conclusion of this section is that with assumptions 4.5.1 and 4.5.2 the
convergence rate of C(θ∗, τ) is 1

τ .

4.5.2 Handling Unstable Poles

Until this point in the generalized case it has been proved that for an optimal parameter
vector sequence θ∗

C(θ∗, τ) ∼
K

τ
(4.431)

where K is an appropriate, non-zero constant. Moreover, it has been also proved that
every pole pk converging to T can be represented as

pk = Pk(1 − ak,τ ) (4.432)

where Pk ∈ T and ak,τ = O
(

1
τ

)
. It means that be increasing the convergence rate of ak,τ

the cost function cannot be decreased. Now we prove that using assumptions 4.5.1 and
4.5.2, the cost function can be decreased by replacing unstable poles by stable ones.

In this part of the thesis we study the effect of inverting unstable poles which con-
verge to T. The numerator and the denominator of C(θ, τ) are separately examined.
It will be proved that inverting a pole converging to T does not change the asymp-
totic value of

∫
I |Ĥ(Ω, θ)|2dω but may increase the asymptotic value of the numera-

tor. Since simply inverting a pole may not cause an increase of the asymptotic value
of
∣∣∣
∫
I T

∗(Ω)eiωτ Ĥ(Ω, θ)dω
∣∣∣, an additional step is required. A phase correction can be

applied which does not change the absolute value of the asymptotic contribution in the
numerator of C(θ, τ), but does change signs of the corresponding terms in T2(θ, τ).

The phase correction sequence is denoted by ck,τ where k denotes the index of the pole
this correction sequence belongs to.

p̃k = pke
ick,τ = Pk(1 − ak,τe

ic̃k,τ ) (4.433)

where ck,τ → 0, c̃k,τ → 0, ck,τ = O(ak,τ ), c̃k,τ = O(ak,τ ) and ∀τ : ck,τ ∈ R. In order to
preserve the asymptotic value of N(pk, θ), i.e. the numerator of Resz=pk

Ĥ(z, θ) a subset of
zeros is transformed, too. The zeros, which converge to Pk at least at rate of ak,τ is shifted
such that their contribution remains the same. In the following steps of the proof a sequence
of transformations is applied for unstable pk in order to construct a new configuration of
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poles and zeros. This configuration determines a new θ for which C(θ, τ) > C(θ∗, τ), if τ
is sufficiently large.

In this section both assumptions 4.5.1 and 4.5.2 are applied.

4.5.2.1 Behavior on
∫
I |Ĥ(Ω, θ)|2dω

Effects of the pole inversion are studied in every term of the following sum:

1

2π

∫

I
|Ĥ(Ω, θ)|2dω =

∑

k,pk∈P

Resz=pk
Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)
. (4.434)

Since we had assumed that every pole of the optimal parameter vector θ∗ converges to a
unique point of T, for all τ sufficiently large, we have

∑

k,pk∈P

Resz=pk

N(z, θ)N

(
1

z
, θ

)

z(z − pk)

(
1

z
− pk

) nα∏

k=1
k 6=l

(z − pl)

(
1

z
− pl

)

=
∑

k,pk∈P

N(pk, θ)N

(
1

pk
, θ

)

pk

(
1

pk
− pk

) nα∏

k=1
k 6=l

(pk − pl)

(
1

pk
− pl

) . (4.435)

It is worth noting that in the last step assumption 4.5.1 is used because no multiple pole
appears in (4.435).

Consider pk with k 6= l. Then the factor in the denominator

(pk − pl)

(
1

pk
− pl

)
(4.436)

is invariant when replacing pk by 1
pk

. And using again assumption 4.5.1 limit of these

factors is non-zero. Similarly, N(pk, θ)N
(

1
pk
, θ
)

remains the same when replacing pk by
1
pk

. A pole pk can be written as

pk = Pk(1 + ak,τ ) with

{
Pk = ±1, in the real case,

Pk = ejφk , in the complex case.
(4.437)

If pk is real, then

z(z − pk)

(
1

z
− pk

)
= (pk − z)

(
z − 1

pk

)
pk. (4.438)
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Since |pk| > 1, 1
pk

is inside the unit circle. Substituting z = 1
pk

,

(
pk − 1

pk

)
pk = (p2

k − 1) = ((1 + ak,τ )
2 − 1) = 2ak,τ (1 +O(ak,τ )). (4.439)

Inverting pk means that

p̃k =
1

pk
= Pk(1 − ak,τ ) +O(ak,τ ). (4.440)

The new contribution to the denominator of (4.435) is

z(z − p̃k)

(
1

z
− p̃k

)
. (4.441)

Substituting z = p̃k leads to

p̃k

(
1

p̃k
− p̃k

)
= (1 − p̃2

k) = 2ak,τ (1 +O(ak,τ )). (4.442)

Therefore

Resz=pk
Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)
∼ Resz=p̃k

Ĥ(z, θ̃)
1

z
Ĥ

(
1

z
, θ̃

)
(4.443)

where θ̃ is constructed from θ such that pk is replaced by p̃k.

Assumption 4.5.1 says that for all k sufficiently large, the multiplicity of a pole is one.
Therefore, in the case of a real pole multiplying by an arbitrary phase correction sequence
defined in (4.433) may result in a complex pole. Hence, in the case of a real pole the phase
changing is not taken into consideration.

If pk is complex then

z(z − pk)(z − p∗k)

(
1

z
− pk

)(
1

z
− p∗k

)

=
1

z
(z − pk)(z − p∗k)|pk|2

(
z − 1

pk

)(
z − 1

p∗k

)
. (4.444)

The reciprocals 1
pk

and 1
p∗

k
are inside the unit circle, so the residues have to be calculated

at 1
pk

and 1
p∗

k
. Substituting z = 1

pk

pk

(
1

pk
− pk

)(
1

pk
− p∗k

)
|pk|2

(
1

pk
− 1

p∗k

)

=

(
1

pk
− pk

)
(1 − |pk|2)(p∗k − pk).
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Applying pk = Pk(1 + ak,τ ) and p∗k = P ∗
k (1 + a∗k,τ ), this is equal to

(P ∗
k − Pk + o(1))(−2Re{ak,τ} +O(|ak,τ |2))(P ∗

k − Pk + o(1))

= |Pk − P ∗
k |22Re{ak,τ}(1 + o(1)). (4.445)

Inverting pk and p∗k means that

p̃k =
1

pk
= P ∗

k (1 − a∗k,τ ) +O(|ak,τ |2), (4.446)

and

p̃∗k =
1

p∗k
= Pk(1 − ak,τ ) +O(|ak,τ |2). (4.447)

Substituting z = p̃k into

z(z − p̃∗k)

(
1

z
− p̃k

)(
1

z
− p̃∗k

)

we get

p̃k(p̃k − p̃∗k)

(
1

p̃k
− p̃k

)(
1

p̃k
− p̃∗k

)
= (p̃k − p̃∗k)

(
1 − |p̃k|2

)( 1

p̃k
− p̃k

)

= (P ∗
k − Pk + o(1))(2Re{ak,τ} +O(|ak,τ |2))(Pk − P ∗

k + o(1))

= |Pk − P ∗
k |22Re{ak,τ}(1 + o(1)). (4.448)

Therefore

Resz=pk
Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)
∼ Resz=p̃k

Ĥ(z, θ̃)
1

z
Ĥ

(
1

z
, θ̃

)
,

Resz=p∗
k
Ĥ(z, θ)

1

z
Ĥ

(
1

z
, θ

)
∼ Resz=p̃∗

k
Ĥ(z, θ̃)

1

z
Ĥ

(
1

z
, θ̃

)

where θ̃ is constructed from θ such that pk is replaced by p̃k and p∗k is replaced by p̃∗k.

4.5.2.2 Phase Correction

An arbitrary phase change can be applied if complex conjugate pairs are treated. The
conjugate pairs are modified together, i.e.

p̃k = pke
ick,τ , p̃∗k = p∗ke

−ick,τ . (4.449)
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The presented phase correction can be changed N(pk, θ) significantly. For example,
let us assume that we have a pole p1 with P1 = i and a1,τ = 1

τ and a zero converging
to i with b1,τ = 1

τ − 1
τ2 e

i/τ2
. If the phase correction is chosen as c̃k,τ = 1

τ2 e
i/τ2

, then
∀τ : N(p̃k, θ) = 0, but ∀τN(pk, θ) 6= 0. In order to overcome this problem not only the
phase of pk but zeros from the set Ze,k ∪ Zf,k are transformed, too.

Our aim is to modify the elements of the set Ze,k ∪ Zf,k such that

lim
τ→∞

N(pk, θ)

N(p̃k, θ)
= 1. (4.450)

Let us denote q = pk − p̃k. ∀zl ∈ Ze,k ∪ Zf,k z̃l is defined as

z̃l = zl + q. (4.451)

θ̃ is constructed from θ such that pk is replaced by p̃k, ∀zl ∈ Ze,k∪Zf,k are replaced by z̃l and

every other pole and zero remain unchanged. First the denominator of Ĥ(z, θ̃)1
z Ĥ

(
1
z , θ̃
)

is examined, then we focus on its numerator.

We assume that ∀τ : Im{p1(τ)} 6= 0 and that ∀τ : p2(τ) = p∗1(τ). In the residue at
pl ∈ PT, l > 2 the contribution of p1 can be written as

|pl − p̃1|2|p∗l − p̃1|2 = |pl − p1e
ic1,τ |2|p∗l − p1e

ic1,τ |2 (4.452)

= |pl − p1(1 + ic1,τ +O
(
|c1,τ |2

)
|2|p∗l − p1(1 + ic1,τ +O

(
|c1,τ |2

)
|2 (4.453)

where in the last step the usual Taylor expansion of the exponential function is applied. In
can be done without assumptions because the exponential function is regular on the whole
complex plane. Since ck,τ = o(1) we have

|pl − p̃1|2|p∗l − p̃1|2 = |Pl − P1|2|P ∗
l − P1|2(1 + o(1)) (4.454)

which is asymptotically the same as the contribution of |pl − p1|2|p∗l − p1|2. In the denom-

inator of Ĥ(z, θ̃)1
z Ĥ

(
1
z , θ̃
)

we have

z(z − p̃1)

(
1

z
− p̃1

)
(z − p̃∗1)

(
1

z
− p̃∗1

)
. (4.455)

In order to calculate the residue at z = p̃1, the following expression is evaluated:

z

(
1

z
− p̃1

)
(z − p̃∗1)

(
1

z
− p̃∗1

)∣∣∣∣
z=p̃1

(4.456)

Substituting z = p̃1 leads to

= p̃1

(
1

p̃1
− p̃1

)
(p̃1 − p̃∗1)

(
1

p̃1
− p̃∗1

)
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= p1e
ic1,τ

(
1

p1eic1,τ
− p1e

ic1,τ

)
(p1e

ic1,τ − p∗1e
−ic1,τ )

(
1

p1eic1,τ
− p∗1e

−ic1,τ

)

= (P ∗
1 − P1 +O(|a1,τ | + c1,τ )) (P1 − P ∗

1 +O(|a1,τ | + c1,τ )) (1 − |p1|2)

= 2Re{a1,τ}|P1 − P ∗
1 |2(1 + o(1)). (4.457)

Therefore one can conclude that inverting an unstable pole that converges to T or mod-
ifying the phase of a complex pole by multiplying it with a complex sequence converging to
1 does not change the asymptotic value of the denominator of Resz=pk

Ĥ(z, θ̃)1
z Ĥ

(
1
z , θ̃
)
.

In the following, the numerator of Resz=pk
Ĥ(z, θ̃)1

z Ĥ
(

1
z , θ̃
)

is investigated. Two cases

are treated: whether the norm of ‖ H(z, θ) ‖2
2 converges to infinity, or not.

• ‖ Ĥ(z, θ) ‖2
2→ ∞. In this case, Ĥ(z, θ) contains only zeros from the set Zo,k ∪ Zs,k.

Since for all zl ∈ Zo,k

(pk − zl) = |Pk − Zl|(1 + o(1)) (4.458)

and
(

1

pk
− zl

)
= |P ∗

k − Zl|(1 + o(1)) (4.459)

the limit value is independent of the phase transformation. If zl ∈ Zs,k, then

pk − zl = Pk(−ak,τ + bl,τ ) = Pkbl,τ (1 + o(1)) (4.460)

or

1

pk
− z∗l = P ∗

k (−a∗k,τ + b∗l,τ ) = Pkb
∗
l,τ (1 + o(1)). (4.461)

The asymptotic contribution of these factors does not depend on the defined phase
transformation. From §4.4.5 and §4.5.1 we known that both pk and p̃k converge
to T at the rate 1

τ . Hence the asymptotic contribution of p̃k is also independent
of ak,τ . Therefore, we can conclude that if ‖ Ĥ(z, θ) ‖2

2→ ∞ then the presented
phase transformation does not change the asymptotic value of the numerator of
Resz=pk

Ĥ(z, θ̃)1
z Ĥ

(
1
z , θ̃
)
.

• ‖ Ĥ(z, θ) ‖2
2 remains bounded. In this case we know that Ze,k∪Zf,k 6= ∅, it is possible

that the set Zo,k ∪ Zs,k is not empty. Then the same argument like in the previous
case can be applied. Using assumption 4.5.1, it can be shown that

Resz=pk
Ĥ(z, θ̃)

1

z
Ĥ

(
1

z
, θ̃

)
→ 0. (4.462)
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In the corresponding factors of the denominator we have

z(z − p∗k)

(
1

z
− pk

)(
1

z
− p∗k

)
, (4.463)

substituting z = pk we get

pk(pk − p∗k)

(
1

pk
− pk

)(
1

pk
− p∗k

)
. (4.464)

Only the factor
(

1
pk

− p∗k

)
→ 0 and its convergence rate is

(
1

pk
− p∗k

)
= O(ak,τ ). (4.465)

In the numerator zl ∈ Ze,k ∪ Zf,k

(pk − zl)

(
1

pk
− zl

)
(pk − z∗l )

(
1

pk
− z∗l

)

= |Pk|2(1 + o(1))(−ak,τ − bk,τ )(a
∗
k,τ + b∗k,τ ) (4.466)

and by the definition of Ze,k and Zf,k bk,τ = O(ak,τ ) we conclude that

N(pk, θ)N

(
1

pk
, θ

)
= O(|ak,τ |2). (4.467)

(4.467) and (4.465) proves (4.462).

Assumption 4.5.2 and the result form §4.4.5 guarantee that the same is true for
residues at all the poles of Ĥ(z, θ̃)1

z Ĥ
(

1
z , θ̃
)
, except residue at 0. Therefore,

‖ Ĥ(z, θ) ‖2
2→ 1 (4.468)

as τ → ∞.

4.5.2.3 Effect on
∣∣∣
∫
I T

∗(Ω)eiωτ Ĥ(Ω, θ)dω
∣∣∣

Inverting an unstable pole that converges to T may have significant effect on the asymp-
totic value of

∣∣∣
∫
I T

∗(Ω)eiωτ Ĥ(Ω, θ)dω
∣∣∣. Similarly, the phase correction has asymptotic

importance. Like in the previous subsection, first the effect of the inversion of an unstable
pole is investigated, then we study the phase correction transformation.

In pk is unstable than the function

T (z−1)zτ−1Ĥ(z, θ) (4.469)
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has no pole at 1
pk

inside the unit circle. It means that inverting an unstable pole increases

the number of the terms in the residual form of
∫
I T

∗(Ω)eiωτ Ĥ(Ω, θ)dω. It was seen in
§4.5.1.2, in the numerator of C(θ, τ) the contribution of the residue at pk is determined by
the factor N(pk) and the factor (1 − |ak,τ |)τ . Depending on the limit of

∫
I |Ĥ(Ω, θ)|2dω

the convergence rate of N(pk, θ) is determined by the factor

∏

l,Zl=Pk

(bl,τ − ak,τ ). (4.470)

In the special case when ak,τ = o(
∏

l,Zl=Pk
bl,τ ), i.e. Ze,k ∪ Zf,k = ∅ we have

∏

l,Zl=Pk

(bl,τ − ak,τ ) =
∏

l,Zl=Pk

bl,τ (1 + o(1)). (4.471)

Let us define Ca,k as

Ca,k = (1 − ak,τ )
τ (4.472)

which generalists the definition of (4.220).

Now the sign of the contribution of a stable pole pk that converges to T will be studied.

In most cases modifying the phase of a real pole causes that it becomes a complex
pole. Polynomials which occur in this thesis have real coefficients, thus modifying only the
phase of just one real pole leads to complex coefficients. Therefore, for real poles the phase
modification is not allowed.

In the case of complex poles, the phase transformation of pk and p∗k (4.449) are applied
simultaneously. Assuming that p2 = p∗1, the contribution of the complex conjugate pole
pair is

Resz=p1T (z−1)zτ−1H(z, θ) + Resz=p2T (z−1)zτ−1H(z, θ)

= 2Re
{
Resz=p1T (z−1)zτ−1H(z, θ)

}

= 2Re

{
T

(
1

P1

)
pτ−1
1

∏
l,Zl=P1

(p1 − zl)
∏

l,Zl 6=P1
(p1 − zl)∏nα

l=2(P1 − Pl)
(1 + o(1))

}
. (4.473)

Assuming that p1 = P1(1 − |a1,τ |)eiφ1,τ , we have

2Re
{
Resz=p1T (z−1)zτ−1H(z, θ)

}
=

= (1 − |a1,τ |)τ−12Re

{
T

(
1

P1

)
P1e

iφ1,τ (τ−1) Ns(p1)Nf (p1)∏nα

l=2(P1 − Pl)
(1 + o(1))

}
. (4.474)
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where

Ns(p1) =
∏

l,zl∈Zo,1∪Zs,1

(p1 − zl) (4.475)

and

Nf (p1) =
∏

l,zl∈Ze,1∪Zf,1

(p1 − zl). (4.476)

2Re
{
Resz=p1T (z−1)zτ−1H(z, θ)

}
=

= 2Ca,k(1 + o(1))

(
Re
{
eiφ1,τ (τ−1)

}
Re

{
T

(
1

P1

)
P1

Ns(p1)Nf (p1)∏nα

l=2(P1 − Pl)

}

−Im
{
eiφ1,τ (τ−1)

}
Im

{
T

(
1

P1

)
P1

Ns(p1)Nf (p1)∏nα

l=2(P1 − Pl)

})
(4.477)

Notes 4.2.11 and 4.2.12 ensure that there exists a p̃1 such that

• |p1| = |p̃1|,

• limτ→∞ p1 = limτ→∞ p̃1,

• |p1 − p̃1| < 1
τ

and the signs of Re
{
eiφ1,τ (τ−1)

}
and Im

{
eiφ1,τ (τ−1)

}
are arbitrary. Therefore p̃1 is nothing

else than result of a phase transformation step. p2 is modified such that p∗2 = p1. The
limits remain the same, so the factor (P1 − P2) in the denominator of (4.477) is invariant
with respecting to the introduced phase transformation step. The corresponding zeros of
Nf (z) are modified according to the presented transformation in (4.451). It is clear that

Ns(p1) =
∏

l,zl∈Zo,1∪Zs,1

(p1 − zl) =
∏

l,zl∈Zo,1∪Zs,1

(p̃1 − z̃l) = Ñs(p̃1) (4.478)

By the definition of p̃1 we have

T

(
1

P1

)
P1

Ns(p1)Nf (p1)∏nα

l=2(P1 − Pl)
= T

(
1

P1

)
P1

Ns(p̃1)Nf (p̃1)∏nα

l=2(P1 − Pl)
. (4.479)

hence for all stable pk

∣∣∣∣Resz=pk
T

(
1

z

)
zτ−1Ĥ(z, θ)

∣∣∣∣ ∼
∣∣∣∣Resz=p̃k

T

(
1

z

)
zτ−1Ĥ(z, θ̃)

∣∣∣∣ (4.480)

or
∣∣∣∣Resz=pk

T

(
1

z

)
zτ−1Ĥ(z, θ) + Resz=p∗

k
T

(
1

z

)
zτ−1Ĥ(z, θ̃)

∣∣∣∣ (4.481)
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∼
∣∣∣∣Resz=p̃k

T

(
1

z

)
zτ−1Ĥ(z, θ) + Resz=p̃∗

k
T

(
1

z

)
zτ−1Ĥ(z, θ̃)

∣∣∣∣ . (4.482)

Hence we conclude that for all pk which converge to T and for all zl ∈ Ze,k ∪Zf,k, there
exists a p̃k and z̃l such that the absolute value of their asymptotic contribution remains
the same but the signs of their contributions are arbitrary. We refer to this transformation
of the poles and zeros as the phase correction step.

4.5.2.4 Evaluating C(θ, τ)

The asymptotic properties of the numerator and denominator of C(θ, τ) are discussed in
§4.5.2.3 and §4.5.2.1. Two kinds of transformation step are treated:

• inverting an unstable pole converging to T,

• multiplying a complex conjugate pole pair by a phase correction sequence.

Using the composition of the sequence θ(τ) introduced in §4.4.3, indirect technique is
applied to prove that asymptotically an optimal parameter vector sequence θ∗(τ) does not
contain any unstable pole. This means that, it is proved that for all τ sufficiently large for
every θ(τ) which contains an unstable pole subsequence a θ̃(τ) can be constructed such that
θ̃(τ) defines the same poles and zeros like θ(τ) except the corresponding unstable pole that
is inverted. Hence, assuming that a particular optimal parameter vector sequence θ∗(τ)
containing an unstable pole subsequence, construction of a new θ̃(τ), for which C(θ̃(τ), τ) <

C(θ∗(τ), τ) and θ̃(τ) defines the stabilized pole subsequence, leads to a contradiction.
This contradiction proves that asymptotically θ∗(τ) does not define any unstable pole
subsequence. In the proof assumptions 4.5.1 and 4.5.2 are strongly used.

For a particular θ∗ let us assume that θ∗(τ) contains unstable pole and let p1(τ), . . . , pU (τ)

denote these unstable poles converging to T. U denotes the number of unstable pole in the
corresponding sequence, the set of the pole sequences is denoted by Pu = {p1(τ), , . . . , pU (τ)}
. The elements of complex conjugate pole pairs are investigated together. The following
algorithm is applied with a starting value θ = θ∗.

1. Determine Pu from θ.

2. If Pu is not empty, then select a real pk(τ), or in the case of a complex conjugate
pole pair p∗k(τ) is also selected. If empty, then the algorithm ends.

3. Invert pk(τ), and p∗k(τ) in the complex case. The zeros from the set Ze,k ∪ Zf,k are
modified according to (4.451). It guarantees that

N(pk(τ), θ∗(τ)) = N

(
1

pk(τ)
, θ̃(τ)

)
, (4.483)

or

N(pk(τ), θ∗(τ)) = N

(
1

p∗k(τ)
, θ̃(τ)

)
, (4.484)
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N(p∗k(τ), θ∗(τ)) = N

(
1

pk(τ)
, θ̃(τ)

)
. (4.485)

Other poles and zeros defined by θ∗(τ) are copied into θ̃(τ) without any modification.
In §4.5.2.1 it is proved that such transformation does not changed the asymptotic
value of the denominator C(θ∗, τ), i.e.

‖ Ĥ(Ω, θ) ‖2
2∼‖ Ĥ(Ω, θ̃) ‖2

2 . (4.486)

4. Because of assumption 4.5.2 in the numerator of C(θ, τ) the convergence rate of the
residues calculated at pk and p∗k is the same like the sum of other residues calculated
at the stable poles. However, it is possible that the sign of the contribution of pk

or the sign of the sum of the contributions pk and p∗k is different. In this case the
phase correction step is applied. If pk is complex, then new p̃k and p̃∗k are introduced
according to §4.5.2.3. If pk is real, then for all other stable poles are transformed
such that sign of every contribution except the real ones changes.

After this step the number of terms in the numerator of C(θ, τ) increases. The
number of non-zero terms increases and every term has the same sign. Therefore, for
all τ sufficiently large,

∣∣∣∣
∫

I
T ∗(Ω)eiωτ Ĥ(Ω, θ∗)dω

∣∣∣∣ <
∣∣∣∣
∫

I
T ∗(Ω)eiωτ Ĥ(Ω, θ̃)dω

∣∣∣∣ . (4.487)

5. pk or pk and p∗k are removed from the set Pu.

6. θ = θ̃. Goto to the first step.

It is clear that every time when step 5 is evaluated, for all τ sufficiently large the cost
function and the number of unstable poles decrease. Since only finite number of unstable
pole is possible, the presented algorithm ends after finite number of steps and results in
empty set Pu. The conclusion of §4.5.1 ensures that the cost function cannot be decreased
asymptotically by increasing the convergence rate of unstable poles.

The result is that a sequence of parameter vector is constructed θ̃(τ) such that C(θ̃(τ), τ) <

C(θ∗(τ), τ). This a contradiction with the assumption that θ∗(τ) is the solution of the op-
timization problem.

In the presented algorithm does not work in a special case. The situation was already
addressed in §4.4.8. In the case when two real pole converge to T such that their limit
points are different, it is possible that inverting of an unstable pole decreases C(θ, τ).
And in this case the phase modifying step cannot be applied. It means that in general
the statement which says that for all τ sufficiently large the global minimum of C(θ, τ)

determines a stable model, is not true. But fortunately, since this is the only exception,
the existence theorem is still true. The valid statement says that depending on the target
function T (Ω), for all even τ or for all odd τ sufficiently large the global minimum of
C(θ, τ) determines a stable system. From the latest statement, the existence theorem can
be concluded.
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4.6 Weight

In the original cost function (4.1) a weighting function W (Ω) can be introduced. There are
restrictions for the weight function: W (Ω) must be a meromorphic function on the whole
complex plane without poles and zeros on the unit circle (z-domain) nor on the imaginary
axes (s-domain). The existence theorem remains true in this case because every step of
the proof can be repeated again. Let W (ω) denote the weighting function. It must be a
restriction of a meromorphic function on the whole complex plane W (z). The new cost
function equals:

C(θ, τ) =‖W (z)(T (z)z−τ −H(z, θ)) ‖2
2 . (4.488)

This is nothing else than a new norm on the space of systems. Introduction this weighting
function causes no change in the proof. Every step of the proof can be repeated with a
little change that is beside the point.



Chapter 5

Numerical Algorithm

In this chapter a new numerical algorithm is presented for finding automatically a delay
where the global minimum of the cost function (4.1) determines a stable model. (In this
case the frequency grid I is a finite set.) The idea of the new method is based on the
theory of differential equations. Contrary to classical approaches it needs less gradient-like
steps during the approximation process. Moreover, we will show examples in which the
proposed algorithm returns a better solution than those found in the literature.

First, the problem formulation is presented. Second, an existing method is studied.
After that, there is a quick overview of the theory of numerical methods for solving differ-
ential equations. Fourth, the new algorithm is introduced and, in the end, numerical and
measurement examples are shown.

5.1 Problem Formulation

The original problem is to find the global minimum of the cost function (3.26). Unfor-
tunately, in a computer the continuous frequency grid cannot be handled. Therefore, the
DFT defined in (2.7) is used.

The interval I in (3.26) is replaced by a finite set of frequencies. Thus, we introduce
the discrete version of the cost function:

C(θ, τ) =

F∑

k=1

|T (Ωk)e
−jωkτ −H(Ωk, θ)|2 (5.1)

where Ωk denotes the kth generalized frequency (Ωk = jωk in s-domain, Ωk = ejωk in
z-domain) and F is the number of the frequencies. It should be noted that in (5.1) the
meaning of C(θ, τ) is redefined. However, it does not cause any problem because through-
out this chapter only the new definition is used. Since the Lebesgue integral [Rudin, 1976]
contains the discrete measure as a special case, (5.1) is not a new definition, but a spe-
cial case of (3.26) (of course the factor 2π∆f has to be included). Applying the initiated
notations the minimization problem can be written as

θ∗ = arg min
θ
C(θ, τ) where τ is fixed. (5.2)

127
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In order to emphasize that θ∗ depends on τ , sometimes the notation θ∗(τ) is used.

If the delay value τ is fixed then the minimum of equation (5.1) w.r.t. the parameter
vector θ∗(τ) has to be found. In the literature there are lots of extensively used and excellent
algorithms [Press et al., 2002]. As already mentioned without imposing any constraint it
is not guaranteed that the solution θ∗(τ) of the minimization problem determines a stable
model. The problem of finding the optimal delay can be formulated in the following:

arg min
τ
C(θ∗(τ)) subject to H(Ω, θ∗(τ)) stable. (5.3)

The point is that we have to find a delay value where the minimum of the cost function
determines a stable model, and the value of the cost function is minimal subject to this
constraint. There is an obvious solution. A new parameter vector is constructed by adding
the delay as a new element to θ. Using this new parameter space the minimization problem
is

[θ∗, τ∗] = argmin
[θ,τ ]

C(θ, τ) subject to H(Ω, θ∗(τ)) stable (5.4)

where τ∗ denotes the optimal delay value. The problem of this solution is that it imposes
a constraint. Without the constraint it can be solved very well with the existing methods
[Schoukens and Pintelon, 1991], [Kollár, 1994]. Intuitively, it can be seen that the set of
the stable parameter vectors in the whole space is a very sophisticated in spite of the fact
that it is a connected subset. But generally the set

{τ : θ∗(τ) subject to H(Ω, θ∗(τ)) is stable} (5.5)

is not a connected set. An illustration can be seen in figure 5.1. The output of the op-
timization solver with a fixed delay value τ is denoted by θ∗,os(τ). It is important to
emphasize that θ∗,os(τ) = θ∗(τ) cannot be guaranteed. In the figure a Hilbert transformer
(see §5.7.1) was the target function, and it was approximated by a 12th order model.
Levenberg-Marquardt method (see §5.5.3) was used as minimization procedure. It can
be seen in figure 5.1 that the computed extreme values of the complex function are very
erratic and several local optima may exist. As we known from the Galois theory of algebra
[Jacobson, 1985] it is impossible to determine an expression for the map between a poly-
nomial and its roots if the order is greater than 4. Therefore, the optimization problem
(5.3) needs another method.

5.2 The Mean Group Delay Method

One of the possible solutions for problem (5.3) is studied deeply in [Vuerinckx, 1998]. Now
we introduce Rudi Vuerinckx’s results which was the base of research of this thesis.

[Vuerinckx, 1998] treats the stable IIR filter design problem with additional delay. The
main aim of the thesis is to develop an algorithm to find the optimal delay value and
the optimal parameter vector in Chebyshev sense. This means that the approximation
problem has to be solved in the space L∞,R(T) (see §2.2). Practical examples showed that



CHAPTER 5. NUMERICAL ALGORITHM 129

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7
x 10

−7

Delay

C
(θ

∗
,o

s
(τ

),
τ
)

Figure 5.1: Illustration of the complexity of extreme values of the cost function for fixed
delay values.

the optimal (stable) delay value in Chebyshev IIR filter approximation is usually close
to the optimal (stable) delay value in L2 IIR filter approximation. Therefore the devel-
oped algorithm firstly solves an L2 approximation problem and then using this as initial
value a Chebyshev approximation is performed. For completeness the whole algorithm is
introduced, not only the part using the L2 approximation.

5.2.1 Outline of the Method

An iterative algorithm is used to find the delay for which a stable filter approximation
results. In each iteration, an IIR filter is designed at a specific delay, without imposing
any stability constraint. If this filter is stable, the solution is found. Otherwise, a suitable
delay increment is deduced from the characteristics of this unstable filter and a next iter-
ation is started. The critical part consists of the algorithm used to obtain an appropriate
delay increment from the frequency response of the unstable filters: the resulting delay
increment must be such that a minimal number of iterations are necessary before reaching
a stable filter, while not adding unnecessary delay, because this usually deteriorates the
approximation error [Vuerinckx, 1998].

Because it can take many iterations before a stable delay is found, where each iteration
involves a full Chebyshev filter design, this method as such can be quite time consuming. To
reduce this calculation time, not all filters are designed with the slow Chebyshev method.
First, the much faster least squares norm is used to generate the filters. Only after a stable
delay has been found for the least squares norm, the iterations are continued at that delay
with the Chebyshev norm.
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Apart from saving a lot of time, first using the least squares norm has one additional ad-
vantage: it improves the numerical conditioning of the Chebyshev approximation problems
and thus, it increases the maximal IIR filter length that can be designed. The Ellacot-
Williams method, which is used extensively to solve the Chebyshev approximation prob-
lem, might get into trouble if too many poles are located excessively close to the unit
circle [Ellacott and Williams, 1976b]. This typically occurs if a too small delay is applied
to the target. However, the least squares method does not suffer from that situation,
and therefore the least squares method still returns reliable results at delays where the
Chebyshev method would fail. After a stable least squares delay is found, the zero/pole
configuration at that delay will show much less poles clustered very close to the unit circle,
and thus the Chebyshev method will have far less numerical problems to design the filter
[Vuerinckx, 1998].

5.2.2 Initial Delay Value

Before starting with the actual iterations, an initial delay increment τ0 is applied to the
target. Ideally, this delay increment should already be a rough approximation of the stable
delay increment; but unfortunately this stable delay is dependent on so many parameters,
that it was impossible to construct a rule that approximates it. Instead, the initial delay
increment τ0 is chosen such that the mean group delay τ̂g of the target is set at a sensible
value. The group delay τ̂g [Oppenheim and Shafer, 1989] is defined by

τ̂g = −ψT (ωr) − ψT (ωl)

ωr − ωl
(5.6)

with ψT (ω) the unwrapped phase of the target frequency response T (ω) and with ωr

(respectively ωl) the highest (respectively lowest) angular frequency where the target mag-
nitude response is different from zero. Satisfactory results were obtained with the following
initial delay increment τ0

τ0 = nβ − nα − τ̂g. (5.7)

5.2.3 Finding the Delay Increment

The algorithm was published first in [Vuerinckx et al., 1996]. Given the unstable filter
Hl−1(z

−1, θ), resulting from the previous iteration l − 1, a stable version Ĥl−1(z
−1, θ)

of it is produced by mirroring all unstable poles of Hl−1(z
−1, θ). This operation leaves

the magnitude response of the filter Hl−1(z
−1, θ) unchanged, but not its phase response.

Therefore, the stable filter Ĥl−1(z
−1, θ) is not useful as an approximation of the target

frequency response T (ω). However, along with the phase response, the group delay is
also modified by mirroring the unstable poles and because this difference in group delay
is a measure for the influence on the delay of unstable poles, it is used as an indication
for the delay increment. Unfortunately, the group delay difference between both filters
Hl−1(z

−1, θ) and Ĥl−1(z
−1, θ) is not a constant term, which is the only allowed modification

on the target. Therefore, an average of the group delay difference must be used instead. Let
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τg,l−1 and τ̂g,l−1 be the mean group delay of Hl−1(z
−1, θ) and Ĥl−1(z

−1, θ), respectively,
calculated according to (5.6). The proposed delay increment ∆τl to be added to the target
is then

∆τl = τ̂g,l−1 − τg,l−1. (5.8)

Practical examples showed that when getting in the vicinity of the stable delay, with all
unstable poles very close to the unit circle, very small delay increments are generated by
(5.8); resulting in a huge number of iterations before the stable delay is actually exceeded.
In order to improve this behavior, equation (5.8) is corrected by imposing a lower bound
on the increment, based on the length of the IIR filter. The final formula for calculating
the delay increment then

∆τl = max

{
τ̂g,l−1 − τg,l−1,

nβ + nα + 2

100

}
. (5.9)

Finally, the overall algorithm for finding a delay τ for which the Chebyshev IIR filter
approximation becomes stable is given. But first of all a notation for the cost function
defined with Chebyshev norm has to be introduced:

C∞(θ, τ) = max
k

|T (Ωk)e
−jωkτ −H(Ωk, θ)|. (5.10)

1. τ0 = nβ − nα − τ̂g.

2. θ = arg[minθ C(θ, τ)].

3. Does θ determine a stable model? If yes then goto 8.

4. Determine Ĥ(ω, θ), τg, τ̂g.

5. ∆τl = max
{
τ̂g,l−1 − τg,l−1,

nβ+nα+2
100

}
.

6. τ = τ + ∆τ .

7. Goto 2.

8. θ = arg[minθ C∞(θ, τ)].

9. Does θ determine a stable model? If yes then goto 14.

10. Determine Ĥ(ω, θ), τg, τ̂g.

11. ∆τl = max
{
τ̂g,l−1 − τg,l−1,

nβ+nα+2
100

}
.

12. τ = τ + ∆τ .

13. Goto 8.

14. Stop.
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5.3 Differential Equations

Here some theories about ordinary differential equations (ODE) are summarized. The
complete theory of the ODE is very rich and extensive and because of the space limitation
of this thesis only required slices are recalled. We need only the simplest differential
equations: the so-called first order differential equations [Coddington and Levinson, 1995].

5.3.1 Problem Formulation

In the most general case an ordinary differential equation of the first-order contains an
independent variable, an unknown function and its derivative and has the form [Hartman,
2002]

F (x, y(x), y′(x)) = 0, (5.11)

where F (x, y0, y1) is a given real valued function.
The results given here apply to the case where F is such that the equation F (x, y0, y1) =

0 can be solved for y1 in the form y1 = f(x, y0). Thus we shall consider differential equations
of the form

y′(x) = f(x, y(x)). (5.12)

Our goal is to find the unknown function y(x) satisfying (5.12), i.e. we want to solve the
following problem [Hartman, 2002], [Coddington and Levinson, 1995], [Zwillinger, 1997].

Problem 5.3.1. Let I be a fixed interval of the real line and consider the following rectangle

or strip on the plane

D := {(u, v) ∈ R
2|u ∈ I, v ∈ [c, d],−∞ ≤ c < d ≤ +∞}. (5.13)

Suppose that f is a real valued function defined on D. Find a differentiable function y(x)

defined on a real interval J ⊂ I such that

• (x, y(x)) ∈ D (x ∈ J),

• y′(x) = f(x, y(x)) (x ∈ J).

This problem is called an ordinary differential equation of the first-order, and is usually
written in the form (5.12). If such an interval J and a function exist, the y(x) is called a
solution of the differential equation (5.12) on the interval J . The graph of a solution of a
differential equation is called an integral curve of the equation. If there are no such J and
y(x), we say that (5.12) has no solution [Hartman, 2002], [Coddington and Levinson, 1995],
[Zwillinger, 1997].

Suppose that (τ, ξ) is a given point in D. Then an initial value problem associated with
(5.12) and this point is defined in the following way.

Problem 5.3.2. Find a solution y(x) of (5.12) satisfying the condition y(τ) = ξ.
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The problem is denoted by

y′(x) = f(x, y(x)), y(τ) = ξ. (5.14)

5.3.2 Existence and Uniqueness

The first question to be answered is under what conditions on f can we say that the
problem has at least one solution.

The following theorem lays down a sufficient condition for a solution to exist [Hartman,
2002], [Coddington and Levinson, 1995], [Zwillinger, 1997].

Theorem 5.3.1 (Cauchy-Peano existence theorem). If f is a continuous function on the

strip D then there exists a solution of the initial value problem.

The second question is the problem of uniqueness of the solutions. Not all problems
possess an unique solution. The next theorems are about this question [Hartman, 2002],
[Coddington and Levinson, 1995], [Zwillinger, 1997].

Definition 5.3.1. Suppose f is defined on a strip D of the plane. If there exists a constant

L > 0 such that for every (u, v1) and (u, v2) in D

|f(u, v1) − f(u, v2)| ≤ L|v1 − v2| (5.15)

then f is said to satisfy a Lipschitz condition (with respect to the second variable of f) in

D. The constant L is called the Lipschitz constant.

The following fundamental existence and uniqueness theorem for the initial value
problem given in (5.14) states that the problem (5.14) has exactly one solution, pro-
vided f satisfies a Lipschitz condition [Hartman, 2002], [Coddington and Levinson, 1995],
[Zwillinger, 1997].

Theorem 5.3.2 (Picard-Lindelöf theorem). Let f be a continuous function defined on the

strip D := {(u, v)|a ≤ u ≤ b, v ∈ R}, where a, b are finite real numbers. Suppose that f

satisfies a Lipschitz condition on D. Then for every τ ∈ [a, b] and every ξ ∈ R there exists

exactly one function y(x) such that

1. y(x) is differentiable for x ∈ [a, b],

2. y′(x) = f(x, y(x)) for x ∈ [a, b],

3. y(τ) = ξ.

Proposition 5.3.1. If f(x, y(x)) and ∂f(x,y)
∂y are continuous on the domain D then ∀(x0, y0) ∈

D problem (5.14) has exactly one solution on [a, b].
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5.4 Numerical Methods of Differential Equations

Most of the differential equations have no explicit solution, i.e. there does not exist an
analytical expression of f(x). In these cases only a numerical solution can be computed
which means that the true solution is approximated in some sense. There are many different
methods that can be used to approximate solutions to a differential equation. Here we
present two ones: the Euler method and the Runge-Kutta method. Both methods were
realized in the developed algorithm presented in §5.6. All these discretize the differential
system to produce a difference equation or map. The methods obtain different maps from
the same differential equations, but they have the same aim: that the dynamics of the
map should correspond closely to the dynamics of the differential equation [Cartwright
and Piro, 1992].

Because of limitation in space the deep analysis of ODE solvers is not presented. It
is important to note that through the introduction of the Euler method and the Runge-
Kutta method, respectively, we assume that the conditions of existence and uniqueness are
satisfied. In the case of the proposed algorithm it is verified in §5.6.2.

The notations and presented formulas are borrowed mainly from [Cartwright and Piro,
1992] and [Press et al., 2002].

5.4.1 Euler Method

Euler method is the oldest and the simplest method to produce a numerical solution of
the initial value problem (5.14), [Kryszig, 1979]. From the calculus we know that the the
tangent line of the solution y(x) at x0 can be formulated as

y = y0 + y′(x0)(x− x0) (5.16)

where y0 = y(x0). And combining with (5.12) results

y = y0 + f(x0, y0)(x− x0). (5.17)

The tangent is used to construct the estimation of y(x) at the point x1 = x0 + h where h
is the step length. So, we compute the estimation of y(x1) as

y1 = y0 + f(x0, y0)(x1 − x0) = y0 + f(x0, y0)h. (5.18)

The schematic of the first of the Euler method can be seen in figure 5.2. The deduction of
the first step (5.18) gives immediately the definition of every step of the Euler method:

yn+1 = yn + f(xn, yn)h. (5.19)

5.4.2 Runge-Kutta Method

The basic idea of the Runge-Kutta method is similar to that of the Euler method. In
contrast with the Euler method the Runge-Kutta method uses not only one differentiation
in order to estimate the solution y(x) at the next point xn+1.
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Figure 5.2: Illustration of the Euler method.

To obtain a q-stage Runge-Kutta method (q function evaluation per step) we let

Yn+1 = Yn + hφ(xn, Yn;h), (5.20)

where

φ(xn, Yn;h) =

q∑

i=1

viki, (5.21)

so that

Yn+1 = Yn + h

q∑

i=1

viki, (5.22)

with

ki = f


xn + hai, Yn + h

i−1∑

j=1

bijkj


 (5.23)

and a1 = 0 for an explicit method, or

ki = f


xn + hai, Yn + h

q∑

j=1

bijkj


 (5.24)

for an implicit method. For an explicit method, equation (5.23) can be solved for each ki

in turn, but for an implicit method equation (5.24) requires the solution of a non-linear
system of kis at each step. The set of explicit methods may be regarded as a subset of
the set of implicit methods with bij = 0, j ≥ i. In this thesis only explicit methods are
developed and implemented. The Euler method is an explicit method, too.

An another example for an explicit method, the so-called midpoint method can be
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obtained by letting p = q = 2. The illustration of the midpoint method can be seen in
figure 5.3.
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Figure 5.3: Illustration of the midpoint method.

For convenience, the coefficients a, b, and v of the Runge-Kutta method can be written
in the form of a Butcher-array:

a b

vT

where a = [a1, a2, . . . , aq]
T , v = [v1, v2, . . . , vq]

T and b = [bij ].

Runge-Kutta schemes are one-step and self-starting methods; they give Yn+1 in terms
of Yn only, and thus they produce a one-dimensional map if they are dealing with a single
differential equation. The Runge-Kutta method is determined by its Bucher-array. To
specifying the Butcher-array we have to solve a set of algebraic equations. Without going
into details it has to be mentioned that increasing the number of stages of the Runge-
Kutta methods increases its order which is a measurement of the accuracy of the solution.
However, increasing the number of stages increasing the computing time and the difficulty
of the corresponding algebraic equations. The fourth order Runge-Kutta method which is
one of the algorithm used in the thesis is very popular because after that one has to add
two more stages to the method to obtain any increase in the order.

In our algorithm the so-called Cash-Karps parameters are used. The Butcher-array is
given in table 5.1.

5.5 Minimization of a Cost Function

As one can see in the previous subsection lots of practical algorithms in parametric iden-
tification and/or approximation are equivalent with a minimization of a so called cost
function. In the approximation theory this cost function is a corresponding power of the
norm. But in the parametric identification it is not so simple. In this thesis all the esti-
mators can be formulated as the minimization of a cost function. The popular maximum
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Table 5.1: Cash-Parameters for the Runge-Kutta method.
1
5

1
5

3
10

3
40

9
40

3
5

3
10 − 9

10
6
5

1 −11
54

5
2 -70

27
35
27

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

37
378 0 250

621
125
594 0 512

1771

likelihood estimator belongs to this set, too. In the identification part of the thesis more
estimators with this property will be shown.

Some minimization problems lead to solving a linear matrix equation. The main advan-
tage of this kind of estimators is that the solution can be computed efficiently and quickly.
The general, so called least squares (LS) estimator exists in the frequency domain, too.
The minimization of the LS cost function is equivalent to solving the matrix equation
Ap = b where A, b are given, p is the parameter vector. It is well known that the solution
is p = A+b where + in superscript denotes the Moore-Penrose pseudo inverse [Golub and
Loan, 1996]. One of the generalizations of this problem is the total least squares problem
(TLS) which is studied and generalized further in the identification part of the thesis. Un-
fortunately, most of the minimization problems cannot be formulated as a linear matrix
equation; in these cases an iterative minimization has to be applied. In every step in the
iteration a linear matrix equation is solved.

In this paper three commonly used minimization algorithms are applied. In the litera-
ture there are more proposed and fine tuned algorithms can be found in [Press et al., 2002].
It turned out that these three algorithms are very useful with respect to the frequency do-
main problems. These algorithms were tested in this context in the Frequency Domain
Identification Toolbox [Kollár, 1994] which is used among others to identify linear systems.

The following three methods are studied below:

• Newton-Raphson,

• Newton-Gauss,

• and Levenberg-Marquardt.

The three methods minimize the same cost function and have similarities but different
steps are done.

The three methods require a high quality initial parameter vector to produce good
results. Without good initial value for the parameter vector, especially in the case of high
order systems, there is less chance to find the global minima.

The methods presented here are described in [Schoukens and Pintelon, 1991] and
[Pintelon and Schoukens, 2001].
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5.5.1 Newton-Raphson

Let us consider a cost function C(θ), where θ ∈ R
n is the parameter vector. Make the

Taylor expansion at θ:

C(θ + ∆θ) = C(θ) +

(
∂C(θ)

∂θ

)T

(θ)∆θ +
1

2
∆θT ∂

2C(θ)

∂θ2
∆θ + · · · , (5.25)

where ∂C(θ)
∂θ ∈ R

n and ∂2C(θ)
∂θ2 ∈ R

n×n. The derivatives have to be taken with respect to θ .
A necessary condition for having an extreme at θ + ∆θ is that the derivative with respect
to ∆θ at θ + ∆θ should be equal to zero. From the second order approximation of (5.25)

∂C(θ + ∆θ)

∂∆θ
= 0 +

∂C(θ)

∂θ
+
∂2C(θ)

∂θ2
∆θ. (5.26)

The solution of this linear set of equations gives the value of ∆θ

∆θ = −
(
∂2C(θ)

∂θ2

)−1
∂C(θ)

∂θ
. (5.27)

The most simple Newton-Raphson algorithm consists in calculating successive values of
∆θ (using subindex k to emphasis that it is a sequence):

1. selection of the starting values

2. calculation of ∆θk

3. θk+1 = θk + ∆θk

4. if the stop condition not met, go back to 1

5. stop

5.5.2 Newton-Gauss

The Newton-Raphson algorithm has a major problem. Since the matrix
(

∂2C(θ)
∂θ2

)
might

not be positive definite, the iterative algorithms may not converge. Solution to this problem
is the Newton-Gauss algorithm. Consider the following form of the cost function:

C(θ) = (u− g(θ))T (u− g(θ)). (5.28)

If the vector (u− g(θ)) ∈ C then the modified cost function is

C(θ) = (uC − gC(θ))H(uC − gC(θ)) (5.29)

where the superscript H denotes the Hermitee transformation (transposition and complex
conjugation) of the complex matrix and C emphasizes that they are now complex variables.
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This case can be reduced to the equation (5.28) if

u =

[
Real{uC}
Imag{uC}

]
g(θ) =

[
Real{gC(θ)}
Imag{gC(θ)}

]
(5.30)

The second order derivatives are given by

∂2C(θ)

∂θ2
= 2

N∑

k=1

((
∂gk(θ)

∂θ

)T (∂gk(θ)

∂θ

)
− (uk − gk(θ))

∂2gk(θ)

∂θ2

)
(5.31)

where N is the length of g(θ) and gj(θ) is the jth element of g(θ). The second order
derivatives can be approximated by

∂2C(θ)

∂θ2
≈ 2

N∑

k=1

(
∂gk(θ)

∂θ

)T (∂gk(θ)

∂θ

)

= 2

(
∂g(θ)

∂θ

)T (∂g(θ)
∂θ

)
= 2J(θ)TJ(θ) (5.32)

with J(θ) = ∂g(θ)
∂θ the Jacobian matrix. So the first order derivative of cost function is

∂C(θ)

∂θ
= −2J(θ)T (u− g(θ)) (5.33)

and this results in the following modified step increase expression

∆θk = (JT
k Jk)

−1JT
k (u− g(θk)) = J+

k (u− g(θk)) (5.34)

where Jk = J(θk).

5.5.3 Levenberg-Marquardt

The iteration step is a combination of Newton-Gauss and the steepest descent. It is the
following:

∆θk+1 =
1

λ
JT

k (u− g(θk)) = − 1

2λ
gradTC(θk) (5.35)

hence

∆θk = (JT
k Jk + λI)−1JT

k (u− g(θk)) (5.36)

where λ > 0 is a constant and I is eigenmatrix with appropriate size. If λ → 0 then it is
the Newton-Gauss method, and if λ→ ∞ it is the steepest descent. So the basic structure
of a Levenberg-Marquardt algorithm is in general quite simple

1. selection of a set of starting values and a large starting value of λ

2. Calculate the Jacobian Jk
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3. ∆θk+1 = (JT
k Jk + λI)−1JT

k (u− g(θk))

4. Is the step successful, i.e. C(θk) > C(θk+1)?
Yes : decrease λ and proceed to 5.
No : increase λ and go to 3.

5. If it stop criterion is not met, go to 2.

6. Stop.

This method may have larger convergence domain than the previous ones.

5.6 Proposed Algorithm for Automatic Delay Selection

In this section the proposed algorithm is discussed. First, the deduction of the method
is shown. After that, some theoretical establishments are given. And at the end of the
section, as summary the flow-chart of the method is presented.

5.6.1 Deduction of the Method

Our aim is to solve the problem (5.3). In §5.2 a method based on the group delay is
presented. Here, a new algorithm based on the ODE methods is developed and analyzed.

The algorithm makes steps which are equivalent to a sequence of the parameter vectors θ
and a sequence of the delays τ . As in [Vuerinckx, 1998], two kinds of steps are distinguished.
Let θi(τ) be the estimated parameter vector in the ith step.

• The first set of steps contains steps which try to minimize the cost function (5.1)
without modifying the delay τ , i.e. we calculate θi+1(τ) by using θi(τ). These steps
correspond to the methods presented in §5.5. Throughout this thesis these steps are
called gradient steps because the gradient method serves as their basis.

• In steps from the second set the delay is incremented and we try to estimate θi+1(τ+

∆τ) by using θi(τ). We call these steps ODE steps because the developed method is
practically one of the ODE solvers presented in §5.4.

It is worth noting that θi(τ) can be the parameter vector where the cost function (5.1) is
minimal (θi(τ) = θ∗(τ)) depending on the type of the step.

And now we develop a method for steps from the second set. Equation (5.1) is con-
tinuous with respect to τ . The characterization of the extreme values of the cost function
(with fixed τ) can be done by evaluating the following equation:

∂C(θ, τ)

∂θ
= 0. (5.37)

This is a necessary but not a sufficient condition for a global minimum of the cost function.
As we can see this equation defines an implicit function θ(τ) which is continuous w.r.t.
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the delay. It means that we can write a differential equation for the local minima. The
following formulas stem from the total differentiation of equation (5.37):

∂2C(θ, τ)

∂θ2

dθ

dτ
+
∂2C(θ, τ)

∂θ∂τ
= 0. (5.38)

Hence

dθ

dτ
= −

[
∂2C(θ, τ)

∂θ2

]−1
∂2C(θ, τ)

∂θ∂τ
(5.39)

or, if ∂2C(θ,τ)
∂θ2 is a singular matrix, then

dθ

dτ
= −

[
∂2C(θ, τ)

∂θ2

]+
∂2C(θ, τ)

∂θ∂τ
(5.40)

where the symbol + denotes the Moore-Penrose pseudo-inverse of a matrix.

This is a set of ordinary differential equations (ODE), and, hence numerical tools from
the numerical differential equations theory can be used, [Press et al., 2002].

So, the overall algorithm is a sequence of two kinds of steps. If we find that the
global minimum of the cost function determines an unstable model then the delay has to
be increased and ODE steps have to be performed. Of course, the calculated parameter
vector in an ODE step is only an estimation of the corresponding local minimum of the
cost function. Since at every delay value the global minimum of the cost function can be
calculated by using gradient steps, we have an advantage over the classical ODE solvers
that in every x (in our case τ) the solution y(x) (in our case θ∗(τ)) can be calculated
without error. In the full search algorithm at every delay value τ the overall minimization
process is evaluated. The full search is very time consuming and inserting ODE steps can
reduce the computing time drastically.

Using (5.1) and the fact that

H(Ω, θ) =
β0 + β1Ω + . . .+ βnβ

Ωnβ

α0 + α1Ω + . . .+ αnαΩnα
(5.41)

the expression ∂2C(θ,τ)
∂θ2 and ∂2C(θ,τ)

∂θ∂τ are calculated.

Equation (5.1) can be written as

C(θ, τ) = (u(τ) − g(θ))T (u(τ) − g(θ)) (5.42)

where u(τ) : R 7→ R
2F and g(θ) : R

nβ+nα+1 7→ R
2F . In this expression the usual map

between the complex plane and the two dimensional real space is used. Differentiation of
equation (5.42) w.r.t. θ gives

(
∂C(θ, τ)

∂θ

)T

= −2

(
∂g(θ)

∂θ

)T

(u(τ) − g(θ)) (5.43)
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where ∂g(θ)
∂θ ∈ R

2F×(nβ+nα+1). Then

∂2C(θ, τ)

∂θ2
= −2

2F∑

k=1

((
∂2gk(θ)

∂θ2

)
(u(τ) − g(θ))k

)

+ 2

(
∂g(θ)

∂θ

)T (∂g(θ)
∂θ

)
(5.44)

where the subscript k denotes the kth element of a vector and ∂2gk(θ)
∂θ2 ∈ R

(nβ+nα+1)×(nβ+nα+1)

and

∂2C(θ, τ)

∂θ∂τ
= −2

(
∂g(θ)

∂θ

)T ∂u(τ)

∂τ
. (5.45)

The first factor in (5.43) can be written as

∂gk(θ)

∂θ
=
∂H(Ωk, θ)

∂θ
. (5.46)

Two cases have to be distinguished:

• Differentiating w.r.t. βk and continuing (5.46) results

∂H(Ω, θ)

∂βk
=

Ωk

α0 + α1Ω + . . .+ αnαΩnα
. (5.47)

• Differentiating w.r.t. αk results

∂H(Ω, θ)

∂αk
= −H(Ω, θ)

Ωk

α0 + α1Ω + . . .+ αnαΩnα
. (5.48)

The second factor of (5.45) is

∂y(τ)

∂τ
=
∂(T (Ω)e−jωτ )

∂τ
= −jωT (Ω)e−jωτ . (5.49)

And in the end the first term in (5.44) has to be analyzed:

∂2gk(θ)

∂θ2
=
∂2H(Ωk, θ)

∂θ2
. (5.50)

There are three cases:

• Differentiating w.r.t. βm and βn.

∂2H(Ωk, θ)

∂βm∂βn
= 0. (5.51)
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• Differentiating w.r.t. αm and βn.

∂2H(Ωk, θ)

∂βm∂αn
= − Ωm+n

k

(α0 + α1Ωk + . . .+ αnαΩnα

k )2
. (5.52)

• Differentiating w.r.t. αm and αn.

∂2H(Ωk, θ)

∂αm∂αn
= 2H(Ωk, θ)

Ωm+n
k

(α0 + α1Ωk + . . .+ αnαΩnα

k )2
(5.53)

5.6.2 Some Theoretical Underpinning

Here, the theoretical background of the ODE solver is checked and the effect of the finite
frequency grid is analyzed.

5.6.2.1 Existence and Uniqueness

The cost function is a scale invariant function, i.e.

C(θ, τ) = C(λθ, τ). (5.54)

where λ is a non-zero, real number. The parameter ambiguity is removed by constraining
the parameters: θj = 1 (one coefficient is fixed), ‖θ‖2 = 1 (the Euclidean norm of θ is
constrained to one) or θiθj = ±1 (i 6= j, the multiplication of two coefficients is fixed), and
so on. In this thesis the constraint ‖θ‖2 = 1 is used. Hence, the possible set of parameters
is a closed and bounded (=compact) which simplifies the treatment of the existence and
uniqueness. Such a regular compact set is constructed as follows. Let Θ ⊂ R

nβ+nα+1

be the unit ball that is a compact parameter set. Define Θs ⊂ Θ as the singular set of
parameter values for which the cost function (5.1) does not exists or is infinite. Usually,
the topological dimension of this singular set is smaller than the dimension of Θ. The
regular set Θr are those parameters in Θ which are not in an ε-distance of the singular set
Θs

Θr = Θ\{θ ∈ Θ, ‖θ − θs‖ < ε, θs ∈ Θs} (5.55)

Θr is compact (closed and bounded) by construction. Using the same reasoning, a regular
compact set is constructed where the (higher order) derivatives of the cost function exist
and are finite.

In §5.3.2 some important theorems about existence and uniqueness of a solution of an
ODE are listed. The proposition 5.3.1 of Picard-Lindelöf theorem is applied. The equation
(5.39) and (5.40) are used. Obviously, the operations used from which the expressions
are constructed are continuous functions. Furthermore, ∂f(x,y)

∂y exists and is continuous
because of the same reasons. Now, we can conclude that the solution of the initial value
problem (5.40) exists and is unique. The argumentation in the last paragraph ensures that
there is no strange situation when the equation (5.40) has to be computed.
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5.6.2.2 Effect of the Discrete Frequency Grid

There is a big difference between the cost function (5.1) presented in this chapter and
the cost function (3.26) mentioned in the existence proof. In (5.1) the integral is replaced
by the sum because of the discrete frequency grid and therefore the existence proof for
continuous frequency interval is not valid.

In the case of a discrete frequency grid the existence theorem 4.3.1 cannot guarantee
that for all τ sufficiently large the global minimum of the cost function determines a
stable model. Unfortunately, at this moment there is neither a proof of a similar existence
theorem nor a counter-example. From a mathematical point of view, the following is not
true for the discrete frequency grid: there exists a delay τ sufficiently large such that for
all frequency point there exists an appropriate sliced complex plane (in order to define the
complex logarithm) and a neighborhood (in the frequency interval) where the phase of the
target function is monotonously decreasing with the defined complex logarithm. In the
case of a complex function defined on a finite set a monotone phase is meaningless. In the
existence proof the continuous frequency interval enables us to use the Residue theorem
4.2.13 that constitutes the basis of the proof.

Fortunately, a method that results in a stable model which is the minimum of the
cost function (5.1) in the desired frequency band can be given. Increasing the number
of frequency points in the frequency grid such that the mesh size ∆ω = arg max |ωi+1 −
ωi| decreases causes that the discrete cost function (5.1) converges to the cost function
(3.26). In practical stable approximation applications the unstable model is available, hence
the transfer function T (Ω) can be computed at arbitrary frequency points. Therefore, if
for all τ the global minimum θ∗(τ) determined an unstable model, the mesh size would
decrease. Unfortunately, the examples that were investigated by the author did not have
this property, so there is no practical observation of efficiency of this idea.

5.6.2.3 Causality

Although H(Ω, θ) is a causal system by its structure, it may happen that in a step of the
proposed method τ < 0. H(Ω, θ) approximates the causal part of T (Ω)e−jωτ , hence the
norm of the non-causal part is a lower bound of the approximation error. The approxi-
mation problem has a causal solution even if τ < 0. In a particular step of the proposed
solver it is possible that the delay decreases because the direction of the steps depends on
the derivative of C(θ, τ) at the point [θ, τ ]. Moreover, in the case of a tricky T (Ω) it may
happen that the solution of the optimization problem (5.3) leads to a negative delay value
which is probably very close to zero.

Practical experience shows that decreasing the delay causes the solution of the opti-
mization problem be an unstable model. Therefore, it is unlikely that in the case of real
stable approximation problems a negative delay value is obtained as a solution.

5.6.3 Flow-chart of the Method

The algorithm can be divided into two parts. First, a stable model which is the global
minimum of the function at a fixed delay value has to be found. After that, the solution
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found may be improved by an extended gradient method. In the second step the extended
gradient method means that the delay is added to the free parameter set and a global
minimization procedure is performed with this new parameter vector. Of course, there
is no guarantee that the parameter vector where the cost function is minimal determines
a stable model. Therefore, a restricted method is used likewise in §3.2.3. An extended
gradient step cannot increase the value of the cost function, hence the approximation error
may be decreased but it is impossible to be increased.

The flow-chart of the first part is the following:

1. Start.

2. τ = 0.

3. Calculate an initial value of the parameter vector θ0(τ).

4. Decide if it is an ODE step or gradient. (For example, every kth step, or/and if the
variation of the cost function exceed a threshold.)

5. If it is an ODE step then goto 8.

6. Gradient steps until the minimum is reached.

7. Goto 9.

8. Make an ODE estimation.

9. Meet the stop condition? If not then goto 4.

10. Stop.

In step 4 the algorithm has to be decide about the kind of the next step. In the
presented ODE solvers in every step (except the initial steps) values of the estimated
solution are used. In this proposed method, at arbitrary fixed delay value it is possible to
perform a complete gradient-based minimization method. Thus, at arbitrary delay value
the exact solution of the problem 5.14 can be computed. Using only this method to find
the solution is very slow. Less computation time is required in computing an ODE step,
therefore the proposed algorithm contains both ODE and gradient steps. Furthermore, in
the neighborhood of a parameter vector that determines an unstable model are parameter
vectors to which unstable models belong and if not then a more profound search can be
done.

5.7 Examples

To illustrate the competence of the algorithm in this section some examples are shown.
Every example has been already published [Pintelon et al., 1990], [Kollár et al., 1991],
[Kollár et al., 1990], [Pintelon and Schoukens, 1990], so we can make a comparison between
the published results and the output of the proposed algorithm. This section contains
three subsections which belong to different examples. In the first two subsections ideal
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(unstable) transfer functions are approximated, and in the last one an example based on
real measurements is introduced.

The relative complex error of the realized transfer function H is defined as

δC =
H − T

T
. (5.56)

The magnitude of the relative complex error is

δ = |δC | =

∣∣∣∣
H − T

T

∣∣∣∣ . (5.57)

The latter quantity is used to describe the goodness of the approximations.

The realization of a digital filter needs poles which are not too close to the unit circle.
Distance between the set of poles and the unit circle is defined as

DT = min
k=1,...,nα

||pk| − 1| . (5.58)

In practice the necessary lower bound of DT depends on the realization method. A possible
choice is the cascade of second order sections. In this case a fixed-point DSP processor
which is capable to perform 16-bit fractional multiplication, for realizable systems a good
lower bound of DT is 0.0001.

5.7.1 Hilbert Transformer

The Hilbert transform is used in communication and measurement applications. The
standard method of the Hilbert transformer design is the Reméz algorithm, which is well
elaborated. There are attempts to design IIR realizations, too [Ansari, 1987]. Chen and
Parks [Chen and Parks, 1987] have shown that the performance of FIR filters can be
improved by accomplishing the fit in the complex domain, and by allowing small deviations
form the linear phase. This leads to the idea of designing both FIR and IIR Hilbert
transformers by fitting the filter to the complex frequency response [Kollár et al., 1990].
In this thesis only the IIR case is investigated because FIR filters are always stable.

The design of a (two-sided) digital Hilbert transformer means that we try to approxi-
mate the following transfer function:

T (f) =

{
−j if 0 < f < fs/2

j if fs/2 < f < fs

(5.59)

where fs is the sampling frequency. The magnitude characteristic of a band-pass Hilbert
transformer can be seen in figure 5.4.

Because of the discontinuity at 0 and fs/2, a digital filter can approximate this well
only in a given band. Fortunately, in most applications this can be tolerated. In our
example the frequency band is [0.04 : 0.005 : 0.46].
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Figure 5.4: Magnitude characteristic of a band-pass Hilbert transformer. fs = 1.

Table 5.2: Coefficients of the Hilbert transformer in the case τ = 10.7762. DT = 0.0523.

number zero pole

1 0.8024 ± j1.5276 0.8900
2 1.3727 ± j0.8379 −0.9477
3 1.1235 0.5307 ± j0.3239
4 −0.0886 ± j1.7653 0.2695 ± j0.5130
5 −0.9602 ± j1.4682 −0.5431 ± j0.2714
6 −1.4731 ± j0.7362 −0.3120 ± j0.4770
7 −1.0551 −0.0284 ± j0.5650

In [Kollár et al., 1990] the given pass-band Hilbert transformer was approximated by a
12th order model. In this example the same orders were used. The automatic delay search
started at value τ = 0.

First, we study the case where we allow a fractional delay. The proposed algorithm
finds a parameter vector that belongs to a stable model at value τ = 10.7762. The relative
complex error is shown in figure 5.5. This result corresponds to the result of [Kollár et
al., 1990]. However, it was produced by a full automatic algorithm. The published results
of [Kollár et al., 1990] were obtained by using an initial delay value set. The cost function
was minimized in cases of all the delay values from this set. The delay was free during the
minimizations. The roots of the numerator and the denominator are summarized in table
5.2.

Due to the fractional delay, the function in figure 5.5 is asymmetric. In lots of time
when we use Hilbert transformers an integer delay value is necessary. The transfer function
(5.59) can be approximated by a stable model at the delay value τ = 11. The magnitude
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Figure 5.5: Magnitude of the relative complex error of the Hilbert transformer in the case
of fractional delay. τ = 10.7762.

of the relative complex error can be seen in figure 5.6 and roots of the numerator and the
denominator are summarized in table 5.3.
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Figure 5.6: Magnitude of the relative complex error of the Hilbert transformer in the case
of integer delay. τ = 11.

In both cases it can be seen that roots of the denominators are not too close to the
unit circle. Therefore the model can be realized in practise.
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Table 5.3: Coefficients of the Hilbert transformer in the case τ = 11.0. DT = 0.1077.

number zero pole

1 −0.8399 ± j1.4697 −0.8923
2 −1.3698 ± j0.8031 0.8923
3 −1.1206 −0.5433 ± j0.3185
4 −0.0000 ± j1.7196 0.5433 ± j0.3185
5 0.8399 ± j1.4697 −0.2931 ± j0.5129
6 1.3698 ± j0.8031 0.2931 ± j0.5129
7 1.1206 0.0000 ± j0.5815

5.7.2 Differentiators and Integrators

One is often not only interested in the physical quantity measured directly by the sensor,
but also in its higher order derivative(s) or/and integral(s). An example is the study of the
dynamic behavior of vibrating mechanical structures. Often the acceleration is measured
but one is interested in the displacement of the structures: therefore the electronic signal
supplied by the accelerometer is amplified and integrated twice. In a classical approach
these operations are done by analog circuits, which involves problems with dc offset, noise
amplification, accuracy, etc. Since the analog signal is digitized in the acquisition channel of
the measurement device, one can think of performing the differentiation and the integration
operation on the digitized signal. These methods are in fact nothing other than digital filter
design. A possible solution is published in [Pintelon and Schoukens, 1990] and analyzed in
this thesis, too.

5.7.2.1 Integrator

The basic idea is the following: the known ideal integrator is approximated only in a
frequency band. The transfer function of the ideal integrator is:

Tintegrator(ω) =
1

jω
. (5.60)

Tintegrator(ω) is approximated only in the frequency band [0.00125 : 0.00125 : 0.25]. In
[Pintelon and Schoukens, 1990] it was found that this integrator can be approximated well
by using a nβ = 6/nα = 6 model and τ = 4.47796 in the given frequency band.

An integrator always contains a pole at dc (z = 0). This may cause numerical overflow
in the digital filter if a significant dc offset during a long time period is present. So, an
additional high-pass filter must precede the digital integrator. This can be a linear phase
FIR filter available in the literature [Rabiner and Gold, 1975] or an IIR filter designed by
the proposed algorithm. Here, to avoid singularity at ω = 0 and to increase numerical
stability the target Tintegrator(ω) is replaced by

T̃integrator(ω) =
1 − ejω

jω
(5.61)
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Table 5.4: Coefficients of the half-band integrator for τ = 4.47796. DT = 0.8743.

number zero pole

1 6.7983 ± j4.1899 −0.0506 ± j0.1151
2 −0.8069 ± j6.4705 0.0799 ± j0.0586
3 −3.6641

Table 5.5: Coefficients of the half-band integrator for τ = 2.5853. DT = 0.2180.

number zero pole

1 15.8825 ± j22.3437 −0.7820
2 −14.3795 −0.2140
3 −0.8694 0.0158 ± j0.0295
4 −0.2968

and an approximator H̃ of order nβ/(nα − 1) is calculated. The magnitude characteristic
of H̃ is in figure 5.7.

0 0.05 0.1 0.15 0.2 0.25
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Frequency

|H̃
|
[d

B
]

Figure 5.7: Magnitude of the half-band integrator H̃.

The proposed algorithm finds a stable solution for τ = 2.5853 that has a relative
complex approximation error δ that is 20 dB smaller than the solution for τ = 4.47796 given
in [Pintelon and Schoukens, 1990]. The relative complex error can be seen in figure 5.8.
Table 5.4 and table 5.5 summarize the poles and zeros of the resulting transfer functions.
We can conclude that the advantage of the proposed algorithm is the automatic search
of τ but it may be able to find a better solution than starting the minimization from a
manually set-up delay value.
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Figure 5.8: Magnitude of the complex relative errors of the half-band integrators. Dashed
for τ = 4.47796 and solid line for τ = 2.5853.

5.7.2.2 Differentiator

The transfer function of an ideal differentiator is

Tdifferentiator(ω) = jω. (5.62)

As in the case of integrator Tdifferentiator(ω) is approximated in the frequency band [0.00125 :

0.00125 : 0.25]. The differentiator always contains a zero at z = 1. To decrease the
dynamics of Tdifferentiator(ω), i.e. to increase the numerical stability of computations, like
in the case of integrators, we uses this information and construct a modified target function:

T̃differentiator(ω) =
jω

1 − ejω
(5.63)

and an approximator H̃ of order (nβ − 1)/nα is calculated. The magnitude characteristic
of H̃ is in figure 5.9.

In [Pintelon and Schoukens, 1990] a fifth order model was published with fractional
delay τ = 3.41945. Unfortunately, the proposed method cannot find this solution with
using τ = 0 as a starting value. The result of the algorithm is a stable model with
τ = 2.38693. The relative complex errors are in figure 5.10. The reason is that there is no
guarantee that the local optimum with the lowest additional delay value is simultaneously
a global optimum. Table 5.6 and table 5.7 summarize the poles and zeros of the resulting
transfer functions.

It is interesting that if we use τ = 2.5 as a starting value in the proposed algorithm
then the solution for τ = 3.41945 is found. It means that the next stable interval of domain
of the function θ∗(τ) contains the known best approximation.
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Figure 5.9: Magnitude of the half-band differentiator H̃.
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Figure 5.10: Magnitude of the complex relative errors of the half-band differentiators.
Dashed for τ = 3.41945 and solid line for τ = 2.38693.

5.7.3 Data Acquisition Channels

This part handles the equalization of a data acquisition channel (DAC). For the first time,
the idea, the measurement and the identification results were published in [Pintelon et
al., 1990]. Some modifications can be found in [Kollár et al., 1991]. Moreover, there is an
additional publication related to this problem, [Kollár et al., 1990]. Now, we summarize the
result of mentioned publications and after that results of the proposed algorithm is shown.
In §3.1.1 compensation or equalization of a channel is already mentioned as an application
of the stable approximation. This subsection is devoted to illustrate the application of the
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Table 5.6: Coefficients of the half-band differentiator for τ = 3.41945. DT = 0.2369.

number zero pole

1 21.0455 −0.7631
2 −2.9339 ± j17.2560 −0.1894
3 −0.6697 0.0119 ± j0.0826
4 0.0703

Table 5.7: Coefficients of the half-band differentiator for τ = 2.38693. DT = 0.0597.

number zero pole

1 11.6417 ± j34.3272 −0.9403
2 −0.8135 −0.2403
3 −0.0475 0.0004 ± j0.0936
4 0.0699

proposed algorithm in this field.

In [Pintelon et al., 1990] and [Kollár et al., 1990] compensation of an audio band Cauer
filter of order 11, produced with laser trimmed thick film technology was presented. In
[Pintelon et al., 1990] an amplitude- and phase-compensating IIR filter was designed. The
relative complex error has been reduced to be less than -58 dB using a 14/14 IIR filter for
the amplitude compensation and a 20/20 one for the phase equalization. Thus the resulting
compensation filter has the order 34/34. It is obvious that this very straightforward method
is not globally optimal, since the two separate steps have different goals. This inspired the
article [Kollár et al., 1991]. In [Kollár et al., 1990] the order of the compensation filter was
decreased by designing a new IIR filter, which compensated both the amplitude and the
phase, with a lower order than 34/34. A 26/26 filter was obtained with practically the
same fitting error as the 34/34 one.

In this thesis the design of the compensation filter was done by the presented algo-
rithm. Before the stable approximation step an identification process has to be evaluated
in order to achieve the optimal noise removal (see §3.1.2). The identification was done by
the Frequency Identification Toolbox. The result is an IIR filter of order 14/14. The iden-
tified transfer function can be seen in figure 5.11 and the identified model parameters are
summarized in table 5.8. The frequency grid is [400 : 400 : 19200] Hz where the sampling
frequency is 51200 Hz.

The resulted IIR filter is a nonminimal phase one, its inverse is unstable. Therefore
stable approximation is needed. The approximation was computed by the proposed algo-
rithm. In [Kollár et al., 1991] a filter of order 26/26 is proposed and the absolute value of
the complex approximation error is less then 6 mdB which means that the relative complex
error is approximately -58 dB. The results can be seen in figure 5.12. In the case of integer
delay values (dashed line) the approximation error is approximately the same as in [Kollár
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Figure 5.11: Estimation result of the identification step. The model is an IIR filter of order
14/14.

et al., 1991]. However, if a fractional delay is allowed then the algorithm returns a better
approximation for which the magnitude of the relative complex error is less then -80 dB.
The zeros and poles of the models are in table 5.9 and in table 5.10.

Table 5.8: Estimated zeros and poles of the DAC.

number zero pole

1 −28.0200 −0.7425 ± j0.6122
2 −4.7072 −0.6191 ± j0.6319
3 −1.5442 ± j0.6330 −0.3926 ± j0.6720
4 0.9473 0.9467
5 0.6363 ± j0.6578 0.6362 ± j0.6578
6 −0.9347 ± j0.4815 −0.0386 ± j0.6582
7 −0.5963 ± j0.4290 0.4963
8 −0.0941 ± j0.3983 0.3330 ± j0.4042
9 0.3272
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Table 5.9: Zeros and poles of the data acquisition channel for τ = 35. DT = 0.1051.

number zero pole

1 −0.8470 ± j0.8940 −0.8949
2 −0.6796 ± j1.0667 −0.4995 ± j0.6640
3 −0.4736 ± j1.1898 −0.3075 ± j0.7165
4 −0.2451 ± j1.2662 −0.1760 ± j0.7508
5 −0.0049 ± j1.2958 −0.0211 ± j0.7522
6 0.2371 ± j1.2784 0.1321 ± j0.7450
7 0.4718 ± j1.2152 0.2723 ± j0.7062
8 0.6909 ± j1.1086 0.4042 ± j0.6378
9 0.8868 ± j0.9624 0.5235 ± j0.5422
10 1.0529 ± j0.7815 0.6210 ± j0.4335
11 1.3503 ± j0.1016 0.7590 ± j0.1687
12 1.2800 ± j0.3389 0.7892
13 1.1843 ± j0.5717 0.7008 ± j0.3103
14 0.0553 ± j0.2704

Table 5.10: Zeros and poles of the data acquisition channel for τ = 31.285868488. DT =
0.0579.

number zero pole

1 −0.8472 ± j0.9889 −0.5186 ± j0.6421
2 −0.6436 ± j1.1940 −0.5615 ± j0.5439
3 −0.3916 ± j1.3260 −0.6014
4 −0.1129 ± j1.3929 −0.2691 ± j0.6962
5 −0.5922 ± j0.6065 −0.1453 ± j0.7015
6 0.1758 ± j1.3957 0.0126 ± j0.6817
7 0.4598 ± j1.3361 0.1407 ± j0.6828
8 0.7255 ± j1.2173 0.2685 ± j0.6489
9 0.9609 ± j1.0452 0.3985 ± j0.5844
10 1.1553 ± j0.8275 0.5258 ± j0.4835
11 1.2997 ± j0.5739 0.6172 ± j0.3588
12 1.3875 ± j0.2946 0.9421
13 1.4162 0.6772 ± j0.2266
14 0.9414 0.7138 ± j0.0809
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Figure 5.12: Magnitude of the complex relative errors of the DAC compensation. Dashed
for τ = 35 and solid line for τ = 31.285868488.



Chapter 6

Basis Transformation for the TLS

Problem

6.1 Introduction of the TLS method

The total least squares (TLS) problem can be discussed as a general statistical method to
solve over-determined noisy linear equations or as a special method of frequency domain
identification techniques. Here, the latter one was chosen but some comments about the
general framework are mentioned, too [Pintelon et al., 1998], [Van Huffel and Vandewalle,
1991].

The method can be formulated as the minimization of a cost function with two con-
straints. If the cost function is the Froubenius norm, the solution is calculated using the
singular value decomposition (SVD). It means that the result of the estimator can be ob-
tained by using a reliable numerical tool. In some cases the parameter vector space has
to be transformed. Examples are frequency scaling, applying orthogonal polynomials, and
the case of a known subsystem. The former two transformations are typically applied in
order to increase numerical stability of the computation. They are linear, therefore they
can be expressed as multiplication by a transformation matrix.

In the TLS problem the solution space is restricted to the unit sphere in the parameter
space. This constraint removes the ambiguity from model space (5.54). If the parameter
space transformed, then intuitively, the constraint should be transformed, too. If not, then
the solution does not coincide with the solution of the original TLS problem. This chapter
explains and determines the necessary transformation in a proper way so that the solution
equals the solution of the original TLS problem.

First, this chapter contains a little overview about the frequency domain system identi-
fication. After that, the maximum likelihood and the TLS estimators are introduced. The
next part is about the parameter transformation, i.e. when and in which problems it is
used. In the end the proposed correction is analyzed and examples are showed.

It is worth noting that the topic of this chapter differs from the two previous ones,
therefore sometimes different notations are used or some notations are redefined according
to common notations in frequency domain system identification. Mostly, notations in [Van

157
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Huffel and Vandewalle, 1991] and [Pintelon and Schoukens, 2001] are used in this part of
the thesis.

6.2 Frequency Domain System Identification

The basis for the treated identification approach is the frequency domain that is introduced
in details in chapter 2. This means that the computed or measured frequency response
functions (FRF) are used throughout the algorithms. The basic aim is to measure and
model the transfer function of a plant, starting from noisy input and output measurements,
see figure 6.1. H0(Ω) is called the device under test (DUT) and is the true transfer function.
Our aim is to determine an estimated transfer function H(Ω, θ) such that the difference
between H(Ω, θ) and H0(Ω) should be minimal in some sense [Doob, 1953], [Feller, 1068].

Y (Ωk)

H0(Ω)

+ +

Y0(Ωk)U0(Ωk)

NU (Ωk)

U(Ωk)

NY (Ωk)

Figure 6.1: Frequency domain representation of the measurement process. U0(Ωk) and
Y0(Ωk) are the true input and output, respectively. U(Ωk), Y (Ωk) are the measured quan-
tities. NU (Ωk), NY (Ωk) denote the noise processes. H0(Ω) is the device under test.

Although the time domain identification techniques [Ljung, 1999] can still be used
for periodic excitations under the zero-order-hold (ZOH) and band limited (BL) signal
assumption, it is strongly recommended in this case to leave the time domain in favor of
the frequency domain. Indeed in the frequency domain, one has the following features not
found in the time domain [Pintelon et al., 1994]

• Since the non-excited frequency lines are eliminated, the noises are reduced [Ljung,
1993], [Schoukens et al., 1994].

• Saving frequency domain data reduces the necessary space because a large number of
time-domain samples are replaced by a small number of spectral lines [Ljung, 1993],
[Schoukens et al., 1994].

• When using a DFT to calculate the spectra, the frequency-domain noise is asymp-
totically complex normally distributed [Brillinger, 1981].

• Model validation: Using periodic excitations one has very good point estimates of
the frequency response function [Schoukens et al., 1994], [Guillaume et al., 1992].

• It is very easy to combine data from different experiments [Ljung, 1993], [Schoukens
et al., 1994].
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Instead of using the direct division of both measured spectra U(Ωk) and Y (Ωk) the
errors-in-variables approach is applied. The input and output spectra are considered as
unknown parameters, connected by the parametric transfer function model:

Y (Ωk) = Y0(Ωk) +NY (Ωk)

U(Ωk) = U0(Ωk) +NU (Ωk) (6.1)

with Y0(Ωk) = H0(Ωk)U0(Ωk) and where NY (Ωk) and NU (Ωk) include the generator noise,
the process noise, and the measurement noise [Pintelon et al., 1994].

Without assumptions about the noise process, statistical properties of estimators can-
not be studied and compared. In this case of time domain measurements we have the fol-
lowing assumptions: at the sampling instances the distributing time domain noise source
ny(t), nu(t) are jointly correlated, and modelled as filtered white noise sequence

[
ny(t)

nu(t)

]
=

[
Hn,11(z) Hn,12(z)

Hn,21(z) Hn,22(z)

][
e1(t)

e2(t)

]
(6.2)

with eT (t) = [e1(t), e2(t)] and where Hn(z−1) is a stable filter. e(t) is independently
distributed (over t and over its entries) with continuous probability density function, has
stationary first and second order moments, uniformly bounded fourth order moments, and
is independent of the true (unknown) excitation u0(t) [Pintelon and Schoukens, 2001]. The
relationships between the frequency domain errors and time domain noise are

NY (Ωk) = DFT(ny(t))

NU (Ωk) = DFT(nu(t)). (6.3)

In the case of frequency domain experiments we have the following assumptions: NU (Ωk),
NY (Ωk) are independent (over k), jointly correlated, zero mean random variables with
uniformly bounded absolute moments of order four. NY (Ωk), NU (Ωk) are independent of
the true excitation U0(Ωk) [Pintelon and Schoukens, 2001].

The estimators are compared by using the so-called cost functions. Every treated
estimator can be written as an optimization problem which is minimization in this case.
However, some estimations are computed not by solving an optimization problem but by
solving a linear equations. One of the advantage of the TLS estimator is that the estimated
parameter vector can be computed by solving the corresponding linear equations.

Like in the previous chapters a cost function is nearly related to norms. In a stochastic
framework we usually try to minimize the norm of the error which is a vector in a finite
dimensional space. Here, the norm L2 is used because of its good properties.
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6.2.1 Maximum Likelihood Estimator

The maximum likelihood estimator is a general method in statistic. Under the previously
enumerated assumptions one can construct the Gaussian likelihood function, which gives
the probability of obtaining a set of measurements {U(Ωk), Y (Ωk), k = 1, . . . , F}, for a
given set of values of the spectra {U0(Ω), Y0(Ω), k = 1, . . . , F}. The likelihood function
is a function of the (unknown) input and output spectra U(Ω) and Y (Ω), and the model
parameters through the model equation

H(Ω, θ) =
Y (Ω)

U(Ω)
. (6.4)

Maximization of the likelihood function with respect to U(Ω) and Y (Ω) under the con-
straint (6.4) results in the following maximum likelihood (ML) cost function [Pintelon and
Schoukens, 2001]

CML(θ) ==
F∑

k=1

|N(Ωk, θ)U(Ωk) −D(Ωk, θ)Y (Ωk)|2
σ2

U,k|N(Ωk, θ)|2 + σ2
Y,k|D(Ωk, θ)|2 − 2Re{ρY U,kD(Ωk, θ)N∗(Ωk, θ)}

(6.5)

where

σ2
U,k = E{N∗

U (Ωk)NU (Ωk)}, σ2
Y,k = E{N∗

Y (Ωk)NY (Ωk)},

ρY U,k = E{NY (Ωk)N
∗
U (Ωk)} (6.6)

and E denotes the expected value of a random variable. It is worth noting that the
denominator of the cost function (6.5) is the variance of the numerator. It is called the
optimal noise weighting. Hence the contribution of the equation error at frequency Ωk to
the ML cost is entirely determined by its variance: much confidence is given to accurate
measurements while noisy measurements are rejected [Pintelon and Schoukens, 2001].

There is a disadvantage of the ML estimator: the cost function (6.5) is non-linear in
the parameters θ. One of the algorithms presented in §5.5 can be used to compute the
estimation numerically.

6.2.2 Total Least Squares Estimator

The expression total least squares is used not only in the theory of frequency domain
identification but in the general theory of linear equations. The frequency domain method
is an element of the general theory. This subsection begins with the general theory that
contains the LS and TLS methods. After that, the application for frequency domain
identification is shown.



CHAPTER 6. BASIS TRANSFORMATION FOR THE TLS PROBLEM 161

6.2.2.1 Singular Value Decomposition

The singular value decomposition (SVD) is a very useful method which helps with charac-
terizing matrices and solving linear equations.

Definition 6.2.1 (Singular value decomposition). If A ∈ R
m×n (m > n) then the decom-

position

A = UΣV T (6.7)

with

U = [U1;U2], U1 = [u1, . . . , un], U2 = [un+1, . . . , um], ui ∈ R
m, UTU = Im

V = [v1, . . . , vn], vi ∈ R
n, V TV = In

Σ = diag(σ1, . . . , σn) ∈ R
m×n, σ1 ≥ · · · ≥ σn ≥ 0. (6.8)

is called singular value decomposition. σi are the singular values of A. The vector ui is the

ith left singular vector, and the vector vi is the ith right singular vector [Van Huffel and

Vandewalle, 1991], [Golub and Loan, 1996].

It is worth noting that the SVD exists for every matrix. Two example which show how
it is possible to determine some characteristics of the matrix from the SVD:

• The rank of the matrix A equals with the number of the non-zero elements of Σ.

• The pseudo inverse [Golub and Loan, 1996] of the matrix A may be computed by
SVD:

A+ = V diag(1/σ1, . . . , 1/σl, 0, . . . , 0)U
T (6.9)

where l is the number of the non-zero singular values of A.

Definition 6.2.2 (Generalized singular value decomposition). If we have A ∈ R
m×n with

m ≥ n and B ∈ R
p×n, then there exist orthogonal U ∈ R

m×m and V ∈ R
p×p and an

invertible X ∈ R
n×n such that

UTAX = diag(c1, . . . , cn) ci ≥ 0 (6.10)

and

V TBX = diag(s1, . . . , sn) si ≥ 0 (6.11)

where q = min(p, n) [Golub and Loan, 1996].
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6.2.2.2 TLS Method of Over-determined Linear Equations

A basic problem of applied mathematics is to determine an estimate of the true but un-
known parameters x ∈ R

n from certain measurements of the variables. This gives rise to
an over-determined set of m linear equations (m > n):

Ax ≈ b (6.12)

where the matrix A ∈ R
m×n and the vector b ∈ R

m. In the classical LS approach the
measurement A are assumed to be free of error; hence all errors are confined to the ob-
servation vector b. However, this assumption is frequently unrealistic: sampling errors,
human errors, modelling error, and instrument errors may imply inaccuracies of the data
matrix A as well. TLS is a method of fitting that is appropriate when there are errors in
both the observation vector b and the data matrix A.

In this section we formulate the main principle of TLS method. A good way to introduce
the method is to recast the ordinary least squares problem.

Problem 6.2.1 (Ordinary least squares problem). Given an over-determined set of m

linear equations Ax ≈ b in n unknowns x, the least squares problem seeks to

minimize
b′∈Rm

‖b− b′‖2 subject to b′ ∈ R(A). (6.13)

where R(A) denotes the range of A. Once a minimizing b′ is found, then any x satisfying

Ax = b′ (6.14)

is called LS solution and ∆b′ = b − b′ the corresponding LS correction [Van Huffel and

Vandewalle, 1991].

Equation (6.13) is satisfied if b′ is the orthogonal projection of b onto R(A). Thus, the
LS problem amounts to perturbing the observation vector b by a minimum amount ∆b′ so
that b′ = b− ∆b′ can be “predicted” by the columns of A.

One way to take errors in A into account is to introduce perturbations in A also and
to consider the following TLS problem.

Problem 6.2.2 (Basic total least squares problem). Given an over-determined set of m

linear equations Ax ≈ b in n unknowns x, the total least squares problem seeks to

minimize
[Â;b̂]∈Rm×(n+1)

‖[A; b] − [Â; b̂]‖F subject to b̂ ∈ R(Â). (6.15)

Once a minimizing [Â; b̂] is found, then any x satisfying

Âx = b̂ (6.16)

is called a TLS solution and [∆Â;∆b̂] = [A; b] − [Â; b̂] the corresponding TLS correction

[Van Huffel and Vandewalle, 1991].
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The TLS solution is denoted by x̂. One important application of TLS problems is
parameter estimation in errors-in-variables models. Here, we assume that m measurements
in A, b are related to n unknown parameters x by

A0x = b, A = A0 + ∆A, b = b0 + ∆b (6.17)

where ∆A, ∆b represent the measurement errors. With some restrictions to the distribution
of the errors the TLS estimates is consistent.

The next theorem is about the solution of the basic TLS problem 6.2.2.

Theorem 6.2.1 (Solution of the basic TLS problem Ax ≈ b). Let us take the singu-

lar value decomposition: [A; b] = UΣV T where Σ = diag(σ1, . . . , σn, σn+1). Let Σ̂ =

diag(σ1, . . . , σn, 0. If σn > σn+1 and vn+1,n+1 6= 0 then

[∆Â;∆b̂] = [A; b] − [Â; b̂] = σn+1un+1v
T
n+1, (6.18)

and

[Â; b̂] = U Σ̂V T (6.19)

solves the TLS problem. Moreover,

x̂ = − 1

vn+1,n+1
[v1,n+1, . . . , vn,n+1]

T (6.20)

exists and is the unique solution to Âx = b̂ [Van Huffel and Vandewalle, 1991].

As one can see solving the TLS problem is practically equivalent with computing a
singular value decomposition. Unfortunately, for this version of the TLS we require that
vn+1,n+1 6= 0 and σn > σn+1. But, in the case of frequency domain system identification
an alternative version presented in the followings is needed where we do not have this
problem.

Problem 6.2.3 (Orthogonal l2 approximation problem). Consider the data matrix A ∈
R

m×n. The orthogonal approximation problem seeks to

minimize
x∈Rn

‖Ax‖2 subject to xTx = 1 (6.21)

[Van Huffel and Vandewalle, 1991].

The vector e defined as e = Ax can be considered as a vector of residuals or errors on
each equation. Therefore, the orthogonal l2 approximation problem can also be interpreted
as an equation error identification. Obviously, using the square of the roots leads to an
equivalent problem:

minimise
x∈Rn

‖Ax‖2
2 subject to xTx = 1. (6.22)
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6.2.2.3 TLS in Frequency Domain System Identification

The orthogonal l2 approximation problem is used in the frequency domain system identi-
fication. The basic approximation problem is

N(Ω, θ)

D(Ω, θ)
≈ Y (Ω)

U(Ω)
. (6.23)

Rewriting the equation (6.23) results

N(Ω, θ)U(Ω) −D(Ω, θ)Y (Ω) ≈ 0. (6.24)

The left side is linear in the parameter vector θ because of the definitions (2.46) and (2.47).
For every k = 1, . . . , F it gives an equation which can be collected in an over-determined
linear equations of form (6.12). As in the theorem 6.2.3 the notation A is used, so the
over-determined linear equations can be written as

Aθ = 0 (6.25)

where the elements of A are

Ak,l = U(Ωk)Ω
l−1
k if l ≤ nα + 1,

Ak,l = −Y (Ωk)Ω
l−1−(nα+1)
k if l > nα + 1. (6.26)

Using (6.1) the noise of A can be introduced:

A = A0 +NA (6.27)

where the noise matrix NA can be generated like in (6.26):

NA,k,l = NU (Ωk)Ω
l−1
k if l ≤ nα + 1,

NA,k,l = −NY (Ωk)Ω
l−1−(nα+1)
k if l > nα + 1. (6.28)

Problem 6.2.4 (TLS problem in frequency domain system identification). The TLS prob-

lem in frequency domain identification seeks to

minimize
Â

‖(A− Â)‖2
F (6.29)

subject to

Âθ = 0 and θT θ = 1. (6.30)

Applying the modification (6.22) of the theorem 6.2.3 it can be proven that minimiza-
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tion of the following cost function is equivalent to solving the problem 6.2.4 [Pintelon et
al., 1994]:

CTLS =

∑F
k=1 |N(Ωk, θ)U(Ωk) −D(Ωk, θ)Y (Ωk)|2

θT θ
. (6.31)

6.2.3 Generalized TLS

The original TLS problem can be generalized in different ways. A possible extension is to
introduce a weighting function. In this thesis, this extension is not considered. An other
possible generalization is to apply the covariance matrix in order that optimal noise weight-
ing is obtained. This method is called generalized total least squares problem (GTLS)
[Pintelon et al., 1998].

In GTLS problem the same error equations (6.24) is valid but its variance at every
frequency Ωk is used. At the frequency Ωk the variance of the left side of (6.24) is

E {N(Ωk, θ)U(Ωk) −D(Ωk, θ)Y (Ωk)
∗N(Ωk, θ)U(Ωk) −D(Ωk, θ)Y (Ωk)}

= |N(Ωk, θ)|2E{U∗(Ωk)U(Ωk)} + |D(Ωk, θ)|2E{Y ∗(Ωk)U(Ωk)}

= |N(Ωk, θ)|2σ2
U,k + |D(Ωk, θ)|2σ2

Y,k. (6.32)

The variance (6.32) establishes the variance of element of NA. Hence, a covariance matrix
C can be constructed:

Ck,l = σ2
U,kΩ

l−1
k if l ≤ nα + 1

Ck,l = −σ2
Y,kΩ

l−1−(nα+1)
k if l > nα + 1. (6.33)

Problem 6.2.5 (GTLS problem in frequency domain system identification). The GTLS

problem in frequency domain identification seeks to

minimize
Â

‖(A− Â)C−1‖2
F (6.34)

subject to

Âθ = 0 and θT θ = 1. (6.35)

The equivalent cost function of the GTLS problem:

CGTLS =

∑F
k=1 |N(Ωk, θ)U(Ωk) −D(Ωk, θ)Y (Ωk)|2∑F

k=1(σ
2
U,k|N(Ωk, θ)|2 + σ2

Y,k|D(Ωk, θ)|2 − 2Re{ρY U,kD(Ωk, θ)N∗(Ωk, θ)})
.

(6.36)
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It can be seen that this cost function is very similar to the maximum likelihood cost
function (6.5).

6.3 Parameter Transformation

A transformation is nothing else than a function from the original parameter space to a
new one. There are more possible reasons of a transformation: increase the numerical
stability, reducing the number of the parameters, etc. In practise the transformation of the
parameter vector is performed in many cases, although this is not always noticed. This
chapter covers three cases:

• frequency scaling,

• orthogonal polynomials,

• known subsystem.

Frequency scaling and orthogonal polynomials are used only in the s-domain, although
generally these transformations can be evaluated in the z-domain, too. The case of known
subsystem can be applied in both domains.

The transformations can be combined and since the presented transformations are
linear, it can be evaluated by multiplying matrices.

6.3.1 Frequency Scaling

In an s-domain identification problem the length of the frequency interval can be so wide
that models even of moderate orders cannot be handled because of numerical imprecision
[Pintelon et al., 1994].

A possible solution is to divide every frequency by a constant and therefore the fre-
quency interval may be narrowed. The numerical stability of the TLS problem is dependent
on the condition number of A. However, the optimal frequency scaling, when the condi-
tion number is minimal, is not independent of the model. Therefore, in practise using the
arithmetic mean of the frequency set seems to be a good solution. The scaling factor is

ωscale =
ωmin + ωmax

2
(6.37)

and N(jω/ωscale, θ) and D(jω/ωscale, θ) are used instead of N(jω, θ) and D(jω, θ). Essen-
tially the bandpass spectrum is moved to the radian frequency 1. Thus, the parameter
vector is scaled. In some cases, the median value of the applied frequency set is used as
the scale factor [Pintelon and Kollár, 2004], [Pintelon et al., 2006]

ωscale = median{ω1, . . . , ωF }. (6.38)

In general the scaling factor can be any non zero number. Moreover, every power of Ω

in the polynomials can be scaled independently by arbitrary numbers. For example, the
logarithm of the the frequency log ωk can be applied.
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The relationship between N(jω/ωscale, θ) and N(jω, θ) is linear, and a transformation
matrix of the parameter vector θ can be introduced:

N(jω/ωscale, θ) = N(jω, TN,scaleθ) (6.39)

where

TN,scale = diag

(
1,

1

ωscale
, . . . ,

1

ω
nβ

scale

)
. (6.40)

Similarly,

D(jω/ωscale, θ) = D(jω, TD,scaleθ) (6.41)

where

TD,scale = diag

(
1,

1

ωscale
, . . . ,

1

ω
nβ

scale

)
. (6.42)

Finally, the transformation matrix of the parameter vector can be composed as

Tscale =

[
TD,scale 0

0 TN,scale

]
. (6.43)

6.3.2 Orthogonal Polynomials

The usual polynomial basis is 1, x, x2, . . . , xr . The numerical stability can be increased
by the use of so-called orthogonal polynomials [Rolain et al., 1995a], [Rolain et al., 1995b].
Polynomials of the transfer function (2.46) can be expressed in a new basis

H(Ω, θ) =
N(Ω, θ)

D(Ω, θ)
=

∑nb

r=0 brqr(Ω)∑na

r=0 arpr(Ω)
(6.44)

where pr(Ω) and qr(Ω) are polynomials of order r.

The orthogonal polynomials are used in the case of finite frequency grid and in the case
of s-domain. Let us denote ωk (k = 1, . . . , F ) is the kth element of the frequency grid. F
is cardinality of the frequency set. The Forsythe polynomial basis is generated using the
following recursion formula:

Rr(x) = Zr (xRr−1(jωk) + Zr−1Rr−2(x))

Z2
r = 2

F∑

k=1

|Rr(jωk)|2|W (ωk)|2 (6.45)

where W (ωk) is the discrete weighting function [Rolain et al., 1995a]. The first two poly-
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nomials are defined as follows:

R0(x) =
1

Z1
, R1(x) =

1

Z0Z1
x. (6.46)

The orthonormal bases of the numerator and the denominator are computed separately
because different sub-matrices in (6.24) belong to the numerator and the denominator. In
the case of the numerator the weighting W (ωk) equals with U(jω) and in the case of
denominator W (ωk) = Y (jωk). To compute the orthogonal polynomials in (6.45) jωk,
k = 1, . . . , F are substituted for x. It means that in the end the following two sub-matrices
are formulated

Bn = [Rn,0, Rn,1, . . . , Rn,nβ
] ∈ C

F×(nβ+1) (6.47)

and

Bd = [Rd,0, Rd,1, . . . , Rd,nβ
] ∈ C

F×(nα+1) (6.48)

where Rn,k and Rd,k denote the kth orthogonal polynomial of the numerator and de-
nominator, respectively. Note that R2r(x) and R2r+1(x) are respectively even and odd
polynomials in x. The evaluation of these polynomials has to occur in a numerically stable
way.

Since writing polynomials in a new basis is linear transformation, it is important to note
that the transformation polynomials to orthogonal polynomials is a linear one. Hence, it
is equivalent to a transformation of the parameter vector. In this case the transformation
matrix is denoted by Torthpol.

6.3.3 Known subsystem

Another possible application of the corrected TLS algorithm arrives when a part of the
DUT is known before the estimation process. The measurement setup is in figure 6.2.

U(Ωk)

+

Y0(Ωk)

NY (Ωk)

Y (Ωk)

+

H0,k(Ω) H0,u(Ω)U0(Ωk)

NU (Ωk)

Figure 6.2: Frequency domain representation of the measurement process in the case of
known subsystem. U0(Ωk) and Y0(Ωk) are the real input and output, respectively. U(Ωk),
Y (Ωk) are the measured quantities. NU (Ωk), NY (Ωk) denote the noise processes. H0,k(Ω)
is the known subsystem and H0,u(Ω) is the unknown part of the transfer function.
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The transfer function H0(Ω) can be written as

H0(Ω) = H0,u(Ω)H0,k(Ω) (6.49)

where H0,u(Ω) is the unknown and H0,k(Ω) is the known subsystem. Orders of the transfer
function are not increased and disregarding the trivial cases the length of the parameter
vector is decreased. In the new framework new notations is introduced for the numerator,
the denominator and for the parameter vector: Ñ(Ω, θ), D̃(Ω, θ), θ̃.

The new form of (6.24) is

Ñ(Ω, θ̃)U(Ω)H0,k(Ω) − D̃(Ω, θ̃)Y (Ω) ≈ 0. (6.50)

or if the corresponding part of the parameter vector of H0(Ω) is known:

Ñ(Ω, θ̃)N0,k(Ω, θk)U(Ω) − D̃(Ω, θ̃)D0,k(Ω, θk)Y (Ω) ≈ 0 (6.51)

where θk denotes the parameter vector of the known part, N0,k(Ω, θk) and D0,k(Ω, θk) are
the corresponding numerator and denominator, respectively.

It can be seen that (6.50) and (6.51) determine a new matrix Ã which has fewer columns
than A has. Moreover, there is a linear relation between Ñ(Ω, θ̃)N0,k(Ω, θk) and N(Ω, θ).
The linear map can be extended for D̃(Ω, θ̃)D0,k(Ω, θk) and D(Ω, θ). The transformation
Tknown subs. projects the parameter space onto a subspace:

Tknown subs.θ̃ = θ. (6.52)

6.4 Basis Transformation for the TLS Problem

As we have seen in the previous section sometimes transformation of the parameter vector
is needed. Since every transformation used in this thesis is linear, it is very easy to
combine them: transformation matrices must be multiplied. In the ultimate step the final
transformation matrix T appears.

The reader can find one of the presented results of the thesis here. First, the cost
function in which a problem appears is presented. The mentioned problem led to the
recognition that transforming the parameter space without transforming the constraint the
obtained parameter vector is not equivalent to the solution of the original TLS problem.
Therefore, a new version of the TLS problem must be specified, and in the thesis the
problem 6.4.1 is formulated. An equivalent problem 6.4.2 and the new cost function (6.59)
are also presented. At the end, an example is given in order to demonstrate the theoretical
result.

The TLS problem involves a constraint for the norm of the parameter vector. Simply
transforming the parameter vector in (6.23) but not transforming the constraint leads to
the following cost function

∑F
k=1 |N(jωk, T θ)U(jωk) −D(jωk, T θ)Y (jωk)|2

θT θ
. (6.53)
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Obviously solution of the minimization of (6.53) do not equal to the solution of the original
TLS problem. Moreover, after minimization (6.53) the obtained parameter vector must be
inverse-transformed which causes that the norm of ultimate parameter vector do not equal
to 1.

Therefore a correction of the TLS problem is needed to overcome the mentioned prob-
lems. The effect of the transformation T in (6.25) results

ATθ = 0. (6.54)

The left side of (6.54) leads to the matrix Am which is by definition Am = AT .

Problem 6.4.1 (Basis transformation for the TLS problem in frequency domain system
identification). The corrected TLS problem in frequency domain identification seeks to

minimize
Âm

‖(Am − Âm)‖2
F (6.55)

subject to

Âmθ = 0 and θTT TTθ = 1 (6.56)

where T is the corresponding transformation matrix.

There is an equivalent formulation:

Problem 6.4.2. The corrected TLS problem in frequency domain identification seeks to

minimize
Âm

‖(Am − Âm)T−1‖2
F (6.57)

subject to

Âmθ = 0 and θT θ = 1. (6.58)

The constraint is a bilinear expression. As a matter of fact (6.56) can be interpreted
that the norm of θ equals to one, when the scalar product of the vector x1 and the vector
x2 is defined as xT

1 T
TTx2. Hence the corresponding cost function is

Ccorrected TLS =

∑F
k=1 |N(jωk, T θ)U(jωk) −D(jωk, T θ)Y (jωk)|2

θTT TTθ
. (6.59)

It can be seen that even if T is not the identity matrix, the solution of the problem 6.4.1
is the same like the solution of the problem 6.2.4.

Figure 6.3 illustrates the different versions of the TLS problem. The solution of the
corrected TLS problem can be computed by using the GSVD method.
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θoriginal

θnot corrected
θcorrected

Figure 6.3: Illustration of the transformation of the constraint θT θ = 1. θoriginal is the
solution of the original TLS problem (left). θnot corrected illustrates the solution when the
constraint was not transformed and θcorrected is equivalent with the original solution in the
new basis.

6.4.0.1 GTLS

The GTLS problem presented in §6.2.3 does not need correction like the TLS problem.
The reason is that in the GTLS problem the cost function (6.57) is replaced by

minimize
Âm

‖(Am − Âm)C−1
m ‖2

F (6.60)

where C−1
m is the inverse of the modified covariance matrix that can be computed (see

(6.32))

Cm = TC. (6.61)

The equation (6.61) shows that in the case of the GTLS problem the covariance matrix
is also transformed, therefore it contains implicitly the transformation matrix T . And the
modified formulation of the corrected TLS problem 6.4.1 shows that the constraint of the
GTLS problem is implicitly transformed.

Another illustration of this effect is the denominators of the cost functions (6.31) and
(6.36). In the denominator of the cost function of the GTLS problem contains the variance
of the numerator, hence the transformed parameter vector.

6.4.1 Example

In the following tables some results obtained by running different algorithms are compared.
The normalized difference vector will be used for this purpose. This means that if θ1 and
θ2 denote the parameter vectors obtained as two estimation results, the expression of the
normalized difference is

e =
‖ θ1 − θ2 ‖2

‖ θ1 ‖2
. (6.62)

In our case ‖ θ1 ‖2> 0.
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Table 6.1: The normalized differences of the parameter vectors in the case of scaling.

scaling compensation e

yes no 1.2384
yes yes 0.0000

As an illustration of the procedure, the mechanical measurement of a robot arm is
presented. The behavior of a flexible robot arm was measured by applying controlled torque
to the vertical axis at one end of the arm, and measuring the tangential acceleration of the
other end. The excitation signal was a multi-sine, generated with frequency components at
[1 : 2 : 199]df , with df = 500

4096 = 0.125 Hz, that is, in the frequency range 0.125 Hz - 25 Hz.
The originally flat multi-sine was distorted by the nonlinear behavior of the actuator. The
odd harmonic frequencies provided that components produced by a squaring nonlinearity
would not disturb the identification. The input and output signals were sampled with
sampling frequency fs = 500 Hz. Sampling was synchronized to the excitation signal so
that 4096 samples were taken from each period. The data records contain 40960 points,
that is, 10 periods were measured. Figure 6.4 shows the transfer function at the measured
frequencies. The model is estimated with orders 4/6.
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Figure 6.4: The measured transfer function of the robot arm.

The results of the frequency scaling are summarized in table 6.1. θ1 is the parameter
vector, which can be obtained without any transformation. In (6.62) θ2 is the result of the
estimation dappling a transformation. It can be the result of the TLS problem without
correction or the estimation with correction.

The robot arm example is used again in order to illustrate the effects of the transfor-
mation to orthogonal polynomials. The normalized differences of the parameter vectors
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Table 6.2: The normalized differences of the parameter vectors in the case of orthogonal
polynomials.

representation compensation e

polynomials no 1.2940
orthogonal polynomials yes 0.0000

are listed in table 6.2.
We can see that the proposed correction of the TLS problem works well. The results

coincide with the results without any transformation of the parameter vector.

6.5 Conclusion

In this chapter the correction of the TLS method is presented. The correction can be
applied if the space of the parameter vector is transformed. It is shown how the norm
constraint of the original problem needs to be transformed in order to obtain the same
solution after the transformation.

The presented result fills a theoretical gap to complete the TLS theory. Although, the
corrected and the non-corrected TLS estimators are inconsistent because the covariance
matrices are not used, from a practical point of view, both methods can be used. It is
also discussed that in the case of GTLS estimator the noise covariance matrix includes the
transformation, so the constraint is implicitly transformed.





Chapter 7

Conclusions and Future Research

Directions

There are several, still unsolved problems to be investigated in the future. Un-addressed
and unsolved questions always remains when writing a thesis, but at some point the work
should stop, because there is only a limited time for the research. Hereby I tried to
summaries the open problems, which I could not deal with, because of time constraints.

Like the whole thesis, conclusions are divided into two parts. The first is about the
stable approximation and the second one is about the TLS method reviewing conclusions
and future research possibilities.

7.1 Stable Approximation with Additional Delay

7.1.1 Conclusions

The stable approximation problem is not trivial, even if the applied models are linear and
time invariant. In this work L2 approximations are studied. There are several published
methods (some are presented in chapter 3) that are trying to solve non-linear optimization
procedures. Practically, mathematics usually present only a simple existence theorem but
there are only few theorems that guarantee the uniqueness or gives any useful information
about the global optimum.

A possible solution of the stable approximation problem is if we allow to add some
delay to the target function as described in §3.3.2. Of course, its application has limits,
for example, it can be used only in open-loop configuration. An advantage of the method
is that after adding a delay to the target function we seek the global minimum of the cost
function what can be evaluated by effective algorithms. However, a disadvantage is that
the appropriate delay value must be found.

In the thesis I could present a proof of this theorem for both s- and z-domain in the case
of low order systems. The proof is valid if we apply a continuous frequency interval, i.e.
the frequency domain is the imaginary axes or the unit circle. Hence, we can conclude that
if the finite frequency grid is dense enough then the approximation problem can be very

175
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close to the continuous one, therefore the minimum of the cost function with additional
delay added to the target transfer function determines a stable system.

In addition to the theoretical results in chapter 5 we have shown and realized a new
practical method based on numerical ODE solvers in order to find the appropriate delay.
The proposed algorithm is tested with four already published examples. In one case the
algorithm returned with the same result like the published one. In two cases the results
are better than published designs, but in one case the method gives worse approximation
than the one can be found in the literature.

7.1.2 Future Research Ideas

Although some open questions were answered, still there are open questions related to
the studied problems. Some further questions that can be subject of further research are
briefly the following:

• Can the proof be extended for higher order systems without the assumptions pre-
sented?

• Is there a counterexample with no stable approximation in the case of the finite
frequency grid? The statement about the frequency grid which is becoming denser
says nothing if we do not allow to extend the set of frequency points.

• In the proved theorem we used the fact that the approximation was over the whole
imaginary axis or the whole unit circle. What is the situation in a band-limited
application?

• Is there any method which is able to estimate the necessary orders of an approxima-
tion which is stable and the approximation error is less than a given level?

• In the thesis only the simplest ODE solvers are presented and realized. Have other
methods (adaptive algorithms, methods for boundary problems) practical advan-
tages?

• In the case of the differentiator the presented algorithm returns worse approximation
than the one published in [Pintelon and Schoukens, 1990]. How should one improve
the treated algorithm in order to avoid situations like this?

• Can the theoretical results be generalized for MIMO systems?

• Can the practical results be applied in the case of MIMO systems?

• The slightly non-linear systems can be defined by Volterra series. Is it possible to
generalize the results to Volterra series?
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7.2 Basis Transformation for the TLS Method

7.2.1 Conclusions

In this part of the thesis we addressed problems of the TLS method if the parameter vector
is transformed.

The transformation maps a finite dimensional linear space to a finite dimensional lin-
ear space, therefore a matrix can be associated. In s-domain system identification without
frequency scaling it is almost impossible to numerically handle the ill-conditioned matri-
ces. And we showed that the frequency scaling and the usage of orthogonal polynomials
transform the parameter vector.

The TLS problem in frequency domain system identification means that an over-
determined linear equations has to be solved imposing a constraint for the length of the
parameter vector. It turned out that solving the original TLS problem in the transformed
base needs a transformation of the constraint. Chapter 6 presented the solution of this
correction.

The case of GTLS estimator was also studied and we showed that the constraint of
the GTLS problem implicitly contains the necessary transformation, so no correction is
needed.

7.2.2 Future Research Ideas

Possible further question which it might be worth investigating is

• How can the presented correction be extended to the cases of multivariate input
multivariate output systems?





Bibliography

Ansari, R. (1987). IIR discrete-time Hilbert transformers, IEEE Transactions on Acoustics,

Speech, and Signal Processing 35: 1116–1119.

Baratchart, L., Leblond, J. and Partington, J. R. (1996). Hardy Approximation to L∞

functions on Subset of the Circle, Constructive Approximation 12: 423–436.

Baratchart, L., Leblond, J., Partington, J. R. and Torkhani, N. (1997). Robust Identifica-
tion from Band-Limited Data, IEEE Transaction on Automatic Control 42(9): 1318–
1325.

Baratchart, L., Olivi, M. and Wielonsky, F. (1992). On a Rational Approximation Problem
in the Real Hardy Spaces H2, Theoretical Computer Science 12: 175–197.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press.

Brillinger, D. R. (1981). Time Series: Data Analysis and Theory., McGraw-Hill, New
York.

Cartwright, J. H. E. and Piro, O. (1992). The dynamics of Runge-Kutta methods, Inter-

national Journal of Bifurcation and Chaos 2(3): 427–449.

Chen, X. and Parks, T. W. (1987). Design of FIR filters in the complex domain, IEEE

Transactions on Acoustics, Speech, and Signal Processing 35: 144–153.

Chui, N. L. C. and Maciejowski, J. M. (1996). Realization of Stable Models with Subspace
Methods, Automatica 32(11): 1587–1595.

Coddington, E. A. and Levinson, N. (1995). Theory of Ordinary Differential Equations,
McGraw-Hill Book Company, Inc., New York.

Deczky, A. G. (1972). Synthesis of Recursive Digital Filters Using the Minimum p-Error
Criterion, IEEE Transaction on Audio and Electroacustics 20(4): 257–263.

D’haene, T., Pintelon, R. and Vandersteen, G. (2006). An Iterative Method to Stabilise
a Transfer Function in the s- and z-Domains, IEEE Transactions on Instrumentation

and Measurement 55: 1192–1196.

Doob, J. L. (1953). Stochastic Processes, Wiley, New York.

179



180 Bibliography

Ellacott, S. and Williams, J. (1976a). Linear Chebyshev Approximation in the Complex
Plane Using Lawson’s Algorithm, Mathematics of Computation 30(133): 35–44.

Ellacott, S. and Williams, J. (1976b). Rational Chebyshev Approximation in the Complex
Plane, SIAM Journal of Numerical Analysis 13(3): 310–323.

Feller, W. (1068). An Introduction to Probability Theory, Wiley, New York.

Golub, G. H. and Loan, C. F. V. (1996). Matrix Computations, The Johns Hopkins
University Press.

Guillaume, G., Pintelon, R. and Schoukens, J. (1992). Nonparametric Frequency Response
Functions Estimators Based on Non-linear Averaging Techniques, IEEE Transactions

on Instrumentation and Measurement 41(6): 739–746.

Hartman, P. (2002). Ordinary Differential Equations, Society for Industrial and Applied
Mathematics, Philadelphia.

Jacobson, N. (1985). Basic Algebra I, W.H. Freeman and Company.

Johnson, A. T. (1978). Simultaneous Magnitude and Phase Equalization Using Digital
Filters, IEEE Transaction on Circuits and Systems 25(5): 319–321.

Katayama, T. (2005). Subspace Methods for System Identification, Springer-Verlag.

Kollár, I. (1993). On Frequency-Domain Identification of Linear Systems, IEEE Transac-

tions on Instrumentation and Measurement 42(1): 2–6.

Kollár, I. (1994). Frequency Domain System Identification Toolbox for Matlab, The Math-
works, Inc., Natick.

Kollár, I., Pintelon, R. and Schoukens, J. (1990). Optimal FIR and IIR Hilbert Trans-
former Design via LS and Minimax Fitting, IEEE Transactions on Instrumentation

and Measurement 39(6): 847–852.

Kollár, I., Pintelon, R., Rolain, Y. and Schoukens, J. (1991). Correspondence: Another
Step Towards an Ideal Data Acquisition Channel, IEEE Transactions on Instrumen-

tation and Measurement 40(3): 659–660.

Kollár, I., Pintelon, R., Rolain, Y. and Schoukens, J. (1990). Equalization of Data Acquisi-
tion Channels Using Digital Filters, Periodica Polytachnica Ser. Electrical Engineering

34(3): 167–178.

Kryszig, E. (1979). Advanced Engineering Mathematics, Wiley, New York.

Ljung, L. (1993). Some Results on Identifying Linear Systems Using Frequency Domain
Data, Proceedings of the 32nd IEEE Conference on Decision and Control, San Anto-
nio, Texas, pp. 567–569.



Bibliography 181

Ljung, L. (1999). System Identification - Theory for the User, Prentice-Hall, Upper Saddle
River, N J.

Moses, R. L. and Liu, D. (1991). Determining the Closest Stable Polynomial to an Unstable
One, IEEE Transaction on Signal Processing 39(4): 901–906.

Oppenheim, A. V. and Shafer, R. W. (1989). Discrete-Time Signal Processing, Prentice-
Hall Inc.

Oppenheim, A. V., Willsky, A. S. and Young, I. T. (1983). Signals and Systems, Prentice-
Hall Inc., Englewood Cliffs, New Jersey, USA.

Pintelon, R. and Kollár, I. (2004). On the Frequency Scaling in Continuous-Time Mod-
eling, Proceedings of the 21st IEEE Instrumentation and Measurement Technology

Conference (IMTC’2004), Como, Italy, pp. 1586–1589.

Pintelon, R. and Schoukens, J. (1990). Real-Time Integration and Differentiation of Analog
Signals by Means of Digital Filtering, IEEE Transactions on Instrumentation and

Measurement 39(6): 923–927.

Pintelon, R. and Schoukens, J. (2001). System Identification: A Frequency Domain Ap-

proach, IEEE Press, Piscataway (USA).

Pintelon, R., Guillaume, P., Rolain, Y., Schoukens, J. and Van Hamme, H. (1994). Para-
metric Identification of Transfer Function in the Frequency Domain–A Survey, IEEE

Transactions on Automatic Control 39(11): 2245–2260.

Pintelon, R., Guillaume, P., Vandersteen, G. and Rolain, Y. (1998). Analysis, Develop-
ment and Applications of TLS Algorithms in Frequency-Domain System Identifica-
tion, SIAM Journal on Matrix Analysis and Applications 19(4): 983–1004.

Pintelon, R., Rolain, Y., Vanden Bossche, M. and Schoukens, J. (1990). Towards an Ideal
Data Acquisition Channel, IEEE Transactions on Instrumentation and Measurement

39(1): 116–120.

Pintelon, R., Schoukens, J. and Guillaume, P. (2006). Continuous-Time Noise Model-
ing From Sampled Data, IEEE Transactions on Instrumentation and Measurement

55(6): 2253–2258.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (2002). Numerical

Recipes in C, 2 edn, Cambridge University Press.

Rabiner, L. R. and Gold, B. (1975). Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ.

Rolain, Y., Pintelon, R., Xu, K. and Vold, H. (1995a). Best Conditioned Parametric Iden-
tification of Transfer Function Models in the Frequency Domain, IEEE Transaction

on Automatic Control 40(11): 1954–1960.



182 Bibliography

Rolain, Y., Schoukens, J. and Pintelon, R. (1995b). Order Estimation for Linear Time-
Invariant Systems Using Frequency Domain Identification Methods, Proceedings of

34th IEEE Conference on Decision and Control, New Orleans, USA, pp. 3588–3593.

Rudin, W. (1976). Principles of Mathematical Analysis, McGraw-Hill Education, Europe.

Rudin, W. (1987). Real and Complex Analysis, McGraw Hill.

Rudin, W. (1991). Functional Analysis, McGraw Hill.

Sahoo, P. and Riedel, T. (1998). Mean Value Theorems and Functional Equations, World
Scientific.

Sain, M. and Massey, J. (1969). Invertibility of Linear Time-Invariant Dynamical Systems,
IEEE Transaction on Automatic Control 14(2): 141–149.

Schetzen, M. (1980). The Volterra and Wiener Theories of Nonlinear Systems, John Wiley
and Sons, New York.

Schnell, L. (ed.) (1993). Technology of Electrical Measurements, John Wiley and Sons,
Chichester.

Schoukens, J. and Pintelon, R. (1991). Identification of Linear Systems: a practical guide-

line to accurate modeling, Pergamon Press, London.

Schoukens, J., Pintelon, R. and Van Hamme, H. (1994). Identification of Linear Dynamic
Systems Using Piecewise Constant Excitations: Use, Misuse and Alternatives, Auto-

matica 30(7): 1153–1169.

Silverman, L. (1969). Inversion of Multivariable Linear Systems, IEEE Transaction on

Automatic Control 14(3): 270–276.

Söderström, T. and Stoica, P. (1989). System Identification, Prentice Hall Internation,
UK.

Tanaka, H. and Katayama, T. (2005). Stochastic subspace identification guaranteeing
stability and minimum phase, Proceedings of the 16th IFAC World Congress, Prague,
Czech Republic.

Titchmarsh, E. (1937). Introduction to the Theory of Fourier Integrals, Clarendon Press.

Van Gestel, T., Suykens, J. A. K., Van Dooren, P. and De Moor, B. (2001). Identification of
Stable Models in Subspace Identification by Using Regularization, IEEE Transaction

on Automatic Control 46(9): 1416–1420.

Van Huffel, S. and Vandewalle, J. (1991). The Total Least Squares Problem - Computational

Aspects and Analysis, Society for Industrial and Applied Mathematics, Philadelphia,
PA.



Bibliography 183

Van Overschee, P. and De Moor, B. (1996). Subspace Identifiaction for Linear Systems:

Theory, Implementation, Applications, Boston, MA: Kluwer.

Vuerinckx, R. (1998). Design of Digital Chebyshev Filters in the Complex Domain, PhD
thesis, Vrije Universiteit Brussel.

Vuerinckx, R., Rolain, Y., Schoukens, J. and Pintelon, R. (1996). Design of Stable IIR
Filters in the Complex Domain by Automatic Delay Selection, IEEE Transaction on

Signal Processing 44(9): 2339–2344.

Zhou, K., Doyle, J. C. and Glover, K. (1995). Robust and Optimal Control, Prentice-Hall
Inc., New Jersey, USA.

Zwillinger, D. (1997). Handbook of Differential Equations, Academic Press, Bolton.





Appendix A

Original Contributions

The achieved results are collected into three statements.

Statement 1: I have proved the following existence theorem: if nβ +nα ≤ 2 then for every

complex target function a delay value τ exists with the following property: when the

target function is modified by a factor of e−jωτ , minimization of the cost function

C(θ, τ) =

∫

I
|T (Ω)e−jωτ −H(Ω, θ)|2dΩ (A.1)

yields a stable model.

The precise statement can be found in §4.3, on page 41. Chapter 4 on pp. 33–127
proves the theorem.

Existence statements are not useful unless the value can be found with reasonable
computer time. This is assured by the following statement.

Statement 2: I have developed a new algorithm to find such a delay value. The proposed

algorithm gives better values (in terms of the value of the cost function) than previous

proposals published in literature.

The algorithm is based on numerical methods for solving ordinary differential equa-
tions. The new algorithm is described and analyzed in §5.6, in pp. 140–143. Theo-
retical considerations are in §5.6.2 in pp. 143–144. The flowchart of the method is in
§5.6.3, in pp. 144–145. The §5.7 in pp. 145–157 contains numerical examples.

Statement 3: I have recognized and analyzed how the transformation of the parameter

vector changes the solution of the TLS method in frequency domain system identifi-

cation. I gave the correcting transformation and proved that it indeed lets the original

problem be solved.

I have demonstrated the use of the correction for transformations used in practice.

The new result is treated in §6.4, in pp. 169–171. The parameter transformations
illustrating the method are listed in §6.3, in pp. 166–169.
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System identification is a powerful technique for constructing accurate models of com-
plex systems from noisy input-output observations. It mainly consists of three basic steps
that are interrelated:

(1) design of the experiment;

(2) choice of a parametric model (black box or physical laws);

(3) and the estimation of the model parameters from noisy measurements.

According to the intended goal of the identification experiment - physical interpretation,
simulation, prediction, or control - some additional properties may be imposed on the
identified model such as reciprocity, passivity, stability, ...

This thesis presents both theoretical (theorems) and practical (algorithms) contribu-
tions to the third step of an identification experiment: the estimation of guaranteed stable
models from noisy data. A two step procedure is proposed: in the first step an uncon-
strained model is identified from the noisy measurements. Next, if unstable, the unstable
model is in a second step approximated by a guaranteed stable model by adding an appro-
priate delay to the target function. The final result is a stable model with bias and noise
uncertainty bounds that is useful in open loop simulation or prediction applications.
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